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Undulation Contributions to the Area Compressibility in Lipid Bilayer
Simulations

Qaiser Waheed and Olle Edholm*
Theoretical Biological Physics, Department of Theoretical Physics, Royal Institute of Technology (KTH), AlbaNova University Center,
Stockholm, Sweden

ABSTRACT It is here shown that there is a considerable system size-dependence in the area compressibility calculated from
area fluctuations in lipid bilayers. This is caused by the contributions to the area fluctuations from undulations. This is also the
case in experiments. At present, such a contribution, in most cases, is subtracted from the experimental values to obtain a true
area compressibility. This should also be done with the simulation values. Here, this is done by extrapolating area compressibility
versus system size, down to very small (zero) system size, where undulations no longer exist. The area compressibility moduli
obtained from such simulations do not agree with experimental true area compressibility moduli as well as the uncorrected ones
from contemporary or earlier simulations, but tend, instead, to be ~50% too large. As a byproduct, the bending modulus can be
calculated from the slope of the compressibility modulus versus system-size. The values obtained in this way for the bending
modulus are then in good agreement with experiment.
doi: 10.1016/j.bpj.2009.08.048
INTRODUCTION

It is well known that the area compressibility modulus

measured in experiments on lipid vesicles contains contribu-

tions from undulations as well as from true area changes

(1–4). The reported experimental area compressibilities

currently obtained are usually true ones, which have been

corrected for undulations (2). Molecular dynamics simula-

tions of lipid bilayer were originally done on small systems

and for short times making the effects of undulations a negli-

gible problem. In simulations, the area compressibility is

usually calculated from projected area fluctuations and is

therefore an apparent one that also contains contributions

from undulations. System size dependencies of calculated

area compressibility moduli has, however, been observed

by Marrink and Mark (5) for a united-atom model and by

den Otter and Briels (6) for a coarse-grained model. This

was attributed and interpreted in terms of undulations for

the coarse-grained model by den Otter (7). This problem

was also studied by Imparato (8) for systems with fixed

area at nonzero surface tension. In the Theory section, we

show that a Helfrich-type theory (9) results in a system

size-dependent difference between the true and apparent

area compressibility that is due to undulations. The size of

this correction depends also on the bending modulus. We

show then from simulations of differently sized lipid bilayers

containing dimyristoyl-phosphatidylcholine (DMPC) and

dipalmitoyl-phosphatidylcholine (DPPC) that the calculated

area compressibilities indeed follow the theoretically pre-

dicted systems size-dependence and that the true (bare)

compressibilities can be calculated by extrapolating down

to system area zero. For the smallest system sizes (256
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lipids), the corrections are ~5–10%, which is of the same

order of magnitude or smaller than the statistical errors in

present simulations. Since the correction to the compress-

ibility is linear in system size, it becomes substantial and

has to be considered in larger systems. The area compress-

ibility modulus obtained in this way are ~50% larger than

experimental ones. From the variation of the undulation

contribution with system size, the bending modulus can be

determined. The values are in good agreement with experi-

ment and with the values obtained from simulations using

other methods (10).

THEORY

The area compressibility modulus is defined as

KAhA

�
vg

vA

�
T;V

; (1)

where g is the surface tension and A is the area of the system.

Here we consider bilayers at surface tension zero and the area

has therefore to be chosen such that the surface tension is

zero. For a flat undulation-free system, we do not need to

make a distinction between projected area and local area.

For real systems, we have undulations. Therefore, we have

two contributions to the area compressibility—one intrinsic

(bare one), KA
true, due to a change in area per lipid along

the actual curved membrane surface, and another one since

the projected area can change due to various degrees of

undulation (buckling) of the bilayer. The projected area

may change in this way without any change of the actual

curved surface area. In experiments as well as simulations,

apparent area compressibility is measured that includes

contributions from both these effects. In experiments done

on vesicles, this is usually, but not always, corrected for,
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and a true area compressibility is reported. The undulation

correction depends on vesicle size and in that case, one

may derive the area compressibility from the relative area

change due to an applied surface tension, g from the equa-

tion (1)

DA

gA
¼ 1

Ktrue
A

þ kBT

8pgkc

ln½1 þ cgA=kc�; (2)

with kc being the bending modulus and c a dimensionless

constant. From simulations, the compressibility modulus is

usually calculated from projected area fluctuations as (in

analogy with the relation between density fluctuations and

volume compressibility)

