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ABSTRACT: Interactions between germ cells and surrounding somatic cells are central to ovarian development as well as later function.
Disruption of these interactions arising from abnormalities in either cell type can lead to premature ovarian failure (POF). The forkhead tran-
scription factor FOXL2 is a candidate POF factor, and mutations in the FOXL2 gene are associated with syndromic and non-syndromic
ovarian failure. FoxI2-deficient mice display major defects in primordial follicle activation with consequent follicle loss, and earlier roles in
gonadal development and sex determination have also been suggested. However, despite its importance no data presently exist on its
expression in the developing human ovary. Expression of FOXL2 mRNA was demonstrated in the human fetal ovary between 8 and |9
weeks gestation, thus from soon after sex determination to primordial follicle development. Expression in the ovary was higher after
|4 weeks than at earlier gestation weeks and was very low in the fetal testis at all ages examined. Immunolocalization revealed FOXL2
expression to be confined to somatic cells, both adjacent to germ cells and those located in the developing ovarian stroma. These cells
are the site of action of oocyte-derived activin signalling, but in vitro treatment of human fetal ovaries with activin failed to reveal any regulation
of FOXL2 transcription by this pathway. In summary, the expression of FOXL2 in somatic cells of the developing human ovary before and
during follicle formation supports a conserved and continuing role for this factor in somatic/germ cell interactions from the earliest stages of

human ovarian development.
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Introduction

Gonadal development is preceded by germ cell formation and
migration from the proximal epiblast of the embryo to the urogenital
ridge. During and following gonadal colonization, germ cells prolifer-
ate: while the majority subsequently undergo apoptosis, some go on
to form primordial follicles in conjunction with surrounding somatic
cells (Byskov, 1986). While appropriate germ cell development is
clearly essential for subsequent fertility, it is evident that the somatic
cells of the gonad are critical for the formation of the microenviron-
ment in which the germ cells can mature (McLaren, 1991; De Felici,
2000), known as the germ cell niche. These interactions between
germ and somatic cells regulate germ cell proliferation, meiotic entry
and arrest and formation of the primordial follicle complement, the
latter of which is required in women to ensure several decades of

fertile life as well as the endocrine function necessary for puberty,
ovulation, fertilization and establishment of pregnancy. This period
of development occurs over many weeks in the human fetal ovary
with considerable overlap such that the oogonial mitosis continues
beyond the onset of meiosis at 9 weeks post coitum (I weeks
gestation) (Gondos et al, 1986; Speed, 1988; Baker and Neal,
1974; Fulton et al., 2005; Bendsen et al., 2006). The less mature
germ cells are localized to the periphery of the ovary, with
progressively more mature germ cells located deeper in the tissue
(Anderson et al, 2007). This spatial and temporal arrangement
differs from the rodent where these stages occur in synchrony over
10—12 days, culminating in follicle formation in the immediate neonatal
period.

Premature ovarian failure (POF), defined as the onset of the meno-
pause before the age of 40 years, can broadly result from disorders of
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follicle formation or premature depletion. It is relatively common,
affecting 1% of women (Goswami and Conway, 2005). A range of
causes of POF have been identified, including genetic, metabolic, auto-
immune, infectious and iatrogenic mechanisms; however, many cases
are currently idiopathic. Genetic mechanisms include X chromosome
abnormalities and mutations in specific autosomal genes, both domi-
nant and recessive: among these dominant phenotypes is the gene
encoding the Forkhead box L2 protein (FOXL2). Mutations in
FOXL2 result in blepharophimosis/ptosis/epicanthus inversus syn-
drome (BPES). Type | BPES is associated with ovarian failure (although
males are fertile) and FOXL2 mutations producing truncated proteins.
Type Il BPES is a hypomorphic phenotype associated with the pro-
duction of abnormally long mutant proteins arising from expansions
in a polyalanine tract of unknown function (although correlation
between genotype and phenotype is imprecise) (Crisponi et dl.,
2001; De Baere et al., 2001, 2003). FOXL2 is a member of the
winged helix/forkhead transcription factor family, of which there are
39 known members in the human and mouse genomes with a
variety of functions acting as transcriptional activators and repressors
(Carlsson and Mahlapuu, 2002). Consistent with the phenotypes seen
in BPES, murine FoxIZ2 has been localized to Rathke’s pouch in the
developing pituitary, the developing eyelids and ovarian follicles (Cris-
poni et al., 2001; Cocquet et al., 2003). Expression in ovarian somatic
cells is detectable from early stages of ovarian development through to
adulthood (Cocquet et al., 2003), with expression from embryonic day
()13 in mice (Loffler et al., 2003; Pannetier et al., 2003).

