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Abstract

SUMMARY—Free-response assessment of diagnostic systems continues to gain acceptance in areas
related to the detection, localization and classification of one or more “abnormalities” within a
subject. A Free-response Receiver Operating Characteristic (FROC) curve is a tool for characterizing
the performance of a free-response system at all decision thresholds simultaneously. Although the
importance of a single index summarizing the entire curve over all decision thresholds is well
recognized in ROC analysis (e.g. area under the ROC curve), currently there is no widely accepted
summary of a system being evaluated under the FROC paradigm. In this paper we propose a new
index of the free-response performance at all decision thresholds simultaneously, and develop a
nonparametric method for its analysis. Algebraically, the proposed summary index is the area under
the empirical FROC curve penalized for the number of erroneous marks, rewarded for the fraction
of detected abnormalities, and adjusted for the effect of the target size (or “acceptance radius”).
Geometrically, the proposed index can be interpreted as a measure of average performance
superiority over an artificial “guessing” free-response process and it represents an analogy to the area
between the ROC curve and the “guessing” or diagonal line. We derive the ideal bootstrap estimator
of the variance which can be used for a resampling-free construction of asymptotic bootstrap
confidence intervals and for sample size estimation using standard expressions. The proposed
procedure is free from any parametric assumptions and does not require an assumption of
independence of observations within a subject. We provide an example with a dataset sampled from
a diagnostic imaging study and conduct simulations which demonstrate the appropriateness of the
developed procedure for the considered sample sizes and ranges of parameters.

Keywords
Area under the FROC curve; Bootstrap; FROC; ROC

1. Introduction

The problem of detecting, locating and marking one or more abnormalities in the same subject
is a common task in diagnostic imaging (e.g. detection of multiple nodules) or imagery of
military targets (e.g. detection of multiple targets). A commonly used method of evaluating
diagnostic performance in such an environment is a Free Response Receiver Operating
Characteristic (FROC) approach (Egan, Greenberg, Schulman, 1961; Bunchetal., 1978) which
entails placing on an examination (e.g. an image of a subject) an arbitrary number of rated
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marks each of which indicates the location of a suspected abnormality as well as the level of
suspicion (indicated with a rating) regarding the specific abnormality at each marked location.
The distinctive feature of FROC analysis is that not only the accuracy of ratings but also the
number of marks is considered as one of the integral characteristics of the system.

Similar to the ROC paradigm, a higher rating indicates a higher degree of suspicion. However,
in contrast to ROC, under the FROC paradigm considering all marks as “positive” regardless
of their rating does not necessarily lead to identification of all abnormalities, since some
abnormalities may not have been marked at all. Thus, the accuracy of the set of unrated marks
(performance at a “find everything” mode) is another inherently important characteristic of the
system.

Several approaches have been developed for analyzing FROC data. Two major parametric
approaches for fitting the FROC curve (Chakraborty, 1989; Edwards, et al., 2002) model
similar but formally different latent structures. Both approaches make an additional assumption
of independence of the observations within the same subject. Some of the existing
nonparametric methods for analysis of summary indices do not require independence
(Chakraborty and Berbaum, 2004; Samuelson and Petrick, 2006), but these also have certain
deficiencies as discussed below.

In recognition of the importance of a single summary measure of the overall performance of
a free-response system, several indices have been proposed. One type of index characterizes
the ROC-type diagnostic performance (subject as a basic unit) instead of the FROC-type
diagnostic performance (a rated mark within a subject as a basic unit). Indices of this type
characterize the ability to discriminate between actually positive (with at least one known
abnormality) and actually negative (without known abnormalities) subjects using a specific
method of forming a summary opinion on a subject as a whole from the collection of the rated
marks within the examination (e.g. maximum rating of all marks, Chakraborty, 2006).

Another type of summary index attempts to characterize directly the FROC-type diagnostic
performance. Some of the nonparametric procedures of this type suffer from disregarding
information (e.g. JAFROC-2 ignores FP marks on actually positive examinations, Chakraborty
and Berbaum, 2004), or from the absence of a well behaving statistical procedure for the
analysis (e.g. JAFROC-1, Chakraborty and Berbaum, 2004). In addition, analogous to the ROC
approach there are several summary indices of the FROC curve that relate to a subset of all
possible decision thresholds. These include the True Positive Fraction (TPF) at a specific
False Positive Rate (FPR) (Chakraborty, 1989) and the area under the FROC curve up to a
specific FPR (Samuelson and Petrick, 2006). Similar to the corresponding indices in ROC
analysis these indices suffer from the subjectivity of selecting the FPR range (or point), entail
analytical complications associated with the uncertainty of the FPR-related threshold, and are
potentially less precise than the indices that summarize over all decision thresholds (e.g. partial
AUC versus AUC, Zhou, Obuchowski, McClish, 2002). We are unaware of any FROC
summary index that simultaneously characterizes the FROC-type performance at all decision
thresholds, uses all the available data, and has a well-developed procedure for statistical
analysis.

