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Abstract: With the advent of the genome-wide association (GWA) study, a promising new avenue for identifying 
genetic markers for complex diseases like coronary artery disease (CAD) has been opened. This avenue, however, 
is not without challenges and limitations, including the need for carefully designed and executed studies and the 
risk of false positive associations. Nonetheless, new markers have been identified through such studies that 
could potentially revolutionize the ways that individuals with CAD are identified and managed. 
 
Key words: atherosclerosis, coronary artery disease, genetics, genome wide association, genomics, 
myocardial infarction 
 
 
 
 
Background 
 
Coronary artery disease (CAD) and its 
associated complication, myocardial infarction 
(MI), is a leading cause of morbidity and 
mortality worldwide. CAD is a multifactorial 
disease that can be influenced by many 
different environmental and heritable risk 
factors. The progression of atherosclerotic 
disease involves a complex series of events, 
each event (e.g. foam cell formation, smooth 
muscle cell recruitment, etc.) involving 
multiple biological pathways and genes. Risk 
factors for CAD include hypertension, smoking 
status, male gender, age, body mass index, 
type 2 diabetes mellitus, and heredity. Analyte 
risk markers associated with CAD include lipid 
levels, cholesterol particle size and number, C-
reactive protein, homocysteine, fibrinogen, and 
lipoprotein (a). However, many of the current 
traditional and novel risk markers are unable 
to fully predict who is at risk for CAD. For 
example, 35% of CAD has been shown to 
occur in people with total cholesterol levels 
<200 mg/dL [1]. Thus, other novel risk 
markers, including genetic risk markers, may 
be important for better refining individuals at 
risk for CAD and CV events.  

Both twin and family studies have 
demonstrated that CAD has a strong heritable 
component. In one study examining 20,966 
twins over a 36-year period, the heritability (h2) 
for fatal CAD events was 57% for men and 
38% for women [2]. Many studies have 
demonstrated that family history of CAD is an 
independent predictor of CAD [3-6]. Others 
have shown that distinct morphological 
features of CAD display high heritability [7, 8]. 
In addition, individuals with a family history of 
CAD generally have earlier onset, are male, 
have a history of smoking, and are 
hyperlipidemic [9]. The majority (72%) of early 
CAD cases (men < 55 years, women < 65 
years) and 48% of all CAD cases, regardless of 
age, have a family history of CAD [10]. 
 
While multiple studies have concurred that 
CAD is highly heritable, the mechanisms 
underlying the heritable basis of CAD have 
been elusive. This is likely due to the complex 
nature of CAD. While a very small proportion of 
CAD is monogenic, or Mendelian in nature (e.g. 
familial hypercholesterolemia, familial 
defective apoB-100), the vast majority of CAD 
is genetically complex. Multiple genes are 
thought to contribute to CAD, each gene 
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contributing to only a small percent of the 
phenotype. In addition, many of the risk 
factors associated with CAD (e.g. blood 
pressure, diabetes) are themselves polygenic, 
further adding to the complexity, and hundreds 
of genes may be involved in CAD susceptibility 
[11]. Thus, while some genetic parameters, 
such as heritability, can be quantified for CAD, 
determining the number and scope of genes 
involved in CAD is challenging. 
 
Many different family and population-based 
studies have identified candidate genes 
potentially associated with CAD. Unfortunately, 
the vast majority of results from linkage and 
association studies have not been 
reproducible or statistically significant, 
bringing to question the clinical utility of these 
markers [12]. However, recent technological 
and scientific advances have now made 
possible a new type of study: the genome-wide 
association (GWA) study. The advent of GWA 
studies has produced some novel and 
replicated associations in many disease 
states, including CAD.  

 
Genome-wide association studies and CAD 
 
GWA studies are essentially unbiased large-
scale population-based studies evaluating the 
association of hundreds of thousands of 
markers (generally single nucleotide 
polymorphisms, or SNPs) across the genome 
with a particular phenotype. Part of the beauty 
of these types of studies is that they are not 
hypothesis-driven, allowing for the discovery of 
novel genetic markers. However, GWA studies 
are not without challenges and limitations and 
they must be carefully designed and executed. 
In the design of a GWA study, it is important to 
keep phenotypic heterogeneity of cases and 
misclassification of controls to a minimum 
[13]. Cases and controls should be well-
matched to avoid confounders, such as 
population stratification. Furthermore, sample 
sizes should be large, generally in the 
thousands, and replication sample sizes in an 
independent population should be even larger. 
The risk for false positive or spurious 
associations is high in GWA studies, and strict 
quality control is essential. 
 