Female mice that are homozygous for targeted disruptions of the
FoxI2 gene are infertile, due to a failure of granulosa cells to progress
from squamous to cuboidal, preventing the formation of primary fol-
licles (Schmidt et al., 2004; Uda et al., 2004). Defects in primordial fol-
licle formation are also evident (Uda et al., 2004) indicating an earlier
onset of critical FoxI2 action. Subsequent studies have indicated that
FoxI2 is necessary for gonadal differentiation and that it is one of
only a few genes identified as necessary for female gonadal specifica-
tion (Ottolenghi et al., 2005, 2007).

While FOXL2 is known to be expressed by granulosa cells of the
adult human ovary (Crisponi et al., 2001) and is necessary for
human ovarian function, it may also be involved in sex determination
and normal formation of primordial follicles. We have therefore
explored its expression in the developing human ovary up to the
time of primordial follicle formation.

Methods

Tissue samples

Human fetal gonads were obtained after medical termination of pregnancy
at a range of gestations (8— 9 weeks). Gestational age was determined by
ultrasound during pregnancy and, for second trimester specimens, con-
firmed by direct measurement of foot length. Termination of pregnancy
was induced by treatment with mifepristone (200 mg orally) followed by
misoprostol (200 mg per vaginum every 3 h). None of the terminations
was carried out for reasons of fetal abnormality, and all fetuses studied
appeared morphologically normal. Collection of fetal samples was
approved by the Lothian Research Ethics Committee, and written
consent was obtained. Gonads were dissected and snap frozen at
—80°C or fixed in Bouin’s fluid, transferred into 70% ethanol and pro-
cessed into paraffin using standard histological methods. Sex of first

trimester specimens was determined by detection of SRY in males by
PCR (Friel et al., 2002). A total of 25 fetal specimens were used in
these studies.

RNA extraction and cDNA synthesis

RNA extraction was performed using RNeasy Micro (Ist trimester speci-
mens, mouse ovaries) or Mini (2nd trimester specimens and cultures) Kits
(Qiagen, Crawley, UK), and concentration and purity of extracted RNA
were assessed using a NanoDrop 1000 (NanoDrop Products, Wilming-
ton, DE, USA). RNA was reverse transcribed with Expand Reverse Tran-
scriptase as described previously (Coutts et al., 2008; gestation analyses)
or using the Superscript Il First Strand Synthesis Supermix Kit (Invitrogen,
Paisley, UK; cultures).

Polymerase chain reaction

Polymerase chain reaction (PCR) was performed using ImmoMix Red
(Bioline, London, UK). For PCR amplification, 0.5 ul of each cDNA
sample was added to a 25 pl reaction containing | x ImmoMix Red
PCR Master Mix and 500 nM forward and reverse primers suitable for
amplifying both the human and mouse genes for FOXL2: F:
5-TACTCGTACGTGGCGCTCAT-3, R: 5-CTCGTTGAGGCTGAG
GTTGT-3' or Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(Hartley et al., 2002) as a control. PCR cycling conditions were as
follows: 10 min at 95°C; 30 cycles of 30s at 94°C, 30s at 53°C, and
30s at 72°C; 10 min at 72°C. Negative controls included RT- samples
and nuclease-free water. PCR products were run on a 2.5% agarose gel
with a 100 bp ladder (Promega, Southampton, UK) for confirmation of
predicted fragment size (FOXL2:162 bp; GAPDH: 212 bp) and stained
with GelRed.