In this manuscript we propose a new easily estimable and interpretable summary index of
FROC-type diagnostic performance which uses all available data and incorporates important
features of the FROC curves in a meaningful and explicit manner. We also develop a
computationally-simple nonparametric method for statistical analysis that does not require the
often difficult to justify assumption of independence among the observations within the same
subject. The proposed methodology is applicable to the phases of evaluation of diagnostic
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systems where interest often lies in the overall performance of the system and in which the
structure of the sample is controlled by design.

In Section 2 we outline the FROC approach and define an empirical FROC curve. Section 3.1
presents a convenient formulation for the area under the empirical FROC curve and discusses
its limitations as an index of performance. We propose a new index of the overall performance
in Section 3.2. In Section 3.3 we introduce a concept of a “guessing” free-response process
and use it to provide a geometric interpretation for the proposed index. Section 3.4 briefly
outlines a standard procedure for constructing an asymptotic confidence interval and estimating
sample size using a newly derived closed-form estimator of the ideal bootstrap variance. In
Section 4 we present simulation results for the ranges of parameters commonly encountered
in diagnostic imaging. Section 5 illustrates the proposed procedure on a sample of
experimentally ascertained diagnostic performance imaging data. A discussion follows in
Section 6.

2. Free-Response Approach and FROC Curve

When evaluating a subject (e.g. patient, examination, image) under the FROC paradigm the
diagnostic system places a number of marks indicating suspected locations of the abnormalities
of interest and supplements every mark with a rating indicating a level of suspicion regarding
abnormality at the marked location. In this paper we focus on retrospective studies where the
number of subjects with and without abnormalities as well as the number of actual
abnormalities on every image are often known and controlled (or fixed) by design. For
simplicity of presentation we will describe the case where there are only two types of subjects
evaluated by the FROC system: actually positive subjects with a fixed number of abnormalities
7=t and actually negative subjects with no abnormalities, z=0. However, the formulations we
present are generalizable to more than two types of subjects (e.g. =0,1,2,3...). The outline of
the extension is given in Appendix.

Every mark placed on the image, regardless of the value of the assigned rating, can be classified
asa True Positive (TP) or False Positive (FP) finding depending on whether or not it “contains”
an actual abnormality. This classification of containment is typically determined by comparing
the distance between the mark and the geometrical center of the actual abnormality to an
acceptance radius R (radius of an “acceptance target™). The acceptance radius is a proximity
criterion that is chosen at the design stage of the FROC study.

The data from the FROC study for the Sy actually negative and S; actually positive subjects
can be summarized as follows:

0
ny N . oy
{x?,c,} S s'=1,...8¢ < “actually negative” tv=0 abnormalities
$'¢ o=

1 !
({X.I\-L-}Z;l,{yﬂc 'L":‘l) mi <t s=1,...5, & actually positive” 7=t abnormalities

(1)

where n? is the number of FP marks; m? is the number of TP marks; {x?} is the collection of
ratings for the FP marks (vector of random length n); {y?} is the collection of ratings for the
TP marks (vector of random length m) and z is the number of abnormalities. We assume the
data for a randomly selected subject can be described by a joint distribution of the random

variables:
(xo, no)”F U, —actually negative” 71=0 abnormalities
(¥ n',m')FL,,,,  — “actually positive” 7=t abnormalities )
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Each rated TP or FP mark can be classified as “positive” or “negative” based on comparison
of its rating with a decision threshold ¢. The performance of the FROC system at the decision
threshold ¢ is conventionally characterized by the proportion of the abnormalities identified
by the “positive” TP marks and by the average number of “positive” FP marks per subject.
These two characteristics are termed correspondingly as True Positive Fraction (TPF) and
False Positive Rate (FPR) and using our notation can be formulated as follows:

FPR,.r (¢)=E {no X P(x0>£|n0)} X (1 =k)+E {n' X P(x'>¢|n")} x k

_ E{m'xP(y'>elm")}
TPFyor (8) B — 3)

where k=S{/(Sg+Sy) is the proportion of the actually positive subjects as determined by design.
Throughout this paper we assume that all expectations are taken over all random quantities
defined in (2) except for those which are conditioned upon (are to the right of |). The subscript
p°x reflects the general interpretation of the FROC process as a composition of a pruning (or
“candidate selection™) process x, and a rating-generating (or “candidate analysis™) process p
(Edwards, et al., 2002). Note that for more than two types of subjects (e.g. z=0,1,2) FPR will
include more terms, and TPF will become a weighted average of the type-specific TPFs. We
note that FPR is the “FP rate” and, unlike “TP fraction” (TPF), it can be greater than 1.

The FROC curve is a collection of points (fpr, tpf) residing in an infinite band [0,+0)x[0,1].
The point fpr=0, tpf=0 corresponds to the operating mode where no marks are considered
“positive”. With decreasing strictness of the decision threshold ¢ both TPF ,o,(¢) and
FPR,,(¢) gradually increase. The operating point where all rated marks are considered
“positive” has the following coordinates:

E (m")

FPR,=E (n’) x (1 =) +E (n') Xk TPFy= "

The above quantities are some of the very important characteristics portrayed by the FROC
curve which we term as “pruning” characteristics.

Using the data collected for a sample of subjects we can estimate the TPF -,(¢) and
FPR,4(¢) at every decision threshold ¢ and obtain an empirical FROC curve by connecting

— L~

the estimated points (0,0), {(FPF;)% (&), TPF oy (8))}, and (F/PTH, T/PT,,) with straight line
segments. The empirical estimators of TPF and FPR are:

'

Sg s S s Sy ms
> > I(.x‘?. _.>£)+Z > 1(.\';.>8) >3 I(_\"ﬂ,>5)
DD _smle= S s=le=1 DL _s=le=1
FPR, (€) 5 TPFn (6) =55
and
50 st st
> 11‘3.+ A S m'
DD s=1  s=I FOE o=l
FPRr="— TPF,==L )

The notations and computations used in (1) and (5) are illustrated in Web-Appendix C.

3. Areaunder the Empirical FROC Curve and a Related Index of Performance
3.1 Area under the Empirical FROC Curve

Applying straightforward algebra and using the formulations of the empirical estimators in (5)
it can be shown that the area under the empirical FROC curve (FAUC) can be written as:
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n
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Wi= ) 1=l (i) and ¥ (xioyse) =1 12 x=vee
0 otherwise 0 x>V ®)

In (6) the index S represents all subjects (actually positive and actually negative) and s
represents only the actually positive subjects. Thus, wgs corresponds to comparisons within the
same actually positive subject when s = s + Sp; between an actually negative and an actually
positive subject when s < Sy; and between two different actually positive subjects when s >
Spand s #s + Sy. If either of the subjects corresponding to s or s have no marks wg is equal to
0 by definition. We note that unlike the area under the ROC curve, the area under the empirical
FROC curve in (6) is generally not bounded by 1 since the denominator may be less than the
numerator.

The formulation in (6) is analogous to the representation of the area under the empirical ROC
curve as a U-statistic (Bamber 1975;Hanley and McNeil, 1982). The FAUC can also be written
as a product of the area under the empirical ROC curve for the clustered collection of ratings
on TP and FP marks (A,|,) and two pruning characteristics, namely:

An=Ayx X TPF, X FPR,
s So+S; S, S; So S,
where  App=| X Xw; /{( Py m’\) x( > n?_.+ > n’\)}
o s=1 s=1 © =1

s=1 5=1

The representation of the area under the empirical FROC curve in (7) agrees with the
presentation of the FROC curve as a scaled ROC curve under the assumption of independence
of the rated marks within a subject (Edwards, et al., 2002). Although the formulation in (7)
does not require this assumption, it will become useful if one desires a similar relationship to
hold for the corresponding expected values (without *) as well. The ideal bootstrap variance
for Apo,[ is derived in Web Appendix A.

Although the area under the FROC curve summarizes the performance of the FROC system
for all decision thresholds, in some instances the area under the FROC curve might be
considered a suboptimal or, worse, a potentially misleading summary index of the overall
performance of the system. For example, one FROC curve can be above another at all FPR
where both curves are defined, achieve a higher TPF, and yet have a smaller area under the
curve. Figure 1 shows two such curves, namely an empirical FROC curve and a “guessing”
curve truncated at FPR=5.