KA ¼
A kBT

s2
A

¼ 2a kBT

s2
aN

; (3)

where a ¼ 2A/N is the area per lipid and N is the number of

lipids in the bilayer and sa
2 ¼ sA

2(2/N)2 is the mean-square

fluctuations in the area per lipid. Alternatively, it may be

calculated as a numerical derivative from Eq. 1 using the pro-

jected areas. The area compressibility thus obtained will be

an apparent one that contains contributions from the true

compressibility as well as from undulations. If it is assumed

that undulations and area changes in the curved surface occur

independently of each other, one may write

1

Kapp
A

¼ 1

Ktrue
A

þ 1

Kund
A

: (4)

For an undulating surface u(x, y), the true area (A) can be

expressed in terms of the projected area (A0) as

A ¼
Z Z

A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðVuðx; yÞÞ2

q
dxdy; (5)

which gives

AzA0 þ
1

2

Z Z
A0

�
Vuðx; yÞÞ2dxdy (6)

for small thermally excited undulations. This is more conve-

niently handled by making a Fourier decomposition of the

surface
uðx; yÞ ¼

X
q

uqeiq$r: (7)

Then we may write the true area as

A ¼ A0

�
1 þ 1

2

X
q

q2juqj2
�
: (8)

The amplitudes of the Fourier modes are obtained from a

Helfrich-type model, which has an energy containing two

quadratic terms,

E½uðx; yÞ� ¼ 1

2

Z Z
A0

dxdy
h
kc

�
V2u
�2þgðVuÞ2

i
; (9)

where kc is the bending modulus and g the surface tension.

After Fourier decomposition, the energy becomes
E ¼ A0

2

X
q

juqj2
�
kcq

4 þ gq2
�
: (10)

Since the energy is quadratic in the amplitudes, we may

invoke the equipartition theorem, which states that each

Fourier mode has the average energy kBT/2. Then we get

the average squared amplitudes

�
juqj2

�
¼ kBT

A0

1

kcq4 þ gq2
; (11)

and thus, the average area

A ¼ A0 þ
kBT

2kc

X
q

1

q2 þ g=kc

: (12)

The sum over the q:s goes over all wave vectors that fit

the periodic boundary conditions, which means q ¼ 2p=ffiffiffiffiffi
A0

p
ðn;mÞ with n and m being 0, 51, 52. except the

zero mode with n ¼ m ¼ 0. This means that there is a

low-q cutoff at 2p=
ffiffiffiffiffi
A0

p
, but it is also reasonable to make

a high-q cutoff when the wavelengths reach the molecular

dimensions. We may take this at 2p=
ffiffiffi
a
p

, where a ¼ 2A0/N
is the projected area per lipid. This gives us N/2 Fourier

modes. We now put g ¼ 0, which is the usual situation in

lipid bilayers, using an integral approximation and circular

cutoffs. We may calculate the sum and then obtain

A

A0

¼ 1 þ kBT

8pkc

ln
N

2
: (13)

Thus, we note that the area ratio diverges logarithmically

with system size. We also note that the high-q cutoff is

necessary to prevent a divergence for finite systems. (See,

e.g., Safran (11) or Boal (12) for a further discussion of

this.) The area ratio is, however, quite close to 1 for all

realistic system sizes (using a high-q cutoff close to the

molecular dimensions as suggested above). For DPPC with

kc ¼ 6.7 � 10�20 J, we obtain 1.013 for the smallest systems

(256 lipids). The ratio increases up to 1.018 for 2304 lipids,

which is largest system size in our simulations. For a vesicle

with 200-nm radius having approximately a million lipids,

the ratio would increase to 1.038 while even a macroscopic

(mm-sized) vesicle would have a ratio no larger than ~1.1.

