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Abstract
Polycystic ovary syndrome (PCOS) is a syndrome involving defects in primary cellular control mechanisms that re-

sult in the expression of chronic anovulation and hyperandrogenism. This syndrome has been for many years one of the 
most controversial entities in gynecological endocrinology. Polycystic ovary syndrome has been proven to be a familial 
condition. Although the role of genetic factors in PCOS is strongly supported, the genes that are involved in the etiology 
of the syndrome have not been fully investigated until now, as well as the environmental contribution in their expression. 
The heterogeneity of the syndrome entertains the mystery around this condition which concerns thousands of infertile 
women worldwide. Some genes have shown altered expression suggesting that the genetic abnormality in PCOS affects 
signal transduction pathways controlling steroidogenesis, steroid hormones action, gonadotrophin action and regulation, 
insulin action and secretion, energy homeostasis, chronic inflammation and others. The present review of the contem-
porary literature constitutes an effort to present all the trends in the current research for the etiology of polycystic ovary 
syndrome. Hippokratia 2009; 13 (4): 216-223
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Polycystic Ovary Syndrome (PCOS) is a familial 
condition, as has long been noted1,2. Some clinical genet-
ic studies have pointed to an autosomal dominant inheri-
tance1,3,4 while others showed that it was more likely that 
the syndrome is a complex trait with oligogenic basis5,6. 
Although clustering of cases in families strongly support 
the role of genetic factors in the development of PCOS, 
heterogeneity of phenotypic features in different families 
and even within the same family underscores the impor-
tance of the environmental contribution. Modifications 
of molecular structure of gonadotrophins, their receptors 
and of the enzymes involved in steroidogenesis, insulin 
action and secretion have been under continuous and in-
tense investigation with variable results. Whereas several 
positive results have been reported, there are no genes 
universally accepted fondamentally important in PCOS 
aetiology. This has resulted partially because of various 
factors such as the lack of a worldwide accepted diag-
nostic scheme for PCOS, diagnostic capability only in 
reproductive-aged women, limited number of patients in 
case-control studies, analysis of only one or two variants 
of candidate genes and incomplete knowledge of patho-
physiology of the syndrome.

 Two possible approaches are used to identify a ge-
netic locus for PCOS genes: (i) association studies where 
a predisposing allele is expected to be found more fre-
quently in the affected population than the normal indi-
viduals and (ii) linkage studies where the probands and 
their families are investigated to determine if particular 
genomic landmarks are distributed independently or in 

linkage with the phenotype. While the mode of inheri-
tance is not required for the association studies, it requires 
a relatively large set of individuals for a clear conclusion7. 
Many genes presented altered expression suggesting thus 
that the genetic abnormality in PCOS affects signal trans-
duction ruling steroidogenesis, steroid hormones action, 
gonadotrophin action and regulation, insulin action and 
secretion, energy homeostasis, chronic inflammation and 
others.

Genes involved in ovarian and adrenal 
steroidogenesis

 The first step in steroidogenesis is the conversion 
of cholesterol into progesterone, catalyzed by the P450 
cytochrome side chain cleavage enzyme encoded by CY-
P11a gene located at 15q248. Investigation of CYP11A 
gene showed a significant association between serum 
testosterone levels and the alleles of the CYP11a with a 
5’ untranslated region (UTR) consisting of repeats of a 
(tttta)n pentanucleotide, a variable number tandem repeat 
(VNTR) polymorphism9. Two other case-control stud-
ies10,11, confirmed these findings in support of the encour-
aging evidence for the association between CYP11a and 
PCOS. However, subsequent studies12,13 have failed to 
find any significant association between this gene locus 
and its VNTR alleles and PCOS. Further investigation is 
required due to these controversial results in order to con-
firm a role in the aetiology of PCOS of this gene.

Another part in steroidogenesis is the conversion of 
17-hydroxyprogesterone into 11-deoxycortisol which 
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is catalyzed by the 21-hydroxylase enzyme encoded by 
CYP21. The deficiency of this enzyme is responsible 
for most cases of congenital adrenal hyperplasia and in-
creased serum 17-hydroxyprogesterone levels are corre-
lated with its deficiency. It is a common finding among 
women with functional hyperandrogenism or PCOS an 
increased serum 17-hydroxyprogesterone response to 
ACTH stimulation14,15. Furthermore, patients having both 
heterozygote CYP21 mutations and clinical symptoms 
exhibit a PCOS-like phenotype16. Accordingly, mutations 
of CYP21 have been investigated as a candidate gene in 
patients with PCOS. Two studies showed that children 
with premature pubarche and adolescent girls with hy-
perandrogenism were heterozygous for mutations in 
CYP2116,17. On the other hand, there are other researchers 
that found no clear concordance between the CYP21 gen-
otype and the functional origin of androgen excess18,19. 
Overall, CYP21 and associated mutations do not seem to 
play a key role in the development of PCOS.

