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The ubiquitous cellular influence of nitric oxide (NO) is exerted
substantially through protein S-nitrosylation. Whereas NO is
highly promiscuous, physiological S-nitrosylation is typically re-
stricted to one or very few Cys residue(s) in target proteins. The
molecular basis for this specificity may derive from properties of
the target protein, the S-nitrosylating species, or both. Here, we
describe a protein microarray-based approach to investigate de-
terminants of S-nitrosylation by biologically relevant low-mass
S-nitrosothiols (SNOs). We identify large sets of yeast and human
target proteins, among which those with active-site Cys thiols
residing at N termini of �-helices or within catalytic loops were
particularly prominent. However, S-nitrosylation varied substan-
tially even within these families of proteins (e.g., papain-related
Cys-dependent hydrolases and rhodanese/Cdc25 phosphatases),
suggesting that neither secondary structure nor intrinsic nucleo-
philicity of Cys thiols was sufficient to explain specificity. Further
analyses revealed a substantial influence of NO-donor stereochem-
istry and structure on efficiency of S-nitrosylation as well as an
unanticipated and important role for allosteric effectors. Thus,
high-throughput screening and unbiased proteome coverage re-
veal multifactorial determinants of S-nitrosylation (which may be
overlooked in alternative proteomic analyses), and support the
idea that target specificity can be achieved through rational design
of S-nitrosothiols.

cysteine � nitric oxide � S-nitrosothiol � thiol

Protein S-nitrosylation underlies much of the physiological
signaling by both nitric oxide (NO) and endogenous S-

nitrosothiols, and both hypo- and hyper-S-nitrosylation have
been causally implicated in disease (1, 2). Formally, S-
nitrosylation occurs either via an oxidative reaction of NO and
Cys thiol, in the presence of an electron acceptor (e.g., transition
metal or O2), or by the transfer of NO� (transnitros(yl)ation)
from donor S-nitrosothiol (SNO) to acceptor Cys thiol (1). These
reactions may be enzyme-catalyzed or otherwise facilitated. For
example, hemoglobin and ceruloplasmin support metal-
dependent S-nitrosylation (3–5) whereas S-nitroso-hemoglobin
(SNO-hemoglobin) and SNO-thioredoxin can transnitrosylate
proteins with which they interact directly (anion exchanger 1 and
caspase-3, respectively) (6, 7). Transnitrosylation is also impli-
cated in protein S-nitrosylation coupled to NO synthase activity
(8–10) and involves the intermediacy of the endogenous low-
mass SNO, S-nitrosoglutathione (GSNO), as evidenced by ele-
vated levels of SNO-proteins in mice lacking the GSNO metab-
olizing enzyme, GSNO reductase (GSNOR) (8–11). GSNOR
deletion also increases S(NO)-mediated protein S-nitrosylation
and cytostasis in yeast (11, 12), and decreases virulence of several
pathogens (13, 14), which suggests that transnitrosylation is an
important mediator of nitrosative stress. In addition, metabolism
of GSNO to S-nitrosocyteinylglycine and S-nitrosocysteine
(CysNO) and CysNO uptake via l-amino acid transporters
appear to be required for many biological effects of extracellular
(endogenous and exogenous) SNOs (15, 16). S-nitrosylation
typically occurs at only one or a few Cys residues in target
proteins (2, 17), although the factors underlying this specificity
are incompletely understood. Target thiol pKa is often invoked
as a critical determinant of transnitrosylation (18), whereas local
hydrophobicity may be an important determinant for oxidative

S-nitrosylation (by NO itself) (19, 20)–presumably underlying
the reported acid-base and hydrophobic motifs (2, 19).