A more general formula that is valid for nonzero surface

tension could easily be derived as

A

A0

¼ 1 þ kBT

8pkc

	
ln

N

2
� ln

�
1 þ gA0

kc4p2

�

; (14)

but this area ratio is even closer to one. This equation may be

used for a straightforward derivation of Eq. 2 by taking the

area difference between a system at a finite surface tension

and tension zero. The results show that it will be an excellent

approximation to put A ¼ A0 for most purposes. The situa-

tion is however, different for the area compressibility

modulus. Then, we have to take the derivative with respect

to g first and then put g ¼ 0. The apparent and true area

compressibilities (inverse moduli) are
Biophysical Journal 97(10) 2754–2760
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1

Ktrue
A

¼ 1

A
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and

1

Kapp
A

¼ 1

A0

vA0

vg
: (15)

Thus, we get from Eq. 12

1

Ktrue
A

¼ 1

A

vA0

vg
þ kBT

2Akc

v

vg

X
q

1

q2 þ g=kc

: (16)

After insertion of q ¼ 2p=
ffiffiffiffiffi
A0

p
ðn;mÞ, we get, after some

algebra (keeping in mind that A0 is a function of g),

1

Ktrue
A

¼ 1

Kapp
A

� kBTA2
0

32p4Ak2
c

�
1� g

Kapp
A

�

�
X
n;m

1

ðn2 þ m2 þ A0g=4p2kcÞ2
: (17)

Now, it is a good approximation to put the upper limit equal

to infinity. An integral approximation using a circular lower

cutoff at n2 þ m2 ¼ 1 gives, then,

1

Ktrue
A

¼ 1

Kapp
A

� kBTA2
0

32p3Ak2
c

�
1� g

Kapp
A

�
1

1 þ A0g=4p2kc

: (18)

This result gives, at g ¼ 0 and A/A0 z 1, the equation

1

Ktrue
A

¼ 1

Kapp
A

� A0 kBT

32p3k2
c

(19)

obtained by den Otter (7) in a different way. The integral

approximation is, however, poor for low q-values. A numer-

ical calculation of the sum can easily be performed for g ¼ 0

and gives, then, a-value, which is approximately twice as

large as the integral (10). This results in the following rela-

tion between the true and apparent compressibilities:

1

Ktrue
A

¼ 1

Kapp
A

� A2
0 kBT

16:6p3Ak2
c

z
1

Kapp
A

� A0 kBT

16:6p3k2
c

: (20)

For a large enough nonzero g, the integral approximation

improves, and in this limit, we obtain

1

Ktrue
A

¼ 1

Kapp
A

� kBT

8pkcg

�
1� g

Kapp
A

�
; (21)

where the last term in the parentheses usually can be

neglected, as applied surface tensions are much smaller than

the area compressibilities. One could derive approximate

equations that bridge the gap between the high g and g ¼
0 equations. Equation 20 shows that for the interesting case

of zero surface tension, the true area compressibility (inverse

modulus) is equal to the apparent area compressibility minus

a term that is linear in system size and inversely proportional

to the bending modulus squared. Equation 2 given by Evans

and Rawicz (1) is different from Eq. 20, but in the limit of

low surface tension the logarithm in Eq. 2 may be series-

expanded, which gives our result with the constant c ¼
1/2.1p2 (or 1/4p2 in agreement with den Otter (7) if the inte-

gral approximation is used). These values are different from
Biophysical Journal 97(10) 2754–2760
the value 1/p2 given in Evans and Rawicz (1) without deriva-

tion. The second term is the undulation contribution to the

area compressibility. Thus, we may obtain the true area

compressibility modulus by fitting simulations at different

surface areas to a straight line and extrapolate this line to

zero system size. From the slope of that straight line, we

may obtain the bending modulus of the bilayer easily. This

is much less cumbersome than to fit the bilayer to a surface

and plot the Fourier components of its amplitude versus

wave number, as done in Lindahl and Edholm (10).

METHODS

Computational details

All simulations were performed using the 5.0 version of the GROMACS

package (13) on a cluster of quad core machines at the Center for Parallel

Computers, KTH, Stockholm, Sweden. All systems were subject to periodic

boundary conditions in all directions. Separate Nosé-Hoover thermostats

(14,15) for the water and the lipids were used to keep the temperature

constant. DPPC was simulated at 323 K while the temperature for the

DMPC systems was kept at 303 K. The pressure was fixed to 1 atm in all

spatial directions using Parrinello-Rahman barostat (16,17), with angular

frequency 0.1 ps�1. The integration of the equations of motion was per-

formed by using a leapfrog algorithm with a time-step of 4 fs. Bond lengths

were kept fixed using the LINCS algorithm (18) in the lipids and the analytic

SETTLE algorithm for the water molecules (19). All analysis was performed

on 80-ns production simulations that were preceded by equilibration, which,

depending on system size, lasted for 2–10 ns. The simulations included

between 256 and 2304 lipids at slightly different hydrations, but all well

above 30 waters per lipid.