The conversion of pregnenolone and progesterone 
into 17-hydroxypregnenolone and 17-hydroxyprogester-
one, respectively, and of these steroids into dehydrohe-
piandrosterone (DHEA) and Δ4-Androstendione (Δ4Α) 
is catalyzed by the P450c17α enzyme. This enzyme has 
both 17α-hydroxylase and 17,20-lyase activities and is 
encoded by CYP17 located at 10q24.320. It was reported 
increased P450c17α expression and enzymatic activity 
in ovarian theca cells from women with PCOS as well 
as increased transactivation of the CYP17 promoter21-23. 
Moreover, it was showed that CYP17 expression is dys-
regulated at the level of mRNA stability in PCOS theca 
cells24. Another study identified a rare T/C single nucle-
otide polymorphism (SNP) in the promoter region of 
CYP17 increasing the susceptibility to develop PCOS25. 
Subsequently, more comprehensive studies have failed to 
detect a significant linkage between CYP17 and PCOS26-

29. Although CYP17 gene does not seem to be a candidate 
gene in the pathophysiology of PCOS, it should be noted 
that post-translational regulation of this gene product 
might play a role in the pathophysiology of PCOS7. 

The enzyme complex aromatase converts androgens 
to estrogens. This enzyme complex is composed of the 
cytochrome P450 aromatase and the NADPH cytochrome 
P450 reductase30, and P450arom is encoded by CYP19 
located at 15p21.131. Aromatase deficiency has been re-
ported in a number of hyperandrogenic patients32,33. It 
has been demonstrated that granulosa cells obtained from 
medium-sized follicles of women with PCOS have little 
aromatase activity34. Similarly, it has been showed that 
when compared to the control follicles, all PCOS follicles 
contained low levels of P450arom mRNA, estradiol, and 
lower aromatase stimulating bioactivity35. These findings 
indicate that the aromatase activity might be decreased 
in PCOS follicles, and that the possible androgen excess 
resulting might contribute to abnormal follicle develop-
ment. Association studies utilizing SNPs and haplotypes 
showed association with PCOS symptoms and serum tes-
tosterone levels36,37. 

Genes involved in steroid hormone actions
All androgens transmit their signal through the andro-

gen receptor which belongs to a family of nuclear tran-
scription factors. The androgen receptor is encoded by the 
gene (AR) located at Xq11-1238 and is composed of three 
functional domains: the transactivation domain, the DNA 
binding domain, and the ligand-binding domain. A VNTR 
polymorphism consisting of CAG repeats in exon-1 en-
coding a polyglutamine chain in the N-terminal transac-
tivation domain is embedded in AR39. The transcriptional 
activity of androgen receptor is inversely correlated with 
the number of CAG repeats40. Variations of these repeats, 
even within the normal polymorphic range, have been 
related to various disorders associated with low- or high-
androgenic activities41-43. Therefore, decreased number of 
CAG repeats with an increased androgen receptor activ-
ity could explain some of the PCOS phenotype exhibiting 
the normal serum androgen levels and hyperandrogenism 
symptoms44. Nevertheless, some studies failed to prove 
any association between this VNTR and PCOS44,45. On 
the contrary, other studies demonstrated a significantly 
greater frequency of alleles with longer CAG repeats for 
infertile PCOS patients compared with fertile women46. 
Concluding, AR gene is not a strong candidate for the 
etiology of PCOS.

Serum Sex Hormone-Binding Globulin (SHBG) lev-
els are commonly low in patients with hyperandrogen-
ism, especially in association with PCOS47. SHBG is 
composed of a homodimeric glycoprotein produced by 
hepatocytes and is encoded by a 4-kb gene at the 17p12-
p1348,49. A pentanucleotide repeat polymorphism, at the 
promoter of SHBG gene has been described to influence 
the transcriptional activity of SHBG gene50. Consequent-
ly, it has been investigated whether this polymorphism 
is associated with PCOS and whether polymorphic vari-
ants of the gene are related to serum SHBG levels in 
women with PCOS51. A significant association was found 
between this polymorphism and PCOS51. PCOS patients 
carrying the longer allele genotypes had lower SHBG 
levels. In accordance with the latter result, Cousin et al.52 
recently demonstrated that longer alleles lowered serum 
SHBG levels in hirsute women when compared with six 
repeat alleles. Although Urbanek et al.45 did not find any 
association or linkage between a marker close to the lo-
cus and PCOS, it could be concluded that SHBG gene is a 
potential candidate gene in the pathogenesis of PCOS7.