The biotin switch technique (BST), which converts an S-
nitrosothiol to an S-biotinylated Cys (21, 22), has greatly facil-
itated the identification of SNO proteins and specific SNO sites
(20, 23) and aided in the discovery of many new (patho)physi-
ological roles for S-nitrosylation. In principle, the characteriza-
tion of SNO proteomes by this method should reveal classes of
(S)NO-reactive proteins and/or common sequences or structural
features that would allow for a more complete understanding of
S-nitrosylation determinants. However, the assay is biased to-
ward the identification of abundant proteins, and has therefore
been limited as a proteomic tool. Functional protein microarrays
(24), which have recently been used to measure a wide array of
protein functions, including interactions of proteins with other
proteins, DNA/RNA, small molecules and phospholipids (24),
and also to assay posttranslational modifications [glycosylation
and phosphorylation (25, 26)], may address such limitations.
Importantly, this methodology provides an unbiased, proteome-
wide coverage of potential substrates, obviates the often labo-
rious requirement for target identification by mass spectrometry
and enables relative quantification. Arrayed proteins also appear
to retain their native structures and activities. We therefore
sought to investigate whether protein microarrays could be
adapted to studies of S-nitrosylation.

Results
Analysis of S-Nitrosylation on Protein Microarrays. We developed a
modified BST assay for detecting SNO-proteins on microarrays
that uses an anti-biotin antibody and fluorescently labeled
secondary antibody for detection. We then screened a yeast
protein microarray (Invitrogen Protoarray) containing �4,000
glutathione S-transferase (GST)-tagged ORFs after treatment
with 50 �M S-nitrosocysteine (CysNO), a highly reactive SNO
(Fig. 1 and supporting information (SI) Fig. S1). Several hundred
yeast SNO proteins were identified versus buffer-treated arrays
(Fig. 1, Fig. S1, and Table S1). CysNO did not S-nitrosylate GST,
which is fused to each ORF (Fig. 1).

We analyzed the 300 proteins with the highest relative fluo-
rescence intensity from a representative CysNO-treated mi-
croarray (Table S1). Approximately two-thirds of these ‘‘hits’’
were detected in two or more independent experiments; vari-
ability between experiments could be rationalized by differences
in protein content or relative protein concentration among
microarray ‘‘lots.’’ Proteins (and predicted gene products) were
classified by using the Saccharomyces Genome Database (SGD)
(27). Approximately 5% of proteins (19 of 300) lacked a Cys
residue and were scored as false positives (Fig. 2A and Table S1).
More than half of the false positives were subunits of hetero-
oligomeric complexes (Table S1), suggesting that these signals
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most likely arose from S-nitrosylation of proteins that copurified
with the GST-tagged ORFs (28). Known catalytic, redox-active
and metal-binding Cys residues were identified in �25% of hits;
31 of 300 S-nitrosylated proteins had only a single Cys residue
(Table S1), identifying the putative site of S-nitrosylation. Seven
ORFs were duplicated twice on the array (resulting in 14 hits),
and 21 additional hits corresponded to 12 homologous TyA gene
products that are analogous to the retroviral Gag protein (27).
In addition, three enzymes of the maltase family (Mal12p,
Mal32p, and Yil172cp), several highly homologous homocitrate
synthase isozymes (Lys20p and Lys21p), and two ADP-
ribosylation factors (Arf1p and Arf2p) were also S-nitrosylated
(Table S1). A similar pattern of S-nitrosylation across duplicate
and homologous ORFs increased confidence in the microarray
analysis.

We selected six enzymes (Qns1p, Ubc5p, Aro3p, Ncl1p, Idi1p,
and Pdc5p) containing catalytically essential Cys thiols (Table
S1) for initial validation. Lysates from yeast expressing C-
terminally-tagged ORFs [the tag lacks a Cys residue (25)] were
treated with CysNO, and S-nitrosylation of each protein was
confirmed by the BST (Fig. 2B). We also quantified the S-
nitrosylation of two GTPases (Arl1p and Arf1p) in vitro. CysNO
readily S-nitrosylated MgGDP-bound Arl1p, but Arf1p S-
nitrosylation was only observed with EDTA pretreatment (Fig.
S2A), suggesting that removal of the proximal Mg-GDP (Fig.
S2B) was required. More generally, the protein microarrays are
well suited for relative quantification of protein S-nitrosylation
(Table S1). We also assayed human Protoarrays (treated with
buffer or GSNO) for S-nitrosylation. Interestingly, we identified
several human homologues of yeast SNO-proteins (Table S2A),
among which, NAD� synthetase (NADSyn, a homologue of
yeast Qns1p) was previously identified (29). We verified S-
nitrosylation of two newly identified SNO-proteins, Cdk5 and
MK2, as well as NADSyn, in mammalian cells (Fig. 2C). Thus,
the microarray approach may be used for identifying novel SNO
targets.