One of the interesting aspects about GWA 
studies is that usually, loci are identified that 
have not been previously suspected as 
candidate genes/loci [14]. Several reasons 

could be behind this. First, the marker may be 
a spurious association. Second, the identified 
marker may be in linkage disequilibrium (LD) 
with the etiological marker. In this case, the 
effect of different populations with different LD 
structures must be taken into account [15]. 
Third, the identified marker may be an 
etiological marker, but has not been previously 
targeted as having a role in the disease. In the 
latter two cases, novel biological pathways 
involved in the disease state may be 
uncovered, leading to a better understanding 
of disease processes and, potentially, the 
development of novel therapies.  
 
A search of the National Cancer Institute (NCI)-
National Human Genome Research Institute 
(NHGRI)’s Catalog of Published GWA Studies 
(http://www.genome.gov/26525834) and the 
literature uncovered a total of 48 GWA studies 
examining CAD and/or associated traits or 
markers with p ≤ 10-5. Eight GWA studies with 
risk factor associations of p ≤ 10-5 have been 
published looking specifically at CAD or MI 
(Table 1). The remainder of the 40 identified 
GWA studies have been published examining 
traits or markers associated with CAD 
including coronary artery calcification, blood 
pressure, LDL cholesterol, HDL cholesterol, 
triglycerides, Lp(a), C-reactive protein, type 2 
diabetes mellitus, and body mass index.  
 
Chromosome 9, band p21.3 
 
Multiple GWA studies have shown a highly 
significant association with various SNPs 
within a large LD block on chromosome 9 at 
band p21.3 (9p21.3) and CAD [16-21]. While 
results did not reach statistical significance to 
be included in the NHGRI catalog of published 
GWA studies, a GWA study involving the 
Framingham Heart Study also found an 
association with a 13 kb region on 9p21.3 
with major CHD (p 2.5-3.5 x 10-4) [22]. 
Additionally, they observed that 7 SNPs in a 76 
kb region around 9p21 had p<10-5 for major 
CHD and/or major cardiovascular disease 
(CVD). 
 
Markers at the 9p21 locus have been shown 
to lead to a 15-20% risk for CAD in the 50% of 
Caucasian individuals heterozygous for the 
allele, and a 30-40% increased risk of CAD in 
the 25% of individuals homozygous for the 
allele [17]. Numerous follow-up case-control 
analyses have been performed and confirm 
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the association of 9p21 and CAD [22-28]. A 
meta-analysis of case-control studies showed 
that the odds ratio per copy of the 9p21 risk 
allele was 1.29 (95% CI 1.22-1.37, p=0.0079) 
[29]. Abdullah et al demonstrated that four 
SNPs within the 9p21 region were significantly 
(p=6.61 X 10-7 to 1.87 X 10-8) associated with 
premature and familial MI and CAD (average 
age of onset 40.3 +/- 5.1 years) [26]. Another 
group similarly made the connection between 
9p21 and familial CAD in a high-risk 
population with familial hypercholesterolemia 
[25]. Although one study found an association 
between 9p21 and CAD, the association did 
not hold up with incident events or prevalent 
MI [27]. Additionally, the Rotterdam Study did 
not observe an association between 9p21 
genotype and coronary heart disease or 
myocardial infarction in a large cohort of 
individuals aged 55 years and older [30]. 
Thus, while the vast majority of studies have 

identified a strong association with 9p21 and 
CAD, an association with this locus and MI 
may be population-dependent and garners 
further investigation. 
 
The primary GWA studies were done in cohorts 
of individuals of Caucasian, Northern 
European, and Canadian descent. Follow-up 
studies in Korean, Japanese, and Italian 
populations also established the 9p21-CAD 
association in those populations [31-34]. 
Additionally, a multi-ethnic Atherosclerotic 
Disease, Vascular Function, and Genetic 
Epidemiology (ADVANCE) study confirmed the 
association in whites and extended it to U.S. 
Hispanics and U.S. East Asians, but not African 
Americans [35]. The lack of association in 
African Americans was consistent with what 
was observed by McPherson, et al. [17]. 
However, in both studies examining the 
association with African Americans and in 

Table 1.  Genome-Wide Association Studies of CAD and MI (p<5 X 10-5) 
Phenotype Chromo-

somal 
Region 

Reported 
Gene(s) 