Quantitative RT-PCR

Quantification of FOXL2 mRNA expression relative to that for GAPDH
(gestation analyses) or the housekeeping gene RPL32 (F:
5-CATCTCCTTCTCGGCATCA-3', R: 5-AACCCTGTTGTCAATGCC
TC-3'; cultures) was measured in duplicate on 1/10 dilutions of each
cDNA in 10 pl reactions using the Quantitect SYBRGreen Kit (Qiagen)
on the the Roche LightCycler 1.0 instrument (gestation analysis) or
PowerSYBR Master Mix on a ABI7900HTFast instrument (both Applied
Biosystems, Warrington, UK; cultures) each with appropriate 200 nM
forward and reverse primers. LightCycler runs consisted of a hot start
at 95°C for |5 min, followed by 45 cycles of 155 at 95°C, 20 s at 56°C
and 20 s at 72°C, with fluorescence detection at the end of each extension
step. ABI7900HT runs used the manufacturer’s default two-step protocol
in standard mode for 40 cycles. On both instruments, melt curve analysis
was also performed to confirm specific products and standard curves
(using increasing dilutions of second trimester ovary cDNA and P2
mouse cDNA) were performed to confirm efficient amplification of
each gene before analysis of all samples using the ACt method.

Immunofluorescence

Paraffin-embedded gonads were cut into 5 um sections and mounted
onto electrostatically charged slides (VWR, Leicestershire, UK). After
dewaxing and rehydration, antigen retrieval was performed by pressure
cooking for 5 min in 0.01 M sodium citrate (pH 6.0). Slides were incubated
in 3% hydrogen peroxide in methanol to quench endogenous peroxidases,
washed in phosphate-buffered saline (PBS), and blocked in PBS containing
5% Bovine Serum Albumin and 20% Normal Goat Serum (NGS, single
immunofluorescence) or 20% normal chicken serum (CS, dual staining).
Slides were washed in PBS and incubated with anti-FOXL2 primary anti-
body (1/500; provided by L. Crisponi; Uda et al., 2004) overnight at
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4°C. Slides were washed twice in PBS and incubated with secondary
antibody (goat anti-rabbit, 1/200 dilution, Dako, Cambridge, UK). Follow-
ing two washes in PBS, slides were incubated with Tyramide Cy3 Green
(Perkin Elmer Life Sciences, Beaconsfield, Bucks, UK, diluted 1:50) for
|0 min at room temperature in a covered slide tray then washed in PBS,
and counterstained with propidium iodide for [0 min. For co-localizing
FOXL2 and OCT4, after the tyramide step slides were washed in
0.05% PBS Tween (PBST), rinsed in PBS, incubated in EnVision Peroxidase
Block (Dako), washed in PBS and blocked again in 20% CS. OCT#4 anti-
body was applied overnight at 4°C. Following PBS washes, slides were
incubated with secondary antibody (chicken anti-rabbit for FOXL2,
chicken anti-goat for OCT4 (both Santa Cruz Biotechnology, Santa
Cruz, CA USA, 1/200 dilution), washed again in PBS then incubated in
Tyramide Cy3 Red (TSA Plus Cyanine 3 System, diluted 1:50) for 2 min
at room temperature in a covered slide tray. Slides were rinsed in PBST
then PBS and counterstained with DAPI (4’,6-diamidino-2-phenylindole,
Sigma). In each case, glass coverslips were mounted using PermaFluor
Aqueous Mounting Medium (Beckman Coulter, High Wycombe, UK),
and slides visualized and imaged using an LSM510 meta-Confocal micro-
scope (Carl Zeiss, Welwyn Garden City, Herts, UK). Negative controls
were achieved by substituting blocking serum for primary antibodies.

Culture of disaggregated ovaries with activin
and follistatin

Human fetal ovaries (17—19 weeks, n =5) were disaggregated and cul-
tured in serum-free medium exactly as described previously (Coutts
et al., 2008). Cultures were performed in the presence or absence of
10 ng/ml human recombinant activin A or 400 ng/ml human recombinant
follistatin (both R&D Systems, Abingdon, UK) for 4 or 24 h. After culture,
cells were collected and RNA extracted as described above.