Importantly, we noted that SNO reactivity varied substantially
within several classes of yeast proteins possessing catalytic (and
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Fig. 1. Detection of S-nitrosylation on protein microarrays. A modified BST
(see Materials and Methods; without DTT pretreatment) was applied to yeast
Protoarrays that were exposed for 30 min to either buffer alone (A) or 50 �M
CysNO (B). A representative block (#12 of 48) of proteins spotted in duplicate
is shown for each condition. S-nitrosylation is identified by an increase in
fluorescence intensity after CysNO treatment. The positions of positive anti-
body (Ab) controls (anti-biotin Ab and biotinylated Ab gradient) are indicated
by yellow rectangles. Other protein controls (GST, PKC�, PKC�, and BSA) are
indicated by white rectangles. Images are representative of at least three
independent experiments.
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Fig. 2. Analysis and validation of microarray data. (A) The 300 highest-
intensity signals from a CysNO-treated yeast microarray were analyzed (see
also Table S1) to identify the proportion of proteins with functional Cys
residues, those lacking a Cys residue (false positives), and TyA gene products
(which were the most highly represented protein family). (B) For validation of
yeast microarray screening, lysates from six yeast strains overexpressing HA-
tagged ORFs were treated with and without 50 �M CysNO and analyzed by the
BST, followed by Western blotting with an anti-HA antibody. Proteins are in
the order of their natural cellular abundance (from left to right). (C) S-
nitrosylation of proteins identified by screening of human microarrays was
validated in mammalian cells. Rat PC-12, mouse RAW264.7, and human HEK-
293 cells were treated with and without 100 �M CysNO for 5 min, with and
without 250 �M CysNO for 5 min, and with and without 10 �M CysNO for 15
min, respectively. Lysates were analyzed by the BST, followed by Western
blotting for cyclin-dependent kinase 5 (Cdk5; PC-12 cells), MAP kinase-
activated protein kinase 2 (MK2; RAW246.7 cells) or 3x-Flag-tagged human
NAD� synthetase (NADSyn, transiently expressed in HEK-293 cells). Rat Cdk5
and mouse MK2 each share at least 98% identity with their human homo-
logues. Images are representative of at least two independent experiments.
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presumably highly nucleophilic) Cys thiols, including those of the
rhodanese/Cdc25 phosphatase and papain-related Cys-
dependent hydrolase families (see below). We sought to further
investigate the basis of this differential reactivity.

S-Nitrosylation of the Rhodanese/Cdc25 Phosphatase Family. Rho-
danese enzymes catalyze the transfer of sulfane sulfur from
thiosulfate to cyanide (to form thiocyanate) (30). A predominant
feature of this enzyme class is an active-site loop that forms a
pocket with the catalytically essential Cys thiol at its center (Fig.
S3A). Several rhodaneses are inhibited by SNOs (Table S2B),
and notably, two of the most highly SNO-reactive proteins,
Uba4p and Tum1p, have rhodanese-like domains (Fig. 3A). Two
additional rhodanese-like proteins (Rdl1p and Rdl2p) were
identified by BLASTP searches (31) against either Tum1p or
Uba4p. Of these, only Rdl2p appeared on the array, but its
reactivity toward CysNO was low compared with Tum1p and
Uba4p (Fig. 3A and Table S1). The rhodanese superfamily also
includes the SNO target Cdc25 phosphatase (Table S2B), which
shares little primary sequence homology to rhodanese but
possesses a rhodanese-like fold and conserved active-site loop
(30). BLASTP analysis identified three proteins with structural
homology to Cdc25 (Fig. 3A), including the phosphatase
Ygr203wp (Ych1p; yeast Cdc25 homologue 1). However, Ych1p
appeared resistant to S-nitrosylation (Fig. 3A). The catalytic
loops (and adjoining helices) of Ych1p and Rdl1p are superim-
posable but lack primary sequence homology (Fig. S3A).

