
Genome-Wide Scan for Signatures of Human Population
Differentiation and Their Relationship with Natural
Selection, Functional Pathways and Diseases
Roberto Amato1,2*, Michele Pinelli1,3, Antonella Monticelli4, Davide Marino2, Gennaro Miele1,2,5, Sergio

Cocozza1,3

1 Gruppo Interdipartimentale di Bioinformatica e Biologia Computazionale, Università di Napoli ‘‘Federico II’’ - Università di Salerno, Naples, Italy, 2 Dipartimento di
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Abstract

Genetic differences both between individuals and populations are studied for their evolutionary relevance and for their
potential medical applications. Most of the genetic differentiation among populations are caused by random drift that
should affect all loci across the genome in a similar manner. When a locus shows extraordinary high or low levels of
population differentiation, this may be interpreted as evidence for natural selection. The most used measure of population
differentiation was devised by Wright and is known as fixation index, or FST. We performed a genome-wide estimation of FST

on about 4 millions of SNPs from HapMap project data. We demonstrated a heterogeneous distribution of FST values
between autosomes and heterochromosomes. When we compared the FST values obtained in this study with another
evolutionary measure obtained by comparative interspecific approach, we found that genes under positive selection
appeared to show low levels of population differentiation. We applied a gene set approach, widely used for microarray data
analysis, to detect functional pathways under selection. We found that one pathway related to antigen processing and
presentation showed low levels of FST, while several pathways related to cell signalling, growth and morphogenesis showed
high FST values. Finally, we detected a signature of selection within genes associated with human complex diseases. These
results can help to identify which process occurred during human evolution and adaptation to different environments. They
also support the hypothesis that common diseases could have a genetic background shaped by human evolution.
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Introduction

Genetic differences are present in humans at both individual

and population level. Human genetic variations are studied for

their evolutionary relevance and for their potential medical

applications. This studies can help scientists in understanding

ancient human population migrations as well as how selective

forces act on the human being [1,2].

According to the theory of neutral variation, most of the genetic

variability within species are caused by random drift of selectively

neutral polymorphic alleles [3]. Genetic drift should affect all loci

across the genome in a similar manner. Therefore, when a locus

shows extraordinary high or low levels of variability this may be

interpreted as evidence for natural selection [4]. High levels of

population differentiation can suggest the acting of a positive

selection of advantageous alleles in one or more populations. On

the contrary, lower levels of population differentiation can be

considered as the effect of balancing selection that tends to

maintain a constant proportion of alleles across all populations [5].

Population differentiation is sensitive to a variety of demo-

graphic factors (including the rate of drift within populations and

the extent of gene flow among them), making it difficult to rule out

demographic scenarios that could account for the observed

variations. Another class of tests is aimed to detect signature of

natural selection by comparing data from different species. These

tests explore the fact that mutations can be synonymous and non

synonymous, and that non-synonymous mutations are more likely

to have an effect on individual fitness. This method is also known

as dN/dS. Results obtained by this comparative approach are

rarely interpreted in terms of population genetics theory [6].

The human population is also not homogeneous in terms of

disease susceptibility. Risks of common diseases are substantially

different among ethnic groups [7]. The understanding of

population genetic differentiation, especially in genes associated

with diseases, can help to explain the observed variations in the

prevalence of diseases. It is not difficult to forecast that, in the

future, genetic structure of populations can be used in public

health management [8]. Moreover, natural selection on genes that

underlie human disease susceptibility has been invoked. In this

framework, ancestral alleles reflect ancient adaptation. With the

shift in the environment, these alleles increase the risk for common

diseases [9].
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Different strategies to quantify the population genetic differenti-

ation have been elaborated [10–16]. One of the most used is a

measure devised by Wright and known as fixation index, or FST

[17,18], which is the amount of genetic variation among groups

relative to a panmictic state. As a test of selection, observed FST values

are compared to those expected under neutrality. The main difficulty

of this approach is to determine the distribution of FST values under

neutrality [10]. Recently, however, the abundance of genetic data

available allows the creation of an empirical genome-wide distribu-

tion to be used for the comparisons. Rather than statistically testing

specific loci, we can use their position relative to this distribution to

gain insights about their selective histories. In addition, the

abundance of information about variability of many genes makes it

possible to analyze not only single genes, but also sets of functionally

related genes. International HapMap Project [19] by supplying data

of a large number of Single Nucleotide Polymorphisms (SNPs) across

many human populations, is providing an exceptional tool for

studying the genetic structure of human populations.