3.2 A New Index of Performance of a Free-Response System

The inadequacy of the FAUC as an index of the overall performance can be attributed to the
feature of the FAUC to reward for a higher rate of FP marks (FPR,) instead of penalizing for
it. In addition, both the FAUC as well as a conventional FROC curve itself, depend on the
choice of the acceptance radius, R, since its increase may substantially increase the estimated
performance by directly increasing the TPF,. Naturally, the effect of the acceptance radius on
performance increases with an increasing density of the abnormalities in the sample (i.e.
decreasing image size or increasing number of the abnormalities).
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We propose a new index, 4, that, similar to the FAUC, rewards for higher ability to discriminate
between FP and TP marks (A,) as well as for the higher detection fraction (TPF). At the
same time, the proposed index penalizes for a higher rate of FP marks (FPR,) and for a larger
effect of the acceptance radius (reflected in ¢). The index can be written as follows:

TPF
A=Aper — FPRy+—=

(8)

The quantity ¢ reflects a general effect of the size of the acceptance target by combining the

acceptance radius R and the density of the abnormalities in the sample. As our interest is in a
general effect, we do not model the exact mechanism of the influence of the acceptance radius.
Thus, we define the density of the abnormalities using a fixed-by-design dimensional size of
the image () rather than the variable size of the “anatomical” area. We propose the following
expression for the parameter ¢:

1 -1
Sy N —
v {<m/2> (R2) } ©

where tx/2 corresponds to the density of the abnormalities in the sample. The parameter ¢ can
be interpreted (assuming no overlaps between TP targets for a given acceptance radius) as a
maximum ratio of the average area coverable by the TP marks to the remainder of the image,
i.e. p=tenR2/(Z- txzR?) (equivalently, ¢/(p+1) can be viewed as the largest fraction of the
average area coverable by TP marks).

In general there are multiple approaches of combining the two quantities, acceptance radius
and density of the abnormalities, into a single parameter. The specific structure of both ¢ and
A permits us to relate the proposed index to a certain artificial “guessing” free-response process,
which enables an intuitive graphical and numerical interpretation for A. As a result, A can be
interpreted as a measure of the superiority of the system over an artificial “guessing” FROC
process which randomly marks the same images with targets of the same size. Graphically, the
A is equivalent to the area between the augmented empirical FROC curve and the FROC curve
of the “guessing” free-response process. In the next section we will demonstrate that for a
“reasonable” FROC process A varies between 0 and 1/¢, and the product of p*A permits
interpretation as the average improvement over the “guessing” process relative to the
improvement achievable by a perfect free-response system.

3.3 Guessing, Augmented FROC Curves and Geometric Interpretation of A

In this section we introduce the concept of a “guessing” free-response (FROC) process that
will lead to an intuitive interpretation of the proposed index 4 but which is not required for the
methodology proposed beyond this section. A guessing FROC is an artificial process that does
not represent an actual performance of an evaluated system but rather provides a lower bound
for it.

We use the term “guessing” for a naive theoretical free-response process which randomly
places possibly multiple marks on the image in such a manner that each mark has the same
probability (p=¢/(p+1)) to cover (“hit”) an abnormality. We define a guessing FROC process
operating at a specific decision threshold as a Poisson process with a certain rate that
characterizes placing marks at random on the ensemble of images. tpf denotes the probability
that at least one of the randomly placed marks covers a given abnormality, and fpr denotes the
expected number of marks that do not cover any abnormality. By varying the rate from 0 to
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infinity we can plot the entire “guessing” FROC curve which acquires the following
formulation:

tpf=1- e Pxfpr (10)

The “guessing” FROC process has several uses which are of immediate interest in this paper.
First, it enables us to define a “reasonable performance” as the performance that is better than
a naive guess. Then, a “reasonable” FROC curve is a curve which lies above the “guessing”
curve at all fpr. Second, similar to the empirical ROC, the artificial “guessing” process can be
used to extend (augment) the empirical FROC curve to the trivial point where there are no
“negative” findings. We augment the observed FROC curve by the part of the guessing FROC
curve which lies above TPF,. As a result, the augmented FROC curve beyond the operating
point (FPR,, TPF,) can be described as follows:

V/pr>FPR, tpf=1-{(1—TPF,)x ™"} x e=ex/rr -

As noted previously, the concept of extending the operating characteristic curve beyond the
last observed operating point with the aid of a guessing process is not new. In ROC analysis
the extension of the empirical ROC curve from the last nontrivial operating point to the trivial
point (1, 1) with a straight line can be viewed as an augmentation with a guessing process which
randomly re-labels as “positive” some of subjects previously labeled as “negative” at the last
nontrivial operating point.