Results

FOXL2 mRNA is present in fetal gonads
throughout development

RT—-PCR amplification of FOXL2 mRNA revealed it to be expressed
in both first and second trimester ovaries and testes (Fig. |A).
Expression in fetal testis was very low at all gestations however, and
consistently below the limit of quantification. In contrast, expression
in both first and second trimester ovary was readily quantifiable, and
showed higher expression in the second trimester than the first with
expression at 14—15 weeks being 2.9-fold that at 8—9 weeks (P <
0.05, Fig. 1B). There was no difference in expression between early
second trimester (14—15 weeks, germ cell proliferation and entry
into meiosis) and later specimens (18— 19 weeks: onset of primordial
follicle formation).

Expression of the paralogous gene Fox/2, in the embryonic and neo-
natal mouse ovary over the equivalent period of development was also
investigated. This demonstrated a progressive increase in Fox/2
expression between embryonic day 4.5 and post-natal day 2, with
an overall increase of 6.4-fold (P < 0.001, Fig. 1C).

FOXL2 is expressed by somatic cells
of the human fetal ovary
Immunofluorescent staining localized FOXL2 expression to somatic

cells of the human fetal ovary in both the first and second trimesters
(Fig. 2). Expression was predominantly nuclear, in keeping with

FOXL2 being a transcription factor. FOXL2 was notably present
in the somatic cell streams surrounding germ cell clusters
(Fig. 2A—C) but it was also expressed by somatic cells intermingled
with germ cells (Fig. 2B and C): this population will become the
pre-granulosa cells of primordial follicles. These cells also displayed
intense staining by immunofluorescence after primordial follicle
formation (Fig. 2D, 19 weeks gestation). Somatic cell specificity
was confirmed by the absence of colocalization of FOXL2 with
the germ cell-specific marker OCT4 (Fig. 2E, 9 weeks gestation; F,
9 weeks): OCT4 labels all germ cells in the first trimester and
less mature germ cells, located at the periphery of the ovary, in
the second trimester (Anderson et al., 2007). FOXL2 expression
was not detected in the fetal testis between 8 and 19 weeks ges-
tation (not shown).

Activin does not regulate FOXL2 expression

The somatic cells shown here to express FOXL2 are the same popu-
lation that are the site of action of activin within the second trimester
ovary (Coutts et al, 2008). The possible regulation of FOXL2
expression by activin was therefore investigated. Treatment of disag-
gregated ovarian tissue with activin A (10 ng/ml, n=15) for 4 and
24 h resulted in a small but non-significant reduction in expression
of FOXL2 (78 + 12% of control at 4 h, Fig. 3). Treatment with the
activin antagonist follistatin (400 ng/ml, n =15, 24 h) had no effect
on FOXL2 expression (103 + 14% of control).

Discussion

An increasing number of genes associated with POF are being ident-
ified (Goswami and Conway, 2005), largely based on laboratory
studies investigating the key regulatory factors and pathways in
ovarian development (Matzuk and Lamb, 2002; Pangas and Rajkovic,
2006). One such is the forkhead transcription factor FOXL2,
mutations in which are associated with POF and BPES (Crisponi
et al., 2001). Ovarian biopsies in BPES type | show unstimulated pri-
mordial follicles (‘resistant ovary’), or no follicles (Fraser et al., 1988;
Nicolino et al., 1995). Non-syndromic POF has also been described in
association with a polyalanine deletion in FOXL2 (Gersak et al.,
2004). Mouse models with targeted disruptions of the Fox/2 locus
have been generated (Schmidt et al., 2004; Uda et al., 2004), indicat-
ing a major defect in the activation of primordial follicles due to a
failure of granulosa cells to progress from squamous to cuboidal.
Although the ovaries of Fox/2 null mice have a normal oocyte and fol-
licle number in the neonatal period (Schmidt et al., 2004; Uda et al.,
2004), defects in primordial follicle formation are evident (Uda et al.,
2004). Insect FoxL has also been implicated in oocyte production
(Hansen et al., 2007). Here we have demonstrated the expression
of FOXL2 in the developing human ovary, by somatic but not germ
cells, throughout the stages of ovarian development from germ cell
proliferation in the first trimester through the onset of meiosis to pri-
mordial follicle formation.