In the present article we report the results of a genome-wide

estimation of FST on 3,917,301 SNPs from the latest release of

HapMap data. Our results show a heterogeneous distribution of

FST values among genomic regions. Furthermore, we studied the

relationship between FST and an evolutionary measure obtained

by a comparative interspecific approach. We applied a gene set

approach, widely used for microarray data, to detect biochemical

pathways under selection. Finally, we detected a signature of

selection within genes associated with complex diseases.

Results

Using FST, we estimated populations differentiation for

3,917,301 SNPs in population samples from the International

HapMap Project data (Public release 27, merged II + III). To

retain the largest number of SNPs broadly reflecting a continental

subdivision, we used data from Yoruba (Africa), Japanese (Asia),

Han Chinese (Asia) and CEPH (European descendant) individuals.

Combining data from these populations we were able to compare

the largest set of genotyped SNPs up to now available. We pooled

Japanese and Han Chinese samples due to their geographical

closeness. Furthermore, this pooling allowed us to compare our

data with previous studies [20,11]. FST was estimated according to

Weir and Cockerham [18,21].

After exclusion for Minor Allele Frequency (MAF), we obtained a

final SNP sample of 2,125,440 SNPs. The mean FST was 0.122 (SE

= 561025, median = 0.091, interquartile range = 0.131; see

Supporting Information S1 for more detailed statistics). Figure 1

shows distribution of FST values for each chromosome. The median

FST values of SNPs on the autosomal and sexual chromosomes were

statistically different (Kruskal-Wallis test, p-value ,10216). The

median FST values for X and Y chromosomes were 0.129 (mean

= 0.174) and 0.676 (mean = 0.606) respectively and were notably

higher than those of autosomal chromosomes. Also medians

between autosomal chromosomes showed significant differences,

but in a very small range of values (median range = 0.084 to 0.098).

For each chromosome, we computed the correlations of all pairs

of FST values for neighbouring SNPs separated by a fixed number

of SNPs (1 to 30). This method is commonly used to assess whether

FST values are non randomly distributed across chromosomes

[4,22]. As expected, we found that correlation plots are different

from those expected from a noisy signal (Figure 2). Moreover,

scrambling FST values across each chromosome produced

vanishing correlation values demonstrating that the distribution

of data is non-random (data not shown). This result was also

supported by a test for non-randomness of data (Ljung-Box test,

p-value ,10216). Figure 2 shows a clear difference between

correlation plots of autosomal and X-linked SNPs, the latter

showing higher autocorrelation values. Chromosome Y was

excluded from this analysis because of the small number of SNPs

sampled.

To attribute FST value to genes we followed the approach by

Akey et al. and Pikrell et al. [4,16], considering FST of a gene the

Figure 1. Distribution of FST values across chromosomes. For
each chromosome, the box length is the interquartile range while the
horizontal line inside it is the value of the median. The whiskers extend
to the most extreme data point ,1.5 times the interquartile range from
the box. Extremes of the notches represents 95% confidence interval of
the median.
doi:10.1371/journal.pone.0007927.g001

Figure 2. Correlation between FST values. The correlation is
calculated, for each chromosome, for all pairs of SNPs separated by a
fixed number of intervening SNPs. Black line shows mean value and 2s
error bars of the correlation of SNPs belonging to autosomal
chromosomes. Red line shows correlation among X-linked SNPs.
doi:10.1371/journal.pone.0007927.g002
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maximum FST value in the gene region (see Material and

Methods). It is worth stressing that this approach is very

conservative for genes with low FST values.