SNP Risk Allele 
Frequency 

P-value Odds 
ratio 

95% CI Reference 

 
CAD 

 
1p13.3 

 
CELSR2-PSRC1-
SORT1 

 
rs5999839 

 
0.23 

 
4 X 10-19 

 
1.29 

 
1.18-1.40 

 
[18] 

early-onset MI 1p13 CELSR2-PSRC1-
SORT1 

rs646776 0.81 1.5 X 10-8 1.17 1.11-1.24 [21] 

early-onset MI 1p32 PCSK9 rs11206510 0.81 9.6 X 10-9 1.15 1.10-1.21 [21] 
early-onset MI 1q41 MIA3 rs1746048 0.72 5.9 X 10-7 1.13 1.08-1.18 [21] 
CAD 1q41 MIA3 rs17465637 0.29 1 X 10-6 1.2 1.12-1.30 [18] 
CAD 1q43 NA rs17672135 0.87 2 X 10-6 1.43 1.23-1.64 [16] 
early-onset MI 2q33 WDR12 rs6725887 0.14 1.3 X 10-8 1.17 1.11-1.23 [21] 
CAD 2q36.3 pseudogene rs2943634 0.65 2 X 10-7 1.21 1.13-1.30 [18] 
CAD 3q22.3 MRAS rs9818870 NA 7.4 X 10-13 1.15 1.11-1.19 [92] 
CAD 5q21 NA rs383830 0.22 1 X 10-5 1.60 1.16-2.21 [16] 
early-onset MI 6p24 PHACTR1 rs12526453 0.65 1.3 X 10-9 1.12 1.08-1.27 [21] 
CAD 6q25 MTHFD1L rs6922269 0.25 2 X 10-5 1.17 1.04-1.32 [16] 
CAD 6q25.1 MTHFD1L rs6922269 0.25 3 X 10-8 1.23 1.15-1.33 [18] 
CAD 6q27 SCL22A3-LPAL2-

LPA 
rs2048327,  
rs3127599, 
rs7767084,  
rs10755578  
(CTTG and 
CCTC  
haplotype) 

NA 1.2 X 10-9 
(CTTG),  
4.2 X 10-15 
(CCTC) 

1.20 
(CTTG), 
1.82 
(CCTC) 

1.13-1.28 
(CTTG),  
1.57-2.12 
(CCTC) 

[86]* 

early-onset MI 9p21 CDKN2A, 
CDKN2B 

rs4977574 0.56 1.1 X 10-30 1.28 1.23-1.33 [21] 

MI 9p21.3 CDKN2A, 
CDKN2B 

rs10757278 0.45 1 X 10-20 1.28 1.22-1.35 [19] 

CAD 9p21.3 intergenic rs1333049 0.47 3 X 10-19 1.36 1.27 – 1.46 [18] 
CAD 9p21.3 CDKN2A, 

CDKN2B 
rs1333049 0.47 1 X 10-13 1.47 1.27–1.70 [16] 

CAD 9p21.3 NA rs10757274 
and  
rs2383206 

NA NA NA NA [17] 

CAD 10q11.21 CXCL12 rs501120 0.13 9 X 10-8 1.33 1.20-1.48 [18] 
early-onset MI 10q11 CXCL12 rs1746048 0.84 3.4 X 10-5 1.14 1.08-1.21 [21] 
MI 12q24 SH2B3 rs3184504 0.38 8.6 X 10-8 1.13 1.08-1.18 [82] 
CAD 12q24.41 HNF1A-C12orf43 rs2259816 NA 5 X 10-7 1.08 1.05-1.11 [92] 
CAD 15q22.33 SMAD3 rs17228212 0.30 2 X 10-7 1.21 1.13-1.30 [18] 
CAD 16q23 NA rs8055236 0.20 6 X 10-6 1.91 1.33-2.74 [16] 
early-onset MI 19p13 LDLR rs1122608 0.75 1.9 X 10-9 1.15 1.10-1.20 [21] 
CAD 19q12 NA rs7250581 0.22 3 X 10-5 1.06 0.79-1.43 [16] 
early-onset MI 21q22 SLC5A3-MRPS6-

KCNE2 
rs9982601 0.13 6.4 X 10-11 1.20 1.14-1.27 [21] 

CAD 22q12 NA rs688034 0.31 4 X 10-6 1.11 0.99-1.25 [16] 

NA = not available 
*Genome-wide haplotype analysis 
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some of the other non-Caucasian-based 
studies, the sample sizes were not large, thus 
potentially limiting the statistical power of the 
studies. Nonetheless, the studies imply a 
consistent association of the 9p21 risk allele 
with CAD in individuals from a wide range of 
Asian and Caucasian backgrounds. 
 