Expression of FOXL2 mRNA was readily detectable in the earliest
gestation specimens investigated (8 weeks gestation, 6 post-ovulatory
weeks). It therefore remains to be determined how early FOXL2
expression commences in the human ovary, but it clearly
precedes the onset of meiosis. In the mouse, expression is first
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Figure | Detection and quantification of FOXL2 gene expression in the human fetal gonad. (A) Expression of FOXL2 and GAPDH mRNA in the
human fetal ovary and testis. Samples at indicated gestational age were analysed by RT—PCR. ‘+’ and ‘—'indicate the presence or absence of
reverse transcriptase during cDNA synthesis. M: 100 bp ladder, bl: water blank in PCR reaction. (B) Quantitative PCR measurement of FOXL2
expression in the human fetal ovary at gestations of 8—9 weeks, 14—15 and 18—19 weeks as indicated, n = 4-5 per group. (C) Quantitative
PCR measurement of FoxI2 expression in embryonic and post-natal mouse ovary at ages indicated, n = 3-5 per group. Both human and mouse
data were analysed by ANOVA with Duncan’s post hoc test using earliest gestation as comparator, *P < 0.05.

detected at el 3 (Loffler et al., 2003; Pannetier et al., 2003), coincident
with the onset of meiosis. Expression increased approximately 3-fold
between 8—9 and 14—15 weeks gestation, but there was no further
increase at weeks 18—19, at which stage primordial follicle formation
has started. This therefore differs from the progressive rise demon-
strated in the mouse, and also in other factors associated with primor-
dial follicle formation reported by ourselves and other groups (Bayne
et al., 2004; Fowler et al., 2009). An additional key role for FOXL2 in
earlier developmental processes than follicle formation has been
suggested (Ottolenghi et al., 2007; Garcia-Ortiz et al., 2009). This
was based on the demonstration that mice with targeted deletions
of FoxI2 show only subtle defects in primordial follicle formation,
whilst those doubly deficient for both Fox/2 and Wnt4 show a
severe ovarian phenotype at birth (i.e. prior to follicle formation) dis-
tinct from the Wnt4-only null (Ottolenghi et al., 2007). These
double-null ovaries showed evidence of sex reversal with tubule for-
mation and markedly increased expression of the male-specific gene
Sox9, normally expressed only in Sertoli cells. Recent data indicate
that Sox9 actively represses Fox|2 expression in Sertoli cells
(Wilhelm et al., 2009). The goat polled/intersex syndrome (PIS),
characterized by the absence of horns (polledness) and XX female
to male sex reversal (Vaiman et al., 1996), is also associated with

mutations in Fox/2 (Pailhoux et al., 2001). These and the present
data are consistent with a sex-determining role for Fox|2 in large
mammals as well as rodents.

A low level of expression of FOXL2 mRNA was detected in the
human testis in both the first and second trimester. This is in agree-
ment with detection of Fox/2 mRNA in the developing goat testis
and in the mouse testis between el3.5 and el5.5 (Pailhoux et dl.,
2001; Loffler et al., 2003). We were unable to detect FOXL2
protein in the testis by immunofluorescence, thus the low level of
expression may not be of functional importance, in keeping with the
preserved fertility of men with BPES and FOXL2 mutations (Crisponi
et al., 2001; De Baere et al., 2003).