Selection affects both interspecific (between-species) and

intraspecific (within-species) variability. FST is a measure of

intraspecific variability. Estimation of genic dN/dS is an interspe-

cific measure of variability [6]. We compared the gene FST values

that we obtained with previously reported data from a genome-

wide estimation of genic dN/dS [23]. In that article the authors

divided genes into subgroups with strong, weak and no evidence of

positive selection. We compared FST values of genes belonging to

these subgroups. Genes with both weak and strong evidence of

positive selection showed lower FST values than genes with no

evidence of positive selection (ANOVA, p-value ,0.001; Bonfer-

roni post-hoc, no evidence vs. weak evidence p-value ,0.02, no

evidence vs. strong evidence p-value ,0.005, weak evidence vs.

strong evidence = N.S.; Figure 3).

To identify functions potentially under selective pressure, we used

an innovative approach, focusing on gene pathways instead of

outliers. We performed this ‘‘gene set’’ analysis using the Gene Set

Enrichment Analysis (GSEA) algorithm [24,25]. GSEA is oriented

to identify sets of functionally related genes and is currently used in

the analysis of microarray data. Screening the KEGG pathway

database by GSEA, we identified 6 KEGG pathways enriched by

genes with high values of FST and one pathway enriched by genes

with low values of FST (Table 1). In this method, the enrichment of a

pathway is mainly driven by a group of genes that are called

‘‘leading edge genes’’ (see Material and Methods). Figure 4 shows

the leading edge genes for the six pathways with high FST values. A

partial overlap of genes among pathways is present.

We then studied populations differentiation of genes associated

with complex diseases. We used the Genetic Association Database

(GAD) to select genes annotated as having positive association with

complex diseases. We compared FST values of these genes with those

where no association had been positively found. Genes associated

with complex diseases showed a significant higher mean value of FST

(t-test, p-value ,0.001; Moving Block Boostrap, empirical p-value

= 0.0005; Figure 5). Then, we divided diseases in subgroups

according to the GAD classification of diseases. Figure 6 shows that

large differences of FST values exist among disease classes, while mean

FST values are usually higher than those of non associated genes.

Discussion

The study of the evolutionary forces acting in diseases and

physiological traits is an exciting field that may drive further

researches and, in the future, public health policies. The study of

population genetic differentiation could help the understanding of

human evolution, demographic history and disease susceptibility

[26]. To study population differentiation we performed a genome-

wide FST calculation using the latest available data release from

the HapMap. Using this release we were able to increase both the

number of SNPs and the number of individuals analysed in

comparison to recent analogous studies [15]. We focused on

samples from three different continents (Africa, Asia, Europe) to

obtain a broad but sound measure of populations differentiation.

We found an overall mean FST value (0.122) broadly consistent

with previous estimations [4,22,15]. The slightly higher value that

we obtained could be explained by the exclusion of SNPs with MAF

,0.05 and the inclusion of heterochromosomes in the calculation.

Indeed, as expected [4], we observed a significantly higher median

FST value of X-linked SNPs with respect to the autosomal ones.

Furthermore, we found median FST value of Y-linked SNPs to be

significantly higher than both the autosomal and the X-linked ones.

Previous data from smaller datasets suggested a similar phenom-

enon [27], but, in our knowledge, this is the first observation made

on Y chromosome FST in a more robust framework. The higher

population differentiation for X and Y chromosomes can be due to

various causes: their smaller effective population size (three-quarter

and one-quarter of autosomes, respectively), the lower mutation and

recombination rates and the different selective pressure between

genders have been invoked [4,6,28].

Keinan et al. showed that there was a period of accelerated

genetic drift on chromosome X associated with the human

dispersal out of Africa. In particular, they estimated the autosome-

to-X genetic drift ratio between North Europeans and East Asians

is consistent with the expected 3/4 while it is significantly reduced

between North Europeans and West Africans, and between East

Asians and West Africans [29]. As possible explanations they

suggested that a gender-biased process reduced the female

Figure 3. Mean FST value of genes with and without interspe-
cific evidence of positive selection. Genes were grouped according
to the strength of evidence of their positive selection across six species
[23]. Vertical bars represent 95% confidence interval.
doi:10.1371/journal.pone.0007927.g003

Table 1. Enriched KEGG pathways identified by GSEA.