Genes involved in gonadotropin action and 
regulation

The gene encoding the β-subunit of LH which is re-
sponsible for LH specificity, has been explored in PCOS 
patients7. Initially, it was identified an abnormal form of 
LH with two-point mutations, Trp8Arg and Ilg15Thr, 
in the LH β-subunit gene53. In addition, these mutations 
produced structural changes in the variant LH molecules 
(v-LH)54 and caused v-LH to have an increased in vitro 
activity and a decreased in vivo half life compared to that 
of non mutant form55. However, in vivo activity of v-LH 
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could not be explained. The implication of v-LH in both 
healthy women and PCOS patients was explored and it 
was found that the occurrence of these mutations in LH 
β-subunit gene was not higher in PCOS compared with 
healthy women7,56. On the other hand, subgroup analy-
sis of this study revealed that obese PCOS patients had 
a higher frequency of the heterozygous v-LH compared 
with obese controls7,56. However, other studies failed to 
find any association with PCOS57-59. The assumption that 
an activating mutation in the LH receptor gene could 
trigger hyperandrogenism in patients with PCOS having 
normal serum LH concentrations and high androgen lev-
els was demolished8. Overall, the functional role of the 
v-LHs is unclear but it seems not to be crucial in PCOS 
pathogenesis or female infertility.

Follistatin, a monomeric glycoprotein encoded by a 
single gene, is linked functionally through its role as a 
high-affinity binding protein for activin60. Activin is di-
meric glycoprotein which belongs to the TGF-β superfam-
ily, induces FSH and insulin secretion, ovarian follicular 
maturation and inhibits LH-stimulated ovarian androgen 
production60. Actually, overexpression of follistatin in 
transgenic mice resulted in suppression of serum levels 
of FSH and arrested ovarian folliculogenesis61. Therefore 
overwhelming activin neutralization due to increased 
follistatin reduces FSH concentrations, arrests follicular 
maturation, augments androgen production, and impairs 
insulin release. Because all of these changes are typical 
features of PCOS62, follistatin gene has been explored as 
a candidate gene in PCOS. The results of distinct studies 
are conflicting and significant linkage was failed to be 
proven45,63,64. 

Genes involved in insulin action and secretion
The insulin gene (INS) is located between the genes 

for tyrosine hydroxylase and for IGF-II at 11p15.5, and 
includes variable tandem repeats (VNTR) embedded at 
the 5’regulatory region of INS65. The VNTR polymor-
phism regulates the transcriptional rate of the INS66 and 
probably that of the gene encoding IGF-II67. The num-
ber of the repeats of the INS VNTR ranges from 26 to 
200, and due to this feature INS VNTR polymorphism 
has three size classes. Class-I alleles comprise the short-
er polymorphism, consisting of a length of 40 repeats. 
Class-II alleles are composed usually of 80 repeats and 
are uncommon in Caucasian. Class-III alleles compose 
the longest polymorphic region having an average of 157 
repeats68. Transcriptional activity of the longer polymor-
phic region is greater than that of the shorter one66. Be-
sides their effect on regulating INS expression, they have 
been implicated in the pathogenesis of type-2 Diabetes 
Mellitus (DM) in many studies69,70. The hyperinsulinemia 
in PCOS may be the result of primary insulin resistance 
or the direct effect of pancreatic β-cell disorder as defects 
in both insulin action71, 72 and in pancreatic β-cell func-
tion73,74 have been reported. Therefore, it was evaluated 
the linkage and association of the INS VNTR polymor-
phisms in families with affected members with PCOS75. 

An association was found between PCOS and al-
lelic variation at the INS VNTR locus in three separate 
populations75. Furthermore, it was found that class III 
alleles were associated with anovulatory PCOS in two 
independent populations and were more frequent among 
women with Polycystic Ovaries (PCO) with symptoms 
than those without symptoms75. In addition, it was 
shown that the fasting serum insulin levels were sig-
nificantly higher in families with evidence of linkage75.. 
This evidence stands for the assumption that VNTR 
polymorphisms affect the presence of hyperinsulinemia 
and insulin resistance in some PCOS phenotypes. It was 
also reported that class III alleles were transmitted sig-
nificantly more common from fathers than from mothers 
to affected daughter suggesting a “parent of origin” ef-
fect75, 76. In support of this evidence, it was demonstrated 
that class III alleles and paternal class III allele trans-
missions were significantly related to increased num-
ber of PCOS features and to reduced insulin sensitivity 
among women with PCOS77. In other studies, however, 
it was not found any evidence for the linkage of INS and 
PCOS and for the association of the class III allele and 
of hyperandrogenemia78,79. But there was a difference in 
these studies. The ultrasonographic criteria were more 
commonly used than the NIHCD criteria. These con-
flicting results may be explained by the variant selection 
criteria, the different ethnic and geographic distribution 
of studied patients, the selection bias and the small size 
of the samples. 