Immunofluorescence demonstrated that expression of FOXL2 was
confined to the somatic cells of the developing ovary. FoxI2 has been
localized previously to the somatic cells of the neonatal and adult
rodent ovary (Cocquet et al, 2003; Loffler et al., 2003; Pisarska
et al., 2004), and to follicles of the adult human ovary (Crisponi
et al., 2001), thus this selective pattern of expression is conserved.
A search for downstream targets of FoxI2 identified that expression
of the steroidogenic acute regulatory (StaR) gene was directly repressed
by FoxI2 in the adult mouse ovary (Pisarska et al., 2004) but it is uncer-
tain whether this is involved in the primordial follicle activation seen in
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Figure 2 Immunolocalization of FOXL2 in the human fetal ovary. A and B, 14 weeks; C and D, 19 weeks. Positive immunofluorescence for FOXL2
is green, counterstain is propidium iodide (red), hence nuclear FOXL2 is yellow. Inset in (A) is negative control. (E, F) Double immunofluorescence for
FOXL2 (green) and OCT4 (red) in human fetal ovary showing absence of colocalization, with FOXL2 expressed by somatic cells and OCT4 by germ
cells. E, 9 weeks gestation; F, |9 weeks. Blue nuclear stain is DAPI. G: germ cell, S: somatic cell. Scale bars are 50 wm (A, applies to E and F) or [0 um

(B, C, D).

FoxI2-deficient mice. In this study, FOXL2 was found to be expressed
by both main populations of somatic cells within the developing ovary
in the second trimester. One population is intermingled with the germ
cells within germ cell cysts or nests: these are syncitial groups of

synchronously dividing germ cells, which subsequently break down
yielding individual germ cells that are either lost through apoptosis
or other pathways, or go on to form the oocytes within primordial
follicles. This population of somatic cells is therefore intimately
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Figure 3 Expression of FOXL2 in disaggregated human fetal ovary
(I17=19 weeks gestation) cultured with activin A (10 ng/ml) for 4
or 24 h as indicated, or with follistatin (400 ng/ml, 24 h) versus
untreated control cultures. Mean + SEM, n = 5.

associated with germ cells across a range of developmental stages,
regulation of which is essential for the formation of the primordial fol-
licle complement. The second population of somatic cells constitute
what have been termed the ‘cell streams’ (McNatty et al., 2000)
which make up a meshwork between and around the germ cell
nests, but are separated from them by a basement membrane
(Sawyer et al.,, 2002). This is incomplete at the periphery, where
these somatic cells intermingle with the less mature germ cells
which are at a similar stage of development to those in the first trime-
ster, on the basis of expression of the pluripotency-associated factor
OCT4 (Anderson et al., 2007). The widespread expression of
FOXL2 by both populations of somatic cells is consistent with multiple
roles during ovarian development, both related to sex determination
possibly in conjunction with WNT4 and in germ cell/somatic cell
interactions leading to primordial follicle formation.

There is emerging evidence that the transforming growth factor
TGFB family member activin A is a key regulator of ovarian develop-
ment. Activin BA is specifically expressed by more mature germ cells
within the human ovary in the second trimester (Martins da Silva et al.,
2004), acting on surrounding somatic cells (Coutts et al., 2008) which
are here shown to also be the site of expression of FOXL2. In both
humans (in vitro) and mice (in vivo), activin treatment of the fetal
ovary increases the number of germ cells and, in mice, of primordial
follicles (Martins da Silva et al., 2004; Bristol-Gould et al., 2006).
There are data from a number of developmental systems of inter-
actions between TGFB members and forkhead transcription factors,
including mutual regulation of expression (Zhou et al., 2002;
Sommer et al., 2006) and interaction with Smad signalling pathways
(Attisano et al., 2001), also demonstrated for FoxI2 (Ellsworth et al.,
2003; Blount et al., 2009). The present data suggest that activin
does not directly regulate FOXL2 expression in the human, but it
remains possible that FOXL2 and activin-regulated Smad signalling
interact to regulate target gene expression in fetal ovarian somatic
cells. Additionally it is possible that other oocyte-expressed
members of the TGFB family such as growth and differentiation
factor GDF9 or bone morphogenic protein BMPI5 which are

known to exert effects on ovarian somatic cells (Li et al., 2008)
might interact with FOXL2.

In conclusion, FOXL2 is expressed in the somatic cells of the human
ovary from early in development. Only very low levels of expression
were found in the testis. Expression precedes the onset of meiosis
and is consistent with multiple roles for FOXL2 in ovarian function,
possibly including sex determination as well as follicle growth.
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