The microarray data suggested that Uba4p and Tum1p (but
not Rdl2p or Ych1p) would be S-nitrosylated and inhibited by
CysNO, and to validate these results, we purified the recombi-
nant proteins from Escherichia coli. The rhodanese activity of
Uba4p (32) was dose-dependently inhibited by CysNO and
GSNO (Fig. 3B and Fig. S3B); the enzyme was S-nitrosylated by
CysNO and GSNO (Fig. 3C and Fig. S3C) and the catalytic Cys

(C397) was identified as a SNO-site (Fig. S3D). We found that
Rdl2p (but not Tum1p) also had rhodanese activity, and we
confirmed that neither Rdl2p nor the phosphatase Ych1p were
inhibited or S-nitrosylated by CysNO (Fig. 3 D–E). On the other
hand, H2O2 was a potent inhibitor of both enzymes (Fig. 3D),
suggesting differential reactivity of active-site cysteines toward
alternative redox-active compounds. We hypothesized that
SNO-bearing substrates or substrate mimetics might serve as
inhibitors of these enzymes. SNO-thiosulfate is unstable (33),
but a previously unidentified phospho-tyrosine mimetic, S-ni-
troso-4-mercaptophenylacetic acid (PASNO; Fig. S4) inhibited
and S-nitrosylated Ych1p (Figs. 3 D–E). Ych1p has two Cys
thiols (C90 and C116), and the catalytic Cys (C90) was identified
as the locus of these effects, because the inhibition of C116S
Ych1p by PASNO was comparable with wild type (Fig. S3E). By
comparison, PASNO did not inhibit Rdl2p (Fig. 3D).

S-Nitrosylation of the Papain-Related Cys-Dependent Hydrolase Fam-
ily. An additional SNO-reactive enzyme family was suggested by
the apparent S-nitrosylation of numerous glutamine amidotrans-
ferases (GATases) (34), including Qns1p (Fig. 2B), Trp3p, and
Sno2p (Table S1). The glutaminase active site of these enzymes
features a catalytic triad (e.g., Cys-His-Glu) in which the Cys is
situated in a ‘‘nucleophilic elbow’’ at the N terminus of an �-helix
(Fig. S5A). This motif is conserved in the SNO-sites of the
protease papain and the GATase domain of CTP synthetase
(Table S2B). Over 40 yeast proteins are members of this
Cys-dependent hydrolase family, including GATases (of the
nitrilase superfamily), deubiquitinating enzymes (DUBs) (in-
cluding proteases and C-terminal hydrolases specific to conju-
gates of ubiquitin and ubiquitin-like proteins), and proteins of
the DJ-1 superfamily (Table S3). In our arrays, the SNO-
reactivity of the nitrilases was much higher than DUBs or
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Fig. 3. S-nitrosylation of rhodanese/cdc25 phosphatase superfamily members. (A) A summary of yeast ORFs belonging to the Rhodanese/Cdc25 phosphatase
superfamily, including the sequences of their active-site loops, enzymatic activity (Rhd, rhodanese; ST, sulfane sulfur transferase; PPase, phosphatase; AsR,
arsenite reductase), relative abundance on the microarray and degree of S-nitrosylation by CysNO (H, high; L, low; NF, not found). Note that the rhodanese
activities of Rdl1p and Rdl2p have not been reported previously, and that (as for Rdl2p, in D), Rdl1p is inhibited by neither CysNO nor PASNO. (B) Rhodanese
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DJ-1-related proteins (Fig. 4A and Table S3); we selected a
protein from each of these classes for validation.

We first measured the inhibition of the NAD� synthetase

Qns1p by SNOs compared with the activity-based inhibitor
6-diazo-5-oxo-L-norleucine (DON) under pseudocatalytic con-
ditions (including the cosubstrates nicotinic acid adenine dinu-
cleotide (NaAD�) and MgATP). Qns1p was dose-dependently
inhibited by DON and CysNO but not by GSNO (Fig. 4B),
despite the apparently robust S-nitrosylation of Qns1p by GSNO
on the microarray (Table S1). In addition, l-CysNO was a more
potent inhibitor than d-CysNO (Fig. 4B). Reaction with the
catalytic Cys by both the substrate l-Gln and the inhibitor
l-CysNO occurs on a sp2-hybridized electrophilic atom (C and N,
respectively) at approximately the same distance from the
�-carbon (Fig. S4) (35); accordingly, the stereoselective inhibi-
tion by l- versus d-CysNO likely reflects a more favorable
recognition of l-CysNO by the Qns1p active site.