While the 9p21 association with CAD has been 
replicated on multiple occasions, associations 
between surrogate markers of atherosclerotic 
cardiovascular disease and 9p21 have 
remained less conclusive. Two studies did not 
identify an association between the 9p21 
locus and carotid intima media thickness (IMT) 
[36, 37]. An additional study also did not 
demonstrate an association with 9p21 and 
abdominal aortic IMT [38]. Samani et al. 
postulated that CAD risk influenced by 9p21 
occurs by a mechanism independent of carotid 
intimal thickening or endothelial dysfunction, 
and may instead affect coronary plaque 
stability [36]. Anderson et al. found that while 
9p21 correlated with prevalence of 
angiographic coronary disease, it was unable 
to predict extent of disease [39]. The 9p21 
locus was significantly correlated with 
angiographically characterized CAD in another 
study [24]. Horne et al., however, found that 
while 9p21 genotype was associated with the 
CAD phenotype, it was not associated with the 
severity or extent of CAD assessed 
angiographically [27]. They also did not find a 
strong association between history of MI and 
the 9p21 locus, as described above. They 
hypothesized that the 9p21 locus acted in the 
early stages, but not in the progression, of 
atherosclerosis. On the other hand, Ye et al. 
observed that the 9p21 genotype was 
associated with established carotid 
atherosclerosis and progression of 
atherosclerotic plaques as determined by 
carotid duplex scanning [37]. Thus, further 
investigations are necessary to help define 
where 9p21 fits into the picture of initiation or 
progression of atherosclerosis. 
 
Other phenotypic correlations have been 
investigated with the 9p21 locus and CAD. In 
the Heart and Soul Study, 9p21 genotype was 
not associated with any echocardiographic 
parameter of cardiovascular structure and 
function (left ventricular hypertrophy, systolic 
dysfunction, diastolic disfunction, inducible 
ischemia, exercise capacity, mitral annular 
calcification, and aortic plaque) in individuals 

with known CAD [40]. Additionally, Chen et al. 
observed no significant association between 
9p21 and quantitative indices of coronary 
atherosclerosis, such as minimal lumen 
diameter and number of coronary lesions or 
occlusions [41]. However, the 9p21 locus has 
been associated with coronary artery 
calcification, a reasonable marker of 
subclinical atherosclerosis [42]. 
 
In addition to CAD, the 9p21.3 locus has been 
associated with stroke, abdominal aortic 
aneurysms, and intracranial aneurysms [23, 
28, 29, 43-46]. In part because of the 
relationship between the risk allele and stroke, 
and as discussed above, it has been 
suggested that the 9p21 risk allele may be 
related to plaque stability [36, 45].  The 
association of 9p21 with aneurysms also 
suggests an involvement in processes related 
to vessel wall integrity [23]. Bjorck et al. 
observed that the 9p21 locus was associated 
with abdominal aortic compliance and 
distensibility coefficients (measurements of 
arterial stiffness), further supporting a link 
between 9p21 and arterial wall diseases [38]. 
However, a recent GWA study of a Sardinian 
cohort did not report an association between 
9p21 and arterial stiffness as determined by 
carotid-femoral pulse wave velocity [47].  
 
Biology of 9p21 
 
While the 9p21 association with CAD has been 
replicated on multiple occasions, the biological 
relevance of 9p21 is unclear at this time. The 
9p21 region has been commonly implicated in 
the tumorigenesis of a variety of malignancies 
[48-51]. However, neither mouse models nor 
in vitro analyses have specifically implicated 
atherosclerotic processes with deletion or 
mutation of the 9p21 locus [52-55].  
 