The insulin receptor is a heterotetrameric glyco-
protein comprised of two α and two β-subunits and is 
encoded by the insulin receptor gene (INSR) located at 
the chromosome 1980. Many researchers have tried to 
explore whether the mutations of INSR could explain 
insulin resistance in PCOS. The first studies of sequenc-
ing the INSR, the tyrosine kinase domain of INSR and 
the mutations by molecular scanning of the entire coding 
region of INS did not reveal any mutations81-83. More re-
cently, a comprehensive study published by Urbanek et 
al.84 demonstrated a linkage with PCOS 367 well-char-
acterized families from Europe. Another study investi-
gating a broad region of the chromosome 19p13.2 found 
strong evidence for association with D19S884, support-
ing thus the previous findings84. In a recent study, Sie-
gel et al.85. examined an SNP at the tyrosine kinase do-
main of INSR and found an association in lean patients 
with PCOS. This SNP could be a susceptible variant for 
PCOS, or a result of linkage disequilibrium with another 
INSR polymorphism.

The activation of the insulin receptor after insulin 
binding requires the autophosphorylation of the β-sub-
unit of the insulin receptor86. The following tyrosine 
kinase activity produced after autophosphorylation 
phosphorylates insulin receptor substrates (IRS), such 
as IRS-1 and IRS-287. Then, IRS-1 and IRS-2 bind and 
activate downstream effectors, such as phosphoinositide 
3-kinase, to promote the metabolic and mitogenic ac-
tions of insulin. When IRS-1 is dysfunctional, IRS-2 is 
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the main messenger for the intracellular transmission of 
the insulin signal but it demands higher insulin concen-
tration for activation88. Several polymorphisms of IRS1 
and IRS2 genes (IRS1and IRS2) have been implicated 
in insulin resistance. The Gly972Arg polymorphism for 
IRS-1 and Gly1057Asp for IRS-2 have been shown to 
increase susceptibility to type-2 diabetes mellitus89,90. 
Initially, no difference could be found in the distribution 
of IRS-1 Gly972Arg and IRS-2 Gly1057Asp alleles in 
PCOS patients and controls45, 91; however, it was demon-
strated that the Gly972Arg IRS-1 was more prevalent in 
insulin-resistant patients compared with the non-insulin 
resistant patients or controls. Many studies following 
failed to prove any strong relationship or confirmation of 
any possible correlation between polymorphisms of IRS-
1 and IRS-2 and PCOS91-93.

In a recent study Dilek et al.94 reported a higher fre-
quency of the Gly972Arg polymorphism for IRS-1 in 
women with PCOS. Furthermore, similar to previous 
studies91,93 they found that the Gly972Arg carriers were 
more obese, more insulin-resistant and had higher fast-
ing insulin levels in comparison to other PCOS patients 
and controls94. These investigators also studied the same 
PCOS patients for the potential differential effects of 
metformin therapy on the basis of IRS-1 genotype95. Met-
formin administration resulted in lower LH, DHEAS, T, 
and fasting insulin levels and decreased insulin resistance 
and FAI in Gly972Arg-negative PCOS women more ef-
fectively and significantly when compared with the 
Gly972Arg-positive women95. These findings could be 
considered a rough indicator of the relationship between 
the IRS-1 genotype and the insulin resistance phenotype 
of PCOS. Ertunc et al.95 studied the hypothesis that a pos-
sible mechanism for the action of metformin may be aug-
mentation of the tyrosine phosphorylation of the insulin 
receptor β-subunit and IRS proteins and the increase of 
the insulin-dependent and nondependent cellular glucose 
uptake through the family of glucose transporter proteins. 
They hypothesized that variant IRS-1 proteins could not 
transmit signals in order to increase the glucose uptake of 
muscle and adipose cells. This may be an explanation of 
the association of IRS-1 genotype with insulin resistance 
in some of PCOS patients. The IRS polymorphisms of 
these studies seem to be related mostly with insulin resis-
tance rather than PCOS.