One of the useful properties of the augmented FROC curve is that if the original FROC curve
is “reasonable,” i.e. is above the guessing FROC for all fpr<FPR, the augmented FROC curve
is also “reasonable”. Therefore, we can interpret the proposed index A as the area between the
augmented and “guessing” FROC curves. Indeed, since the area above the entire “guessing”
FROC curve is:

-8 oo . 1
A =7 e Prafpr=—
f 0 (2 (12)

and the area above the augmented FROC curve can be written as:

i 1 TPF,
e"pxrp'dfpr] =FPR; — Aper+— —
[ ¥ (13)

FPRy

the area between reasonable augmented FROC curve and the “guessing” FROC curve is:

TPF;_,

A — A== — | PR — A e —
p°r T P ) (14)

¢ a1 (1 TPF,
¢ \o

) =Aen — FPRo+

Thus, for a “reasonable” FROC curve the proposed index A ranges from 0 (negligible
performance) to 1/¢ (perfect performance). Additionally, (12-14) permit the interpretation of
the product p*4 as the average relative improvement in performance over the guessing process.

Biometrics. Author manuscript; available in PMC 2009 November 11.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bandos et al. Page 8

3.4 Statistical Inferences

A nonparametric estimator for the proposed index is straightforward to obtain, by substituting
into equation (8) the formulas for the nonparametric estimators of the area under the FROC
curve Ao, (6) and “pruning” characteristics TPF, and FPR, (5). In Web Appendix B we derive
the closed-form expression for the ideal bootstrap variance of 4 under the bootstrap scheme
where the entire subject is used as a sampling unit (Rutter, 2000; Samuelson and Petrick,
2006) and the data are stratified by the number of abnormalities. In agreement with the stratified
sampling of subjects frequently used during the evaluation of an overall performance of a
diagnostic system with FROC analysis, we consider bootstrapping within groups of subjects
with the same number of abnormalities. The derivation of the ideal bootstrap variance is
conceptually similar to the approach used in the ROC setting (Bandos, Rockette, Gur, 2007).

The estimator of A consists of a scaled generalized U-statistic and sample averages. The
availability of the closed-form variance estimator allows one to use a simple procedure for the
construction of the asymptotic confidence interval:

Ki—@_l(%)x v,(A) .

where @ represents a cumulative standard normal distribution function, « - a significance level,
and Vg - the ideal bootstrap variance. For conditions where the distribution of A is likely to be
highly skewed (e.g. small sample size and high performance level) the confidence interval in
(15) may be improved using an appropriate transformation.

Because of the tendency of the considered variance estimator to decrease at an approximate
order of 1/S for equal numbers of actually positive and actually negative subjects (Sg=S:=S),
one can use a simple approach for sample size estimation. Specifically, one can estimate the
size of a balanced sample which is needed to achieve a desired length, 4, of a (1-&) confidence
interval around A using the following standard expression:

4071(2)" x v, (R) x s
A? (16)

S*=

4. Simulations

We conducted a simulation study where we generated the FROC datasets in which the
observations were correlated within a subject and were drawn from the distributions with the
parameters resulting in FROC characteristics in the general range consistent with the scenarios
commonly encountered in diagnostic imaging. Our simulation model includes correlation
structures which can not be handled by the existing parametric methods; but, it does not
specifically address all known phenomena (e.g. “satisfaction of search”, Berbaum, et al.,
1990). Furthermore, the levels of correlation we use in our simulations may not represent the
correlations observed in all FROC breast imaging datasets. However, since the proposed
statistical approach is based on bootstrapping subjects as a unit, it has approximately the same
properties regardless of the specific within-subject correlation structure.

The number of False Positive marks, n, was generated from a binomial distribution (number
of trials=5) with the average probability of success for actually positive subjects of 0.1 resulting
in FPR,! of 0.5, and with an average probability of success for actually negative subjects of
0.1 or 0.3 resulting in FPR,2 of 0.5 or 1.5 correspondingly. The overall FPR, was 0.5 or 1
correspondingly. The number of True Positive marks, m, was generated from a binomial
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(number of trials t) with the average probability of success, TPF,, of 0.4, 0.6 and 0.8.
Marginally the ratings for the FP, X, and TP, y, marks were generated from normal distributions
with equal variances and means chosen to achieve the average A, (the probability that TP
rating exceeds an FP rating) of approximately 0.7, 0.8, and 0.9.