Force fields

The force-field parameters are described in detail by Berger et. al. (20) and

do reproduce experimental quantities like area and volume per lipid (21)

and order parameters (22) fairly well. A comparison of different force fields

and careful reparameterization done by Chiu et al. (23) indicates, however,

that further improvements can be done. United atoms were used for the CH2

and CH3 groups in the lipids, reduced the number of atoms per lipid to 46 for

dimyristoyl-phosphatidylcholine (DMPC) and to 50 for dipalmitoyl-phos-

phatidylcholine (DPPC). Fractional atomic charges for the polar atoms

were taken from ab initio quantum mechanical calculation (24). The head-

group Lennard-Jones (LJ) parameters were taken from the optimized poten-

tials-for-liquid-simulations force field (25), while the tail parameters were

those of Berger (20). The 1, 4 electrostatic interactions were reduced by

a factor 2 and 1, 4 LJ interactions by a factor 8. Bond rotations in the carbon

tails were modeled with Ryckaert-Bellemans dihedrals (26) and correspond-

ing 1, 4 interactions removed. A cutoff of 1.0 nm was used for LJ interac-

tions. The electrostatic interaction were calculated using, in real-space, out

to 1.0 nm and then summed up out to infinity in Fourier space using a

particle-mesh Ewald method (27,28). For the water, we have used the

SPC model (29).

Error analysis

The statistical inaccuracy in the area per lipid could easily be determined by

comparing subaverages over different parts of the simulation. Alternatively,

we estimate it as sa

ffiffiffiffiffiffiffiffi
t=T

p
, where sa is the standard deviation in the area per

lipid, t the correlation time of the area fluctuations, and T the total simulation

time. The correlation time is then defined as the integral from zero to infinity

of the normalized area correlation function:
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gðtÞ ¼ haðt þ sÞaðsÞis�hai
2�

a2
�
� hai2

: (22)

It is more difficult to estimate the statistical error in the area compressibility

through the area fluctuations by the subaverage method, as area fluctuations

grow with the time duration of the part of the trajectory from which they are

calculated. In principle, they can be calculated from the ‘‘fluctuations in the

fluctuations’’ and their correlation time tf, which will be different from the

correlation time t above. The statistical error will then beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ha4i � ha2i2

q ffiffiffiffiffiffiffiffiffiffi
tf=T

p
. In this case, the area distribution is Gaussian to

a good approximation as seen from Fig. 1. Then, this expression can be

simplified and one obtains the statistical error in sa
2 as s2

a

ffiffiffiffiffiffiffiffiffiffiffiffi
2tf=T

p
. The

correlations time tf has, however, to be estimated separately from a correla-

tion function of the fluctuations

gfðtÞ ¼
��

a2ðt þ sÞ � hai2Þða2ðsÞ�haiÞ2
�

s
�
��

a2 � hai2Þ
�2

�
a4
�
� ha2i2

:

(23)

A detailed error analysis will be done and presented for DMPC below,

assuming that similar results are valid for DPPC.

RESULTS AND DISCUSSION

The area per lipid is a sensitive and easily calculated measure

for the ordering of the lipids and may be used to validate the

quality of simulations. It is calculated as a projected area

from the size of the periodic simulation box. We have calcu-

lated the true area per lipid as well by using Eq. 13. Exper-

imental data used to be quite scattered, but presently there

are rather accurate data for a few lipids including DPPC

and DMPC due to the work of Nagle and Tristram-Nagle

(30) and Kucerka et al. (31). It is seen from Table 1 that

the area per lipid for both lipids is reproduced within the

experimental accuracy. However, the area might be slightly

on the high side for the DMPC systems. There is no system

size dependence for the area per lipid in contrast to earlier

FIGURE 1 Normalized distribution of the area per lipid, together with

Gaussian fits.
cutoff simulations (10), but in agreement with simulations

using lattice summation for the electrostatics (particle-mesh

Ewald) (32). The error calculated by the subaverage method

is 5(0.001–0.004) with the somewhat larger number for the

smaller system. This is significantly small (<0.1%). In

Fig. 2, the normalized area correlation function (Eq. 22) is

shown. It exhibit an average correlation time of ~2 ns.

This gives an error of ~5(0.0005–0.002). These figures

are a factor 2 smaller than those from the subaverages and

do show the same type of variation with the system size.

The area compressibility moduli calculated from Eq. 3

(presented in Table 1) show strong system size-dependence.