Pathway Name KEGG ID Size FDR

Enriched by high FST genes

Axon guidance HS04360 126 ,0.001

Focal adhesion HS04510 194 0.008

ECM receptor interaction HS04512 85 0.009

Regulation of actin
cytoskeleton

HS04810 199 0.010

Adherens junction HS04520 75 0.010

Calcium signaling pathway HS04020 168 0.010

Enriched by low FST genes

Antigen processing and
presentation

HS04612 70 0.001

For each pathway is showed the name, the KEGG ID, the number of genes
included in the pathway and the p-value after the False Discovery Rate (FDR)
correction.
doi:10.1371/journal.pone.0007927.t001
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effective population size, or that an episode of natural selection

affecting chromosome X was associated with the founding of non-

African populations. Our results are consistent with these finding.

We computed population pair-wise FST and we found that the

autosome-to-X genetic drift ratios (Q), estimated as in [29], are

compatible with those reported in [29] (Asia-Europe Q = 0.72;

Asia-Africa Q = 0.66; Europe-Africa Q = 0.65).

The weak but significant correlation that we found among FST

values of neighbouring markers demonstrated that they are non-

randomly distributed along chromosomes. This result confirms

previous observations made on smaller datasets [4,22]. We

extended for the first time this observation to the X chromosome

and we found that correlation was slightly stronger than that of

autosomes. It has been observed that correlation between SNPs is

proportional to Linkage Disequilibrium (LD) [22]. Therefore, the

higher value of autocorrelation that we found can be explained by

the higher value of LD in X chromosomes [22].

Population genetics approach has been largely used for studying

natural selection. Other approaches include the comparative one,

in which data from different species are used. The most commonly

Figure 4. Leading edge genes of the high FST enriched KEGG pathways identified by GSEA. Genes are indicated by gene symbols. Red
box marks the presence of that gene, as leading edge gene, in that pathway.
doi:10.1371/journal.pone.0007927.g004

Genome-Wide Scan for Selection

PLoS ONE | www.plosone.org 4 November 2009 | Volume 4 | Issue 11 | e7927



used method is to compare the ratio of nonsynonymous mutations

per nonsynonymous site to the number of synonymous mutations

per nonsynonymous site (dN/dS). Data from comparative studies

and from population genetics are poorly connected. We found that

genes with a high dN/dS ratio, indicating positive selection,

showed a significantly lower FST mean value. In our knowledge

this represents the first attempt to connect human population

genetic data and comparative data at a genome-wide level. Our

finding does not conflict with previous studies performed on a

restricted number of genes [30]. It is well established that

comparative data provides the most unambiguous evidence for

selection, but relatively vague assertion on the type of selection and

if the selection is currently acting in a population [6]. For such

reasons the connection with population genetic data is needed.

Further studies, mainly focused on this topic, are required to

confirm and understand the relationship that we found.

We used a gene set approach to identify pathways with

extraordinary levels of population genetic differentiation. The

traditional approach used to perform this analysis is based on the

identification of those loci outliers in a given statistic. This

approach has been recently reviewed and its limits explored

[10,31–33]. Interestingly, similar criticisms are arising on analo-

gous methods used in transcriptomic data analysis. In this field,

alternative approaches, as the ‘‘gene set’’ ones, are gaining

increasing interest. Among the tools implementing this approach,

Gene Set Enrichment Analysis [34,25] is one of the most used

[35,36]. The key idea underlying GSEA is to focus on gene sets,

which are defined as groups of genes sharing common features

(e.g. biological pathways, chromosomal position, etc.). In micro-

array data analysis, GSEA aims to determine whether a gene set

shows statistically significant, concordant differences between two

biological states or phenotypes. This method has been tailored for

microarray data, however its use is being explored also in different

fields [37,38]. To the best of our knowledge, the present report is

the first attempt to functionally analyse genes under selective

pressure by a gene set statistical approach.