The observations on the same subjects were correlated by relating the distributional parameters
to the same realization of a random subject-specific deviate. The random variables n and m
were correlated by displacing subject-specific “probabilities of success” from the average by
a random variable uniformly distributed on (-0.05,0.05) (an increasing transformation of the
subject-specific deviate). The ratings {x}, {y} were related to each other and to n and m by
displacing means of the distributions of ratings by a normally distributed deviate (also an
increasing transformation of the subject-specific deviate) with mean 0 and standard deviation
chosen in such a manner that the correlation between the ratings on the same subject is 0.2.

We considered samples that included 100 and 200 actually positive subjects and the same
number of actually negative subjects. For the samples including 100 actually positive subjects
we considered scenarios with one and with two abnormalities per image (t=1,2). For the higher
sample sizes only the scenario with a single abnormality was considered. We considered ¢ of
0.06 and 0.1. For each combination of the parameters we generated 10,000 independent
datasets.

The coverage of the 95% confidence interval was estimated by the percentage of the generated
confidence intervals that covered the sample average of 10,000 estimates of 4. The estimated
coverage along with the average length of the confidence interval for considered combinations
of parameters are shown in Table 1. From the table one can observe that the characteristics of
the asymptotic confidence intervals are affected by the sample size (Sp=S;), by the number of
abnormalities on actually positive subjects (t), and by the detection fraction (TPF,). With
increasing TPF, the coverage of the asymptotic confidence interval decreases. This can be
attributed to the increasing skewness of the estimator of TPF,, since, for small ¢, this estimator
substantially affects the distribution of the estimator for 4. The separation of the distributions
of the ratings of FP and TP marks, A,|;, has a slight effect on the length of the confidence
interval but does not substantially affect coverage.

Table 2 shows the average sample sizes estimated to achieve the length of the 95% confidence
interval which is equal to the average length of the 95% confidence interval shown in the
corresponding cells of Table 1 for Sy=S;=200, t=1. The sample sizes were estimated using
expression (16) with the ideal bootstrap variance computed from the simulated datasets of size
Sp=S{=100, t=1. The results demonstrate that for the considered parameters the proposed
procedure can be successfully used in combination with the standard approach to sample size
estimation.

5. Example

The data represent the output of a radiologist’s readings of 200 mammographic breast
examinations, 100 of whom depicted a single mass (t=1, S;=100, So+St=200). These 100
actually positive and 100 actually negative subjects were selected at random from a larger
dataset. In the original study the examinations were presented as a two view film mammogram
with prior examinations available for comparison. All readings were done during a series of
sessions (approximately 50 cases per session) in a clinically simulated environment (e.g.
display, lighting in the reading room, workflow on a film alternator etc.) and the free-response
rating paradigm was used. The radiologists had to identify all suspicious regions, mark the
location of each one and rate the suspected abnormality as to the perceived “probability that it
is actually present”. All data entries were computerized and the order of cases displayed was
randomized for the dataset as a whole and within each session. The dataset was verified through
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an extensive protocol that used all source documents (e.g. pathology reports, follow up studies)
and a series of independent reviews by multiple experienced radiologists. All negative
examinations were verified by at least one follow-up negative mammogram and a minimum
of two years of negative findings.

As aresult of the evaluation there were a total of 204 False Positive marks on the examinations
(53 on exams “with” and 151 on exams “without™ a mass) resulting in an estimated FPR,, of
1.02 (0.53 and 1.51 for subjects with and without a mass respectively). On examinations with
a mass there were 61 True Positive marks resulting in an estimated TPF, of 0.61. The
nonparametric estimator of the area under the ROC curve of ratings for TP and FP marks
A,z (7) was 0.800. Using expression (9) and based on the dimensional size of the images, the
size of the acceptance target and the number of abnormalities per subject, we computed ¢ to
be approximately 0.06. The corresponding empirical, augmented and guessing FROC curves
are shown in Figure 1. 4 is equivalent to the shaded region between the two curves. Similar
computations are illustrated in Web Appendix C.