Qns1p has two domains, with distinct active sites: The GATase
domain catalyzes the hydrolysis of l-Gln to glutamate and
ammonia, and the NAD� synthetase domain utilizes the ammo-
nia for the amidation of NaAD� (36). In GATase domain-
containing proteins, substrate binding to the ammonia-accepting
active site typically stimulates glutaminase activity as a result of
conformational changes in the glutaminase catalytic pocket (37).
Accordingly, hydrolysis of glutamine by Qns1 is stimulated
50-fold (with an increase in kcat) upon NaAD� binding (36). We
reasoned that the low reactivity of GSNO (Fig. 4B) might reflect
allosteric effects of NaAD� on the GATase domain. Without
NaAD�, DON was a relatively poor inhibitor, consistent with
reduced glutaminase activity. On the other hand, the absence of
NaAD� greatly potentiated Qns1p inhibition by GSNO and
nearly abolished the differential inhibition by l- versus d-CysNO
(Fig. 4C). S-nitrosylation of Qns1p by GSNO was similarly
modulated by NaAD� (Fig. 4D), suggesting that the active site
C175 is the site of inhibitory S-nitrosylation. After NaAD�

binding, GSNO appears unable to access the glutaminase active-
site cleft. Furthermore, the features of Qns1p that appear to
favor S-nitrosylation by l- versus d-CysNO are also evidently lost
in the absence of NaAD�, although the catalytic Cys appears to
maintain its thiolate character (i.e., low pKa) irrespective of
NaAD�.

In addition, we compared the reactivities of DJ-1 family
member Hsp31p [which is induced by and protects against
oxidative stress (38)] and the USP Yuh1p [a ubiquitin C-terminal
hydrolase (39)], neither of which were S-nitrosylated on the
arrays (Fig. 4A and Table S3). These proteins each have a single
Cys, and we verified that recombinantly expressed and purified
proteins had approximately one free thiol as measured by
Ellman’s reagent. Purified Hsp31p was inert to CysNO or GSNO
treatment, verifying the array results, but Yuh1p was S-
nitrosylated and inhibited by CysNO (and to a lesser extent by
GSNO) (Fig. S5 B and C). Thus, the microarray analysis
produced a potentially false-negative result; nonetheless, the
apparently low reactivity of SNOs toward the majority of yeast
USPs is consistent with reports that their catalytic cysteines are
buried in the absence of substrate (39).

Discussion
Low-mass SNOs mediate cellular signal transduction and nitrosa-
tive stress (10), and SNO deficiency has been identified with disease
states (1, 40, 41). A principal mechanism through which SNOs elicit
cellular effects involves the S-nitrosylation of Cys residues at active
or allosteric sites within proteins. The molecular basis of SNO
specificity is still poorly understood. Our experimental analysis
indicates that low thiol pKa may be necessary but is not sufficient
to support protein transnitrosylation by low-mass SNOs. Stereo-
chemistry of SNO donors, interactions between donors and their
substrates, and the conformational state of target proteins are
shown to represent additional determinants of specificity. The
multifactorial requirements for S-nitrosylation highlight the limi-
tations of interpretations based on proteomic analyses that rely on

0

20

40

60

80

100

DON

l-C
ys

NO

d-
Cys

NO

GSNO

N
A

D
 S

yn
th

et
as

e 
A

ct
iv

ity
 

(%
 C

on
tr

ol
)

0

20

40

60

80

100

0 20 40 60 80 100

N
A

D
 S

yn
th

et
as

e 
A

ct
iv

ity
 

(%
 C

on
tr

ol
)

[Compound] (µM)