The risk-allele SNPs within the 9p21.3 locus, 
which spans approximately 50-60kb, have 
been defined as being in a “desert zone of the 
genome” (Figure 1) [56]. The 3’ end of 
CDKN2B, encoding the cyclin-dependent 
kinase inhibitor tumor suppressor p15INK4B, is 
in a LD block with a cluster of tightly linked 
SNPS at the 9p21 locus. Weaker linkage 
disequilibrium extends through CDKN2B to 
CDKN2A, which encodes another tumor 
suppressor p16INK4B. The cyclin dependent 
kinases are involved in cell cycle regulation 
and transforming growth factor-β (TGF-β) cell 
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cycle arrest [57]. In smooth muscle cells, TGF-
β has been shown to have impaired signaling 
and reduced expression in atherosclerotic 
lesions and overexpression in abdominal 
aortic aneurysms [58-60]. Other studies have 
shown increased TGF-β levels in different 
stages of plaque development [61-63]. In fact, 
TGF-β1 has been proposed as a marker and 
potential therapeutic target for cardiovascular 
disease [60].  
 
A gene encoding a large antisense non-coding 
RNA (ANRIL) spans almost the entire 9p21-
CAD association region (Figure 1) [55]. ANRIL 
was discovered through deletion analysis of a 
family with hereditary melanoma-neural 
system tumors [64]. It was found that the 
expression of ANRIL coclusters with the 
expression of ARF, which is encoded for by an 
alternative exon 1 and exons 2 and 3 of 
CDKN2A. Atheromatous human vessels, 
abdominal aortic aneurysm walls, vascular 
endothelial cells, monocyte-derived macro-
phages, and coronary smooth muscle cells 
have all been shown to express ANRIL [43]. It 
has been speculated that transcription of the 
cyclin-dependent kinase genes may be 
regulated, at least in part, by ANRIL through 
RNA interference or some other mechanism 
[43, 44]. In fact, a p15INK4B antisense 
construct located in the 5’ region of ANRIL, 
was shown to cause silencing of p15INK4B 
(encoded for by CDKN2B) in mouse embryonic 
stem cells through heterochromatin formation 
and DNA methylation [65]. Thus, a speculated 
mechanism for the 9p21 risk allele involves 
antisense regulation of CDKN2B (and/or 

CDKN2A), which could then affect signaling of 
TGF-β and/or additional cytokine(s) involved in 
cell cycle arrest/proliferation. 
 
Another gene, MTAP, encoding methylthio-
adenosine phosphorylase, is part of a different 
LD block that is closer to the chromosome 9 
telomere. MTAP encodes for methylthio-
adenosine phosphorylase (MTAP), an enzyme 
involved in polyamine metabolism that is 
deleted (along with p16INK4B) in many cancers. 
Whether or not this enzyme is involved in CAD 
requires further investigation. 
 
Clinical utility of genotyping 9p21.3 
 
While the specific phenotypic associations of 
the 9p21 genotype are somewhat conflicting 
and not well defined at present, whether or not 
9p21 has proven clinical utility in predicting 
cardiovascular risk is of significant 
importance. As described above, an 
approximate 15-40% increased risk for CAD 
has been observed (depending on number of 
9p21 risk alleles carried by the individual). 
However the Women’s Genome Health Study 
demonstrated that 9p21 genotype did not add 
significantly to prediction of cardiovascular risk 
compared to what can be assessed via 
established risk markers, high-sensitivity C-
reactive protein (CRP), and family history of 
premature myocardial infarction [66]. Thus, 
while a 20% increased risk (for heterozygous 
9p21 risk allele carriers) for CAD may be 
relevant in some populations, middle-aged 
women (who are generally at low risk for CAD) 
who carry the 9p21 allele will not have a high, 

Figure 1. The chromosome 9, band p21 region. The location of the CAD-associated region is shown in red, 
annotated genes are shown in purple, and the ANRIL anti-sense non-coding RNA is shown in green. 
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or even intermediate, risk for cardiovascular 
disease, despite the additional risk due to the 
presence of the 9p21 allele. Additionally, 
Talmud et al. demonstrated that 9p21 
genotype did not add significantly to the CHD 
predictive utility by conventional risk factors in 
the Framingham risk score algorithm in a 
cohort of healthy middle-aged Caucasian men 
[67]. They did note, however, that 9p21 
genotype did improve reclassification of CHD 
risk. Accordingly, based on studies performed 
in patients with early-onset angiographic CAD, 
Anderson et al. concluded that the clinical 
utility of 9p21 genetic assessment might be in 
refining CHD risk classification [39]. Thus, 
overall, it is suggested that 9p21 genotype 
may not be useful in stratifying risk in some 
low-risk populations but may provide 
discrimination in intermediate-risk individuals. 
 