For ¢=0.06 the estimate of 4 computed according to (8) is 9.64. This combination of ¢ and
Aallows us to interpret the average free-response performance of a radiologist as corresponding
to 58% (9.64*0.06~0.58) of the improvement achievable by a “perfect” over the “guessing”
system. Using the algorithm for computing the ideal bootstrap variance of 4 described in
Appendix we found the ideal variance to be 0.7161 resulting in the asymptotic 95% confidence
interval for A of (7.99,11.30) with a length of 3.317, and the 95% confidence interval of
(0.48,0.68) for A*¢p.

We also estimated the sample size needed to achieve the targeted length of the 95% confidence
interval. As a targeted length we chose 2.364, which is taken from the cell of Table 1
corresponding to the scenario where the simulation parameters are close to the ones estimated
in this example, and sample size is Sg=5,=200. The computed estimate of the sample size was
197.

The statistics computed from the data in this example closely agree with the simulation results
presented in the previous section. For the simulated scenario with the parameters close to the
estimates from the example the average length of the 95% confidence interval was 3.336
compared to 3.317 from the example; and the sample size estimated from the data in the
example was 197 compared to targeted 200.

To quantitatively illustrate the gain in precision achieved by using an ideal instead of Monte
Carlo (MC) bootstrap variance estimator we generated multiple realizations of the latter. Figure
2 demonstrates the distribution of the 10,000 estimates of the sample size needed to achieve
length of the 95% confidence interval of 2.364 (each estimate was based on the MC bootstrap
variance computed from 500 bootstrap samples). This figure demonstrates that with 500
bootstrap samples the MC approximation leads to the estimated sample size in a range from
149 to 248 and is not unlikely to produce estimated sample sizes between 177 and 218.

6. Discussion

In this paper we focused on a diagnostic task which requires detection and localization of
possibly multiple abnormalities within a subject. We considered the evaluation of the
diagnostic system under the FROC paradigm which enables gathering information on the total
number of marks in addition to the proportion of “positive” marks at various decision
thresholds. For the system evaluated under the FROC paradigm we have proposed a new
summary index of the overall FROC-type performance of a diagnostic system. The advantages
of the proposed index include: use of all decision thresholds simultaneously, a partial
adjustment for the effect of the acceptance radius, relatively simple closed-form estimation,
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tractability of a simple nonparametric procedure for statistical inferences, use of all available
data, and availability of a simple to visualize interpretation. The index can be interpreted as a
measure of overall superiority over a “guessing” FROC process. It is analogous to the area
between the empirical ROC and the diagonal “guessing” line, and as an index of performance
it shares many advantages and limitations of the area under the empirical ROC curve. SAS
code for the implementation of the proposed procedure is available from the authors.

The guessing free-response process and its FROC curve were introduced here to supplement
the proposed index with a simple graphical interpretation. The guessing FROC curve
(analogous of the diagonal ROC) represents the performance of an artificial guessing free-
response process. The purpose of this process is not to model the performance of a diagnostic
system but rather to provide a reference process for interpretation. We define an artificial
guessing process on the entire image, rather than on a smaller “anatomical” area, and thus
construct a more conservative, hence more universal, lower performance bound. Finally,
analogous to the use of a guessing ROC process in the construction of an empirical ROC curve,
we used the proposed guessing FROC process to extend the empirical FROC curve to the trivial
point where there are no “negative” findings.

The proposed index 4 and guessing FROC process are related through the parameter ¢ which
is a function of the acceptance radius (proximity criterion) and the density of abnormalities in
the sample. Fundamental to the conventional FROC paradigm is that any index of performance
estimated from FROC data depends upon the acceptance radius in combination with the density
of the abnormalities in the sample. Because of this itis important to account for these parameters
which are often selected at the design stage of a retrospective study. If one controls for these,
@ is controlled automatically, otherwise ¢ accounts, at least partially, for the effect of differing
design parameters on the estimated performance.

For the developed nonparametric estimator of the proposed index we derived the closed-form
expression for the ideal bootstrap estimator of the variance (Efron, Tibshirani, 1993). This can
be used to perform asymptotic bootstrap inferences avoiding the need for resampling and
thereby eliminating Monte Carlo error. Other approaches to resampling-free variance
estimation are also possible, for example an unbiased variance estimator may be also derived
by extending the approach of Gallas (2006). The adopted nonparametric bootstrap approach
also enables a statistical analysis which is free from strict structural or any parametric
assumptions required by the existing parametric approaches. Specifically, the use of a subject
as a bootstrap sampling unit allows one to ignore a specific correlation structure between the
numbers of different types of marks and ratings within the same subject for the purpose of
variance estimation.