Figure 5. Mean FST value of genes associated to complex
diseases. Genes found positively associated with complex diseases
according to the Genetic Association Database are compared with the
remaining ones. Vertical bars represent 95% confidence interval.
doi:10.1371/journal.pone.0007927.g005

Figure 6. Mean FST values of genes in different disease classes. Genes were grouped according to the diseases classification of Genetic
Association Database. Vertical bars represent 95% confidence interval. Horizontal solid and dashed lines represent mean value and 95% confidence
interval of the set of non associated genes.
doi:10.1371/journal.pone.0007927.g006
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Using very conservative statistics, the GSEA analysis found

differential FST values on seven KEGG pathways, one enriched by

low FST genes and six enriched by high FST genes. However, it is

important to note that the discrepancy between the number of low

and high FST pathways is a consequence of the way by which we

attributed FST values to genes rather than underlying evolutionary

forces. The only pathway with decreased degree of differentiation

among populations was the ‘‘antigen processing and presentation’’

pathway. Included in this pathway are genes involved in the

antigen-presenting machinery as (i) the expression of major

histocompatibility complex (MHC) molecules, (ii) the mechanism

of cross-presentation, and (iii) the interaction of antigen-presenting

cells. Opposing views exist concerning the evolutionary forces that

shaped the innate immune system. In particular, the relative

impact of purifying and balancing selection is under discussion

[39,40]. Barreiro et al demonstrated that several SNPs of genes

related to the immune response to pathogens showed very high

FST values [15]. On the other hand, Akey et al. reported a four

times increase of proteins that perform a defense/immunity

function in the group of the low FST genes [4]. Moreover, low

levels of population differentiation have been previously detected

at loci that are involved with host–pathogen responses (HLA class

I and class II genes, beta-globin, G6PD, glycophorin A, interleukin

4 receptor-alpha and CCR5) [5]. Further evidence arises from the

group of genes that we studied and that were previously described

to be under positive selection. This group of genes, which we

found with low FST values, was described to be enriched for

several functions related to immunity and defence [23].

Among the six gene sets enriched by high FST genes, we found

the ‘‘calcium signalling’’ pathway.

Calcium is the most abundant mineral in the body. It is also a

highly versatile intracellular signal that regulates many cellular

processes in response to different external stimuli, as growth

factors [41]. We found very high FST values in three genes

belonging to the growth factor stimulated calcium signalling

pathway, namely EGFR, ERBB2, and ERBB4. It is interesting to

note that a previous study from Pickrell et al. found that ERBB4

showed extreme signs of haplotype selective sweep in non-African

populations [16]. The authors suggested that this gene could affect

an unidentified phenotype that experienced a strong recent

selection in non-African population. Our gene set approach seems

to confirm this finding and expands this observation to other

members of the ERBB gene family.

The other five high FST pathways are involved in the control of

cell shape and mobility. Among them, four interconnected

pathways (‘‘focal adhesion’’, ‘‘regulation of the actin cytoskeleton’’,

‘‘adherens junction’’ and ‘‘extra cellular matrix receptor interac-

tion’’) govern growth-related processes and morphogenesis.

Morphological traits have been demonstrated to show strong

signature of positive selection [15]. These pathways were found

also to be altered in a mouse model of fetal alcohol syndrome,

associated with a low birth-weight phenotype [42]. Indeed, human

body shape and size varies among populations showing a

correlation with geographic and climate variables [43]. In

addition, in the ‘‘adherens junction’’ pathway, one of the strongest

FST values was showed by TCF7L2, the gene with largest type 2

diabetes effect size found to date [44]. This last finding is

consistent with previous observations [44,16]. Since it has been

demonstrated that TCF7L2 variants also substantially influence

normal birth-weight variations [45], a complex interplay between

pathways that govern growth-related processes and susceptibility

to type 2 diabetes could be hypothesized.

The last high FST pathway, the ‘‘axon guidance’’, is involved in

brain wiring during foetal development and repair throughout life.

Axon guidance proteins and their relative binding partners have

also an emerging role in the pathogenesis of several neurodegen-

erative and psychiatric diseases such as schizophrenia [46,47].

Signature of recent positive selection inferred by identification of

selective sweeps in specific populations was found in genes involved

in schizophrenia [48]. Moreover, population dependent results were

obtained when gene-association studies were performed using

several high FST genes present in this gene set [49,50].