They are plotted for both lipids versus the total area of the

system in Fig. 3. The three points corresponding to the

different system sizes can, for both lipids, be fitted to straight

lines in accordance with Eq. 20. From the intercept at area

zero, the true area compressibility (modulus) may be deter-

mined, while the bending modulus of the membranes may

be calculated from the slope of the lines.

TABLE 1 Projected area per lipid (a0), true area (a), and area

compressibility as calculated from simulations of lipid bilayers

of different system size and from experiments

# of lipids

DMPC DMPC DPPC DPPC DMPC DPPC

a0[nm2] a[nm2] a0[nm2] a[nm2] KA [N/m] KA [N/m]

256 0.608 0.620 0.628 0.641 0.341 0.322

1024 0.608 0.623 0.626 0.642 0.318 0.279

2304 0.612 0.625 0.626 0.644 0.245 0.213

Experimental — 0.606 — 0.630 0.234 0.231

The experimental area per lipid for DPPC is taken from Kucerka et al. (35)

while the area for DMPC is from a more recent study (31). The area

compressibility modulus for DMPC is taken from Rawicz et al. (2), while

the corresponding for DPPC is taken from Nagle and Tristram-Nagle (30).

0 5 10

Time [ns]

0

0.2

0.4

0.6

0.8

1

exp(-t/2)

exp(-t/0.5)

FIGURE 2 The normalized area autocorrelation function (Eq. 22) aver-

aged over the three DMPC simulations of different size shown versus

time, together with an exponential curve with 2-ns decay time (upper
curves). The normalized fluctuations autocorrelation function (Eq. 23) aver-

aged over the same three simulations versus time with an exponential curve

with 0.5-ns decay time (lower curves).
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The accuracy of the intercept is difficult to estimate. On

the one hand, the statistical accuracy estimated from subav-

erages of the area fluctuations indicates errors of 10–20% in

the individual points. On the other hand, the three points fall

fairly well on straight lines, indicating that 20% might be

a too-conservative error estimate. We suggest an error of

~10% or 0.030–0.040 N/m. In principle, there could be

systematic errors as well, simply because 80 ns might be

too short a time for sampling the full fluctuations. This would

then result in values that were too large for the area

compressibility modulus. This can be seen in older simula-

tions that, by necessity, were shorter. Feller and Pastor

(33) obtained, in this way, much smaller area fluctuations

and therefore, larger compressibility moduli. To investigate

this problem, we therefore calculated the area compress-

ibility modulus from the area fluctuations of parts of the

simulation having different lengths, and plotted this against

time and inverse time. The correct value is then obtained

by extrapolating to infinite time. It is seen from Fig. 4 that

the plots form fairly straight lines that would drop another

0.020 N/m if extrapolated to inverse time-length zero, which
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FIGURE 3 Area compressibility (inverse modulus) versus system size for

DMPC and DPPC.
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FIGURE 4 Calculated area compressibility modulus versus time and

inverse time duration for different system sizes.
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is smaller than the statistical error. More problematic is that

the curves deviate considerably from straight lines, at long

times, in a nonsystematic manner. This indicates poor statis-

tics. One way to solve this problem would be to use fluctu-

ations during shorter time periods for which the statistics

are better, and remove the systematic error by extrapolation

against inverse time. We also calculated this error by the

correlation method. For a simulation time of 80 ns and an

average correlation time of 0.5 ns for the fluctuation autocor-

relation function (Eq. 23), we get a relative error of
ffiffiffiffiffiffiffiffiffiffiffiffi
2tf=T

p
or 11%, which gives an absolute error of ~(0.023–0.037)

N/m in the area compressibility modulus. This is similar to

the experimental accuracy 0.0234 (2) for DMPC and 0.020

for DPPC (30). The situation is a bit better with the bending

modulus, since the slope of the lines is inversely proportional

to the square of the bending modulus, according to Eq. 20.

Thus, the relative error in the bending modulus is only half

of that in the slope. We estimate the final error to be

<10%, which is the same order of magnitude as that of the

experimental figures.

The final estimates of area compressibility and bending

moduli are shown in Table 2 together with experimental

values from the literature. In comparison with experiment

and earlier simulations, we conclude that our values for the

compressibility moduli are 50% larger.