In general, FROC data can be viewed as clustered ROC data with random and informative
cluster size. The important difference between FROC analysis and conventional analyses of
clustered ROC data is the use of the size of the clusters as an important characteristic of the
diagnostic system (as opposed to a nuisance quantity). As shown in (7), FAUC is related to
the area under the empirical ROC curve (AUC) for the clustered ratings of TP and FP marks.
Several different approaches have been proposed for estimating the variance of the AUC for
clustered data under different assumptions regarding the size of the clusters (Obuchowski,
1997;Rosner and Grove, 1999;Rutter, 2000) The ideal bootstrap covariances presented in Web
Appendix A can be used to form an ideal bootstrap variance of the numerator of the AUC for
clustered data in the presence of random cluster sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Biometrics. Author manuscript; available in PMC 2009 November 11.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bandos et al. Page 12

Acknowledgments

This is work is supported in part by Grants EB006388, EB001694, EB003503 (to the University of Pittsburgh) from
the National Institute for Biomedical Imaging and Bioengineering (N1BIB), National Institute of Health.

APPENDIX

We briefly outline the idea of deriving the ideal bootstrap variance 4. The key to the derivation
is to decompose the index into a linear combination of simple quantities that are then grouped
into ensembles of identically distributed random variables under the considered bootstrap
scheme. The first component of A is the area under the empirical FROC curve (FAUC) that
we previously presented as a sum of the random variables {Wg} in (6). Depending on the type
of subjects indexed by s and s (i.e. actually positive, actually negative, same or different)
{Wgs} can be partitioned into three sets of identically distributed variables, namely:

fjl Jj= .NS', I=s if s >So and s ¢.~S' -So
W.;'.r = Vjj j;:S if SN: : -So
nij i=s,j=s if s<8p (A1)

In the general case we denote the set of all types of actually positive subjects, i.e. all different
values of t, in the dataset as T. In cases with more than one strata of actually positive subjects,

i.e. [T|>1 (e.g. T={1,3}), each of the above variables will produce |T| sets £,,}; and 77;;, and

there will appear another set of variables, u’,’, corresponding to the comparisons between

different strata of actually positive subjects, resulting in a total number of |T|2 + 2 |T| i.i.d. sets.
The general formula for the FAUC can then be written as follows:

S

R | S, S, S So S S Se
A( oy DI NIADY [ZZ]
X Sl -

ZTTSI So+ Z';S, Jj=1 i=1 j=1 tteT j=1j
re re c
7 1#1 (A2)

The variance of the index is the sum of the variances and covariances of all pairs of summations
of the individual i.i.d. sets. These can be found by considering each pair of sets independently.

The formulae for the TPF, and FPR,, can be derived from (5) in a similar manner. The variance
of A is the sum of pairwise covariances between TPF,, FPR; and A,-;. A detailed derivation
of the ideal variance for the case of two strata (z=0,1) is provided in Web Appendix A for
FAUC and in Web Appendix B for 4.
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Figure 1. Empirical, augmented, guessing FROC curves and the areas corresponding to the

FAUC and A indices computed from the data in the example
On both plot a) and plot b):

The empirical FROC curve consists of dots connected with solid line segments.
The guessing FROC curve corresponding to ¢=0.06 and its segment used for the augmentation

are indicated with a dashed line.
On plot a):
“FAUC” indicates the area under the empirical FROC curve.

“G” indicates the area under the portion of the guessing FROC curve truncated at FPR=5.

On plot b):

“A” indicates the area between the augmented and guessing FROC curves which is numerically

equivalent to the index formulated in (8).
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min=149 |
5%=177 |
IDEAL= 197
?median =197
mean=198
| 95%= 218
— 1] max=248

Sample size

Figure 2. Distribution of the sample size estimated using the Monte Carlo bootstrap variance
obtained by resampling of the data from the example

The histogram is based on 10,000 estimates of the sample size. For each of the 10,000
replications the dataset from Section 5 was bootstrapped (re-sampled with replacement) 500
times, and for each of the 500 bootstrap samples the estimate of A was computed. The sample
variance of 500 A’s (Monte Carlo bootstrap variance) was used to estimate the sample size
(eq. 16) required to achieve the length of the 95% confidence interval of 2.364 (the length in
the framed cell of Table 1).

The “IDEAL” estimate of the required sample size is obtained using the ideal bootstrap variance
(Web Appendix B)
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