GSNO

d-CysNO

l-CysNO

DON

B

SNO-Qns1

Total Qns1

GSNO

NaAD+ +
++

C

D

0

2

4

6

8

25

0 1 2 3 4 5 6

DUB

DJ-1
Nitrilase

Qns1

Yuh1
Hsp31

Mean [Protein] (RFU x 103)

M
ea

n 
[S

N
O

] (
R

F
U

 x
 1

03
)

A

+ NaAD+

   NaAD+

Fig. 4. S-nitrosylation and inhibition of cysteine-dependent hydrolases. (A)
Fluorescence intensities from a CysNO-treated microarray were plotted
against the relative protein abundance for yeast Cys hydrolase motif-
containing proteins. (B) Qns1p (0.25 �M) was treated for 30 min with increas-
ing concentrations of 6-diazo-5-oxo-L-norleucine (DON) or various S-
nitrosothiols, and NAD� synthetase activity was measured. (C) Qns1p activity
was measured after treatment with 100 �M inhibitors as in B with or without
NaAD�. (D) One hundred microliters of Qns1p (0.1 mg/mL) in NAD� syntheth-
ase assay buffer (see Materials and Methods) with or without NaAD� was
incubated with GSNO for 30 min at 30 °C and analyzed by the BST. Data in B
are mean (n � 3), and data in C are mean � SEM. Image in D is representative
of two independent experiments.
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a single type of NO donor or physiological stimulus and which
remove proteins from natural environments rich in cofactors that
may influence SNO reactivity.

For many of the proteins analyzed in this study, thiol acces-
sibility to SNO appears to be a critical determinant of reactivity.
The facile reaction of alkyl SNOs with C397 of Uba4p is
consistent with the proposed role of this residue in mediating
sulfane sulfur (S0) transfer between protein Cys thiols (42) and
suggests that it is solvent-exposed. On the other hand, the
selective reactivity of PASNO with Ych1p suggests that the
active site prefers aryl versus alkyl side chains (to the exclusion
of CysNO), consistent with the enzyme’s tyrosine phosphatase
activity. Less efficient S-nitrosylation of Qns1p and Yuh1p by
GSNO versus CysNO, and the preferential inhibition of NaAD�-
bound Qns1p by l- versus d-CysNO, also appear to reflect the
ability of these small molecules to access enzyme active sites,
which have evolved to bind specific substrates. Other similar
examples have recently been uncovered, including the prefer-
ential reactivity of GSNO (versus CysNO) with E. coli OxyR
(43), and the stereoselective inhibition of T-type calcium chan-
nels by l- versus d-CysNO (44). NaAD�-dependent S-
nitrosylation of Qns1p points further to the importance of
allostery in control of S-nitrosylation, and it is notable that
S-nitrosylation of hemoglobin (45), serum albumin (46), tissue
transglutaminase (47), and the ryanodine receptor (48) are also
modulated allosterically (by O2, fatty acid, Ca2� and Ca2�-cal-
modulin, respectively). More generally, allosteric effectors are
shown to have profound consequences on efficiency of S-
nitrosylation and thus may be underappreciated determinants of
SNO reactivity.

Microarray-based proteomic screens of S-nitrosylation may
reveal SNO-reactivity patterns for large classes of proteins. The
human genome alone encodes for �100 Cys-dependent DUBs
that, at least in structurally-characterized examples, have cata-
lytic Cys residues at the N termini of �-helices (49). However, the
low reactivity of yeast DUBs is consistent with the selective
accessibility of their active sites to substrates containing ubiq-
uitin or ubiquitin-like proteins, and, in fact, none of the catalytic
Cys residues of mammalian DUBs have been identified as SNO
targets [UCH-L1, a ubiquitin C-terminal hydrolase, is S-
nitrosylated at a noncatalytic Cys (23, 50)]. Thus, whereas SNOs
appear to regulate numerous enzymes in the ubiquitylation
pathway (2), DUBs appear to be resistant to SNO-based regu-
lation. Similarly, �100 human Cys-dependent protein tyrosine
phosphatases (PTPs; including Cdc25A-C) have been identified
that are defined by a Cys-containing catalytic loop (51, 52), and
although mammalian PTPs are increasingly recognized as SNO
targets (Table S2A), only one HCX5R motif-containing yeast
phosphatase (Ymr1p) was detected among the most SNO-
reactive proteins on the microarray. Further study is therefore
needed to define the reactivity determinants of this large enzyme
class. In addition, the DJ-1 family, including DJ-1 itself (53) and
yeast Hsp31p (54), appears to define a class of proteins whose
active sites are readily oxidized but are apparently inaccessible
to low-mass SNOs.