The launch of a clinical genotyping assay for 
9p21, in October, 2007, was met with mixed 
enthusiasm (http://www.theheart.org/article/ 
817629.do). Concerns regarding genetic 
testing for 9p21 include inherent problems 
with testing for the 9p21 locus in isolation, 
lack of biological knowledge of this locus and 
how it relates to CAD, uncertainty of the value 
and applicability of information obtained from 
genotyping, and potential for false negative 
reassurance in individuals who do not carry 
the risk allele. Thus, while 9p21 has been 
repeatedly associated with CAD, demonstrates 
a risk that is independent of traditional risk 
factors, and may be a useful marker in some 
populations (e.g. intermediate risk individuals), 
9p21 genotyping as standard of care is 
debatable. 
 
Chromosome 1p, band 13.3 
 
A risk allele at 1p13 was found to be 
associated with CAD and early-onset MI, and 
this correlation was confirmed in a large scale 
association analysis [18, 20, 21]. This risk 
allele is in a 97-kb region of LD containing the 
CELSR2, PSRC1, and SORT1 genes, and has 
been found to be strongly associated with low-
density lipoprotein (LDL) and total cholesterol 
concentrations [68-74]. Based on expression 
studies correlated with LDL cholesterol levels, 
it was concluded that SORT1 and CELSR2 
were the most likely candidate susceptibility 
genes at the 1p13.3 locus [75]. Sortilin is a 
pro-neurotrophin receptor encoded for by the 
SORT1 gene, and is involved in adipocyte and 

muscle glucose metabolism. Sortilin 
expression is downregulated in obesity and 
has been implicated in insulin resistance [76]. 
Sortilin has also been shown to be involved in 
uptake and degradation of lipoprotein lipase, 
an important enzyme for lipid hydrolysis [77]. 
In relation to this, the gene encoding 
lipoprotein lipase (LPL) at 8p21 has also been 
implicated in multiple GWA studies as 
associated with high-density lipoprotein (HDL) 
cholesterol and triglyceride levels and other 
metabolic traits [69, 70, 73, 74, 78-80]. 
CELSR2 encodes for cadherin EGF LAG seven-
pass G-type receptor 2, but very little is known 
about its function. The third gene in the 
1p13.3 gene complex is PSRC1, which 
encodes for proline/serine-rich coiled-coil 1, a 
microtubule-associated protein. The functional 
connection between PSRC1 and CAD and/or 
lipid metabolism is not known. Thus, while 
there is a potential connection between the 
biology of SORT1 and cholesterol levels and 
CAD, the picture involving CELSR2 and PSRC1 
is less clear and further studies are needed to 
elucidate those mechanisms. 
 
Other loci 
 
Other loci that have been identified through 
multiple, independent GWA studies and 
confirmed in follow-up CAD association 
analyses include 1q41 and 10q11 (Table 1) 
[16, 18, 20, 21]. Interestingly, 10q11 was 
shown to have a significant relationship to CAD 
in women but not in men [20]. Another locus, 
6q25, was also identified to be associated 
with CAD in multiple, independent GWA 
studies, but the correlation was not 
statistically significant in a large-scale 
association analysis [20]. Loci within the 
12q23-24 region were found to be associated 
with CAD, MI, and coronary artery calcification 
in three separate GWA studies [42, 81, 82]. 
The reported genes in these studies are DRIM 
(12q23), SH2B3 (12q24), and HNF1A-
C12orf43 (12q24.41). The HNF1A gene has 
also been implicated for its association with 
LDL cholesterol and C-reactive protein in other 
GWA studies [79, 83, 84]. 
 
Two genes, LDLR and PCSK9, in which 
mutations can lead to autosomal dominant 
hypercholesterolemia, were reported in a GWA 
study of early-onset myocardial infarction [21]. 
Mutations in LDLR (on 19p13), which encodes 
for the LDL receptor, leads to familial 
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hypercholesterolemia. Gain of function 
mutations in PCSK9 (on 1p32), which encodes 
for proprotein convertase, subtilisin/kesin-type 
9 and is involved in recycling of the LDL 
receptor, leads to autosomal dominant 
hypercholesterolemia 3. SNPs in these genes 
have also been identified in other GWA studies 
as associated with LDL cholesterol [69, 70, 
74, 79]. 
 