It has been suggested that alleles involved in common disease

could be targets of selection [51,9,52,43]. The common disease/

common variant (CD/CV) hypothesis proposes that common

diseases are usually caused by one or a few common disease

susceptibility alleles. These genetic variants represent ancestral

alleles, presumably under selective pressure, that have become

disadvantageous after changes in environment and of lifestyle

[51,53,54]. We found that genes associated with complex diseases

showed a significant higher mean value of FST, supporting the

CD/CV hypothesis. However, several previous studies of SNPs

associated with complex diseases did not find significant evidence

of population differentiation [55,56]. On the other hand, further

studies observed that the distribution of maximum FST was shifted

upward in regions associated with type 2 diabetes mellitus [16].

Moreover SNPs known to protect against obesity and diabetes

showed very high FST values [15]. Simulation studies also

provided support for the CD/CV hypothesis [57].

According to the GAD classification of diseases, we divided the

overall group of the genes associated with complex diseases. Clear

differences in FST means among the various classes were present.

In particular, several disease classes, namely ‘‘hematological’’,

‘‘infection’’, and ‘‘immune’’, showed an FST mean value slightly

lower than the mean value of non-associated genes. Nevertheless,

the majority of the classes showed FST mean values to be higher

than the non-associated one. Highest FST values were detected in

‘‘pharmacogenomics’’ and ‘‘psychiatric’’ classes. GAD classifies in

‘‘pharmacogenomics’’ those diseases related to drug effects. It is

well established that drugs effects are race/ethnic specific [58].

The GAD ‘‘psychiatric’’ class includes mental disorders. Why

genes that confer susceptibility to mental diseases are still

maintained by natural selection, is an old question which, up to

now, is still unanswered. The compensatory advantage for genes

associated to intermediate phenotypes has been invoked as

explanation for this phenomenon, also called ‘‘psychiatric

paradox’’ [59]. Further studies should be performed to determine

if the high level of population differentiation that we found for this

disease class could be related to the psychiatric paradox.

The results presented in this paper could contribute to further

explorations of the ongoing selection in humans. Further studies are

needed to clarify the biological pathways involved and to better

elucidate the role of natural selection in human complex diseases.

Materials and Methods

Data
All analysis are based on the HapMap Public Release #27

(merged II+III) datafiles (http://www.hapmap.org). We analyzed

the data from the CEPH (Utah residents with ancestry from

northern and western Europe; CEU, n = 165), Yoruba in Ibadan,

Nigeria (YRI, n = 167), Han Chinese in Beijing, China (CHB,

n = 84) and Japanese in Tokyo, Japan (JPT, n = 86) samples. We

pooled the CHB and JPT samples to form a single sample.

Additional SNP information about physical positions and SNP-

gene association were obtained from dbSNP build 129 (http://

www.ncbi.nlm.nih.gov/projects/SNP). In particular, according to

dbSNP classification, we considered all SNPs within 2 kb of a gene

Genome-Wide Scan for Selection
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(locus region) as associated to that gene. Data from the

International HapMap Project and dbSNP were merged in a

local MySQL database by a set of script from Amigo et al. [60].

When we consider the whole Hap map dataset (autosomes and

heterochromosomes) we analyzed a total of 3,917,301 SNPs.

We excluded by this analysis SNPs that were non sampled or

non polymorphic in all the three samples. We excluded also SNPs

with a minor allele frequency ,5% in any of the 3 samples, getting

a final SNP sample of 2,125,440 SNPs.

Estimates of FST

Fixation index (FST) was calculated using the unbiased estimator

proposed by Weir and Cockerham [18,21]. We implemented this

calculation in a Perl script available upon request by the authors.

All analyses presented in this work were also performed by using the

original FST estimator proposed by Wright [17] and results are almost

identical to that obtained by the Weir and Cockerham method. This

result is not surprising considering previous reports [61,4] and the

strong correlation that we found between these two measures

(Spearman’s r= 0.97, p,10216; see Supporting Information S1).