Our data show that structural motifs such as the Cys at the N
terminus of a helix (N-Cap Cys) are highly variable with regard
to SNO-reactivity, and are therefore unlikely to be universal
motifs for S-nitrosylation. Nonetheless, the N-Cap Cys motif
might serve as a useful SNO-site predictor: N termini of helices
in proteins are often solvent-exposed (55), and charge stabili-

zation by the helix dipole may lower the pKa of the N-Cap Cys
by approximately two pH units (56, 57) [a potentially greater
contribution to pKa than a proximal basic (e.g., His) residue
(58)]. Notably, the catalytic cysteines of rhodanese/Cdc25 phos-
phatases and PTPs are near the cationic side of a helix (Fig.
S4A), and the helix dipole is often suggested as a modulator of
Cys thiol reactivity in these enzymes. In addition to the catalytic
thiols of Cys-dependent hydrolases [e.g., papain (59), CTP
synthetase (35), Qns1p and Yuh1p (this work)], C32 and C62 of
human thioredoxin (60), C12 of �-tubulin (23), and C149 of
GAPDH (23)–known S-nitrosylation sites—are all at the N
termini of �-helices. Nonetheless, statistical significance for this
motif among SNO-sites is yet to be demonstrated.

Despite occasional false-positive SNO-protein identifications
and the lack of complete proteome coverage by commercially
available microarrays, our study highlights a number of advantages
of this high-throughput methodology for studies of S-nitrosylation,
including: (i) the facile identification of SNO-proteins (without the
need for mass spectrometry); (ii) the ability to perform relative
quantification of SNO-reactivity across a proteome; (iii) the ability
to assess the effects of multiple donors and cofactors; (iv) the lack
of bias with regard to endogenous protein abundance. With regard
to the latter factor, it is worth noting that neither SNO-MK2 nor
SNO-Cdk5 (Fig. 2C) have been previously identified by MS-based
analyses of SNO-treated RAW246.7 macrophages or brain extracts,
respectively (23, 50, 61). Inasmuch as the in vitro targets of SNOs
(e.g., in tissue extracts) have been shown to significantly overlap the
sets of proteins that are S-nitrosylated by endogenous NO (21),
protein microarrays present a tractable methodology for deconvo-
luting the multiple pathways for S-nitrosylation and denitrosylation
that govern steady-state SNO levels in vivo (12, 61, 62).

Materials and Methods
Materials and methods of syntheses of S-nitrososthiols are provided in SI
Materials and Methods

Detection of Protein S-Nitrosylation on Protein Microarrays. Invitrogen yeast
andhumanProtoarraysforkinasesubstrate identification(KSI)weretreatedwith
S-nitrosothiols and assayed for protein S-nitrosylation by using a modified biotin
switch protocol as described in SI Materials and Methods. Raw microarray data
can be accessed at the National Center for Biotechnology Information Gene
Expression Omnibus web site (www.ncbi.nlm.nih.gov/geo/).

Cloning and Purification of Yeast Proteins. Yeast proteins were cloned from
yeast genomic DNA, expressed as GST- or 6xHis-tagged fusion proteins in E.
coli and purified as described in SI Materials and Methods.

Assay of S-Nitrosylation in Cell Lysates and in Purified Proteins. Protein
S-nitrosylation was measured in cell lysates and in purified proteins by using
the biotin switch technique or Hg-coupled photolysis chemiluminescence as
described in SI Materials and Methods. Mass spectrometry was used in the
identification of SNO-sites within purified protein as described in SI Materials
and Methods.

Assay of Enzyme Activities. Rhodanese, tyrosine phosphatase, NAD� syn-
thetase, and ubiquitin C-terminal hydrolase activities were assayed as de-
scribed in SI Materials and Methods.
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