Copy number variant and haplotype GWA 
analyses 
 
Genome-wide association studies involving the 
univariate analysis of single nucleotide 
polymorphisms (SNPs) have been the standard 
to date. In contrast to polymorphisms at single 
base positions (SNPs), copy number variants 
(CNVs) are polymorphic deletions or 
duplications of large, (1 kilobase to several 
megabase) regions of the genome, and could 
likewise be associated with specific disease 
states. In that regard, The Myocardial 
Infarction Genetics Consortium explored the 
possibility of an association between copy 
number variants (CNVs) and early-onset 
myocardial infarction [21]. However, they did 
not detect a significant difference in CNVs in 
cases vs. controls, in genes vs. the genome, or 
at any individual locus.  
 
In addition to univariate analysis of SNPs, 
there is the potential for SNPs in haplotype to 
be associated with certain phenotypes. 
Tregouet et al. recently performed a genome-
wide haplotype association study in CAD, using 
a sliding-windows approach [85]. Using this 
type of analysis, a haplotype of four SNPs in 
the SLC22A3-LPAL2-LPA gene cluster was 
found to be associated with CAD. Of particular 
interest in this gene cluster is LPA, which 
encodes apolipoprotein (a), the protein 
component of lipoprotein (a) [Lp(a)]. Elevated 
levels of Lp(a) have been associated with an 
increased risk for CAD and MI [86-88]. 
 
Conclusion 
 
GWA analyses are a powerful tool for 
evaluating genetic associations in complex 
disease. However, as described above, careful 
design and execution of GWA and follow-up 
association studies are imperative to providing 
robust, meaningful data. A major challenge 
with GWA analyses is separating the true 
markers from the spurious associations. 

Having stringent p-values is important, as is 
replicating results in independent cohorts. 
Additionally, comprehensive phenotyping of 
the cohort is also beneficial for understanding 
biological pathways. Extensively characterized 
cohorts will provide the foundation for 
ascertaining genetic and environmental risk 
factors in an integrated, interdependent 
manner. 
 
For the vast majority of published GWA 
studies, the ethnic background of the primary 
study population has been European 
Caucasian. However, there is a need to extend 
association analyses to populations with other 
ethnic backgrounds. Linkage disequilibrium 
blocks and allele frequencies can vary widely 
between European Caucasians, African 
Americans, Asians, Hispanics, and other ethnic 
groups. Thus, associations found in one ethnic 
group may not translate to the same 
association in other ethnic groups. A case in 
point is 9p21.3, in which an association 
between this locus and CAD was observed in 
many different populations, but the 
association was not present in African 
Americans [17, 35].  
 
In addition to confounding issues in 
association studies due to ethnicity, age also 
should be taken into account. In fact, a 
stronger impact of genetic factors on CAD is 
observed in younger individuals, possibly due 
to heterogeneity of effect associated with 
advancing age [2]. The 9p21 risk allele had a 
more pronounced effect in individuals with 
earlier onset MI, as observed by Helgadottir et 
al. [19]. Additionally, the Rotterdam Study was 
unable to make a correlation with 9p21 and 
CHD or MI in a prospective cohort study of 
nearly 8000 participants aged 55 years and 
older [30]. The authors cautioned, however, 
that the results of the study may be too 
underpowered to generalize them to an elderly 
population. Proper characterization of cohorts, 
as well as matching for age, gender, and 
ethnicity, is important to prevent 
misrepresentation of the findings. 
 
While GWA studies have identified novel 
potential markers for CAD and other complex 
diseases, there are several limitations to the 
results of these studies [89]. These limitations 
include the risk of false positive results, lack of 
detection of rare variants due to the 
insensitive nature of the assay, biases from 
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incomplete phenotyping of cases and controls, 
and confounders due to population 
stratification. Furthermore, very few functional 
variants have been identified through GWA 
studies. Thus, further studies are necessary to 
ascertain the relationship of the identified 
variants to functional variants and biology of 
the disease.  
 
Because of the nature of complex diseases, it 
is likely that multiple genetic risk alleles are 
needed to accurately assess risk. The risk 
alleles may be identified through association 
and linkage studies, but many of them may be 
identified by downstream studies investigating 
interactions between multiple risk loci. One 
study, using computer simulation, estimated 
that over 200 alleles were required to provide 
a reasonable assessment of CAD risk [90]. 
Thus, while GWA studies may be useful in 
identifying potential novel markers for complex 
disease, essential follow-up investigations 
involve determining the biology of the markers, 
interactions between loci, effect of risk 
markers in subclinical phenotypes, and 
association in other populations.  
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