The maximum FST values among those of the SNPs associated

to the gene according to dbSNP (see above) was used to assign a

FST value to each gene. This approach is consistent with

previously described ones [4,16]. We studied the correlation

between FST value and gene length and we found that the former

have a quite marginal effect on the latter (R2 = 0.2).

Statistical Analysis
SNPs FST values are not normally distributed across chromo-

somes. Thus to detect differences among medians FST values of

chromosomes we used the non-parametric Kruskal-Wallis test.

Conversely, FST values of genes are normally distributed

(Kolmogorov-Smirnov/Lilliefor test, p,0.001,) thus comparison

among these values were performed by using parametric tests

(ANOVA and t-test).

All statistical analyses were performed with R ver. 2.9 (R

Foundation for Statistical Computing, Vienna, Austria; http://

www.r-project.org/). Non-randomness of data was assessed by

using a Ljung-Box test (R function ‘‘Box.test’’). We calculated the

autocorrelation of each chromosome which can be seen as the

mean correlation of all pairs of FST values separated by a fixed

number of values (R function ‘‘acf’’).

A list of about 4000 genes positively selected was obtained from

the track ‘‘Positively Selected Genes’’ (database ‘‘hg18’’, table

‘‘mammalPsg’’) in UCSD Genome browser (http://genome.ucsc.

edu). This list was produced by a genome wide scan in six

mammalian genomes performed by Kosiol et al. [23]. In

particular they identified (i) 400 genes with strong evidence of

positive selection across species, (ii) 144 genes with strong evidence

of positive selection in one or more branches, (iii) 3705 genes with

weak evidence of positive selection on one or more branches, and

(iv) 12280 (orthologs) genes with no significant evidence of positive

selection. We pooled first and second group into a single ‘‘strong

evidence of positive selection’’ group. Differences among groups

were evaluated by ANOVA with Bonferroni post-hoc calculation.

Genes associated with complex diseases were obtained from the

Genetic Association Database (GAD; October 1 2007 update;

http://geneticassociationdb.nih.gov). We only kept genes with

positive evidence of association, for a total of 1789 genes.

According to GAD, these genes are divided into 15 classes of

diseases. We excluded from the analysis four diseases classes

(Other, Unknown, Mitochondrial and Normal variations) because

they were not informative. Differences among groups were

evaluated by a t-test and a resampling approach. In particular,

we used a Moving Block Boostrap (MBB) strategy [62]. Briefly, (i)

we resampled 10000 times 1789 set of adjacent SNPs {ni}j with

i = 1, …,1789 and j = 1, …,10000 and with each set ni having the

same number of SNPs as the i-th GAD associated gene; (ii) for

each resample, we computed the FST of each set ni according to

our method (the maximum FST values among those of the SNPs in

the set); then, (iii) we computed the mean FST value of each

resample j obtaining a distribution to which compare the mean

FST value of the GAD associated genes.

Functional Analysis
We used Gene Set Enrichment Analysis (GSEA) 2.0 [63] to detect

KEGG pathways enriched by genes with low or high values of FST.

We provided GSEA, by its ‘‘Preranked’’ feature, with a list L of genes

ranked according to their FST value. Given an a priori defined set of

genes S representing a pathway (e.g., genes encoding products in a

metabolic pathway), the goal of GSEA is to find out whether the

members of S are randomly distributed throughout L or mainly found

at the top or bottom (i.e. being ‘‘enriched’’). Since GSEA preferably

expect the values to rank for (in our case FST) to vary from negative to

positive values, we linear shifted these values to get vanishing mean.

We explored the enrichment of KEGG pathways included in the

software. For each pathway a False Discovery Rate (FDR) is

computed, representing the statistical significance of the enrich-

ment. For experimental conditions similar to the ours, GSEA user’s

guide suggests a threshold of significance FDR #0.05. Because of

the exploratory nature of this study, we used a more conservative

threshold of significance (FDR #0.01). Overlap among pathways

was examined by the ‘‘Leading edge analysis’’ feature of GSEA.

Supporting Information

Supporting Information S1 Additional figures and tables

Found at: doi:10.1371/journal.pone.0007927.s001 (1.07 MB

PDF)
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