For the bending moduli we obtain 6.1� 10�20 J for DPPC

and 6.5 � 10�20 J for DMPC, which are in fair agreement

with experimental values 6.7 � 10�20 J (34) and 6.9 �
10�20 J (31), keeping in mind that the accuracy is ~10% in

the experimental as well as in the simulated value. Direct

calculations of the bending modulus from the intensity of

the Fourier modes by using Eq. 11 or its integrated form

for zero surface tension,

�
u2

und

�
¼ kBTA0

8:3p3kc

(24)

performed by Lindahl and Edholm (10), gave the value

4� 10�20 J for DPPC from considerably shorter simulations.

In a comparison between the parameter values obtained

for DMPC and DPPC, one has to keep in mind that there

are three things that differ between these systems—chain

length of the lipid; area per lipid; and temperature. For

bending as well as area compressibility, one would expect

that larger area and higher temperature would favor such

motions, while longer chain length would work the opposite

TABLE 2 True area compressibility moduli and bending

moduli from simulations and experiments

DMPC DPPC DMPC DPPC

KA [N/m] KA [N/m] kc [J] kc [J]

This article 0.371 0.348 6.5 � 10�20 6.1 � 10�20

Experimental 0.234 0.231 6.9 � 10�20 6.7 � 10�20

The experimental value of bending modulus is taken from Kucerka et al.

(31) for DMPC and from Guler et al. (34) for DPPC.
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way. Thus, it is a delicate balance between these effects that

determines the outcome.

One simple model to interpret these results is a polymer

brush model, as suggested in Rawicz et al. (2). This gives

a relation between the compressibility and bending moduli

and the membrane hydrophobic thickness (h),

kc

KA

¼ h2

24
; (25)

where h ¼ hpp – h0, with hpp being the peak-to-peak distance

in the electron density and h0 ¼ 1 nm is double the distance

between these peaks and the end of the hydrophobic core.

They observe good adherence to this relation for a few satu-

rated lipids and lipids with one double bond in the fatty acid

chains. We note that the final estimates from our simulations

as well as the newest experimental data (Table 2) indicate

similar values in these material constants for DMPC and

DPPC. The increase in directly measured hydrophobic thick-

ness with chain length is apparent from the last two columns

in Table 3. This differs from the constant thickness (first two

columns of Table 3) obtained from the brush model with

Eq. 25 using material constants from either simulation or

experiment. We further note that the too-high area compress-

ibility modulus from the simulations results in far too small

a value for the hydrophobic thickness of both lipids.

SUMMARY

It has been shown that the area compressibilities calculated

from our simulations exhibit a considerable system size-

dependence. This is due to a difference between the pro-

jected area of the lipid bilayers and the true area that follows

the undulating surface. Thus, there will be a contribution to

the apparent fluctuations (the fluctuations in projected area)

from undulations. This can be theoretically described within

the framework of a Helfrich type of theory. The resulting

equation indicates that the apparent area compressibility

should increase linearly with the size of the system, and

that the slope of the line is inversely proportional to the

square of the bending modulus of the bilayer. This makes

it possible to calculate a true area compressibility by extrap-

olating the straight line that describes the systems size-

dependent area compressibility down to zero system-size.

TABLE 3 Hydrophobic thickness (h[nm]) directly from

simulations and experiments and from the brush model (Eq. 25)

Brush

simulations

Brush

experiments

Direct

simulations

Direct

experiments

DMPC 2.05 2.65 2.56 2.54

DPPC 2.05 2.65 2.97 2.86

The hydrophobic thickness calculated from the polymer brush model (Eq.

25) using simulated and experimental moduli (Table 2). The direct experi-

mental values for DMPC and DPPC are taken from Kucerka et al.

((31,35), respectively).
From the slope of the line, we may also calculate the bending

modulus of the bilayer.

For DPPC and DMPC, we get similar values for both these

parameters, and it is hard to judge which one is smaller or

larger within the statistical accuracy of the simulations. This

situation is similar to that with the experimental values, which

also do not allow for a clear conclusion at this point. As for the

absolute values, the bending modulus obtained is in agree-

ment with experiment, and in agreement with the values

obtained from simulations using direct methods to determine

this parameter from the magnitude of the undulations.

The true area compressibilities, obtained by the method

used for our simulations, are 30% smaller (corresponding

to the compressibility moduli, which are 50% larger) than

the corresponding experimental true area compressibilities,

which were corrected in a similar manner by the experimen-

talists for undulation contributions. DPPC and DMPC

behave very similarly.
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