Calpain-10 is a cysteine protease that participates in 
insulin secretion and action96, and genetic studies have 
shown that variation in the gene (CAPN10) encoding cal-
pain-10 is associated with type-2 diabetes97. There was 
an effort to determine whether variation in the CAPN10 
is associated with quantitative traits related to the patho-
genesis of PCOS and type-2 diabetes98. It was found as-
sociation between the 112/121 haplotype of this gene 
and higher insulin levels in African-American women 
and an increased risk of PCOS in both African-Ameri-
can and white women7,98. Consecutive studies have had 
conflicting results about the relation of polymorphisms 
with PCOS99-101. 

Genes involved in energy homeostasis
During the last years it has been recognized that the 

adipose tissue is not only a connective tissue but is also 
one of the active endocrine organs which secretes a wide 
variety of products called adipocytokines102. As a large 
proportion of women with PCOS are overweight, obese 
and extremely obese some genes of the most popular adi-
pocytokines have been investigated as candidate genes in 
the pathogenesis of PCOS. Sequencing the leptin gene in 
a small group of PCOS patients failed to detect any muta-
tions of the coding exons103. In this study, the leptin re-
ceptor gene was also sequenced and revealed previously 
identified amino acid variants in exons 2, 4, 12 and the 
pentanucleotide insertion in the 3’-untranslated region103. 
However, the allele frequencies of these polymorphisms 
did not differ from those in the general population. 

Recent studies have focused on two polymorphisms, 
T45G in exon 2 and G276T in intron 2. It was demon-
strated that these polymorphisms associate with obesity, 
insulin resistance, and the risk of developing type-2 dia-
betes104-106. In a study investigating the relationship of 
PCOS with 15 genomic variants previously described to 
influence insulin resistance, obesity, and type-2 diabetes 
mellitus, there was no association between PCOS and 
these two common polymorphisms of the adiponectin 
gene107. Panidis et al. investigated the possible associa-
tion of the T45G adiponectin gene polymorphisms with 
PCOS108. A significant difference was observed between 
the groups when genotypes GG and TG were assessed 
together109. It was also showed that the carriers of the G 
allele had a tendency for lower serum adiponectin levels 
in PCOS group109. More recently, the probability that the 
T45G and G276T polymorphisms of adiponectin gene 
could be associated with PCOS was disputed by two stud-
ies109, 110. Concluding, the adiponectin gene do not seem to 
play a causative role in the pathogenesis of PCOS, rather 
seem to reflect the severity of the syndrome, at least con-
cerning the metabolic disturbances and to have a role in 
the phenotypic variability of PCOS.

Genes involved in chronic inflammation
Tumor necrosis factor (TNF)-α is a cytokine secreted 

by adipose tissue with an important role in insulin resis-
tance111. The polymorphisms in the TNF-α gene do not 
seem to have a key role in the etiology of PCOS. In one 
study the carriers of the mutation 308 A alleles showed 
increased androgen and 17-hydroxyprogesterone levels 
before and after GnRH stimulation112. These data may 
be indicative of the hypothesis that TNF-α gene poly-
morphism might be a modifying factor for phenotypic 
features. Other genes involved in chronic inflammation, 
such as TNFR2 (type-2 TNF receptor) gene113, IL-6114, 
IL-6 signal transducer gp 130115, IL-6 receptor115 genes 
have also been investigated for association with PCOS, 
but without significant results.

Abnormalities in the coagulation and fibrinolytic 
pathways contribute to the development of cardiovas-
cular disease in PCOS patients116. Elevated plasminogen 
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activator inhibitor-1 (PAI-1) levels are associated with in-
creased cardiovascular risk and increased thrombogenic 
tendency. Women with PCOS also present an increased 
activity of PAI-1117. In order to investigate the role of the 
PAI-1 polymorphism in PCOS patients, the polymorphism 
4G/5G which is associated with higher PAI-1 concentra-
tions, was evaluated in Greek women with PCOS and it 
was found a higher frequency in PCOS women compared 
with controls118. It was also reported that PCOS women 
have higher levels of PAI-1 and that the presence of the 
4G allele in the PAI-1 promoter region of the gene further 
increases the PAI-1 levels118. 

In addition to the genes mentioned above, many dif-
ferent genes such as HSD3B2119, 17α-hydroxysteroid 
dehydrogenases120, dopamine receptor121,122, IGF107, al-
dosterone synthetase123, paraoxonase123, glycogen syn-
thetase124, resistin125, apoprotein E126 have been studied. 
Results were either controversial or without clear conclu-
sions.
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