
Growth Mixture Modeling of Academic Achievement in Children of
Varying Birth Weight Risk

Kimberly Andrews Espy,
Office of Research and the Department of Psychology, University of Nebraska-Lincoln

Hua Fang,
Office of Research and the Department of Psychology, University of Nebraska-Lincoln

David Charak,
Learning Point Associates

Nori Minich, and
Department of Pediatrics, Case Western Reserve University and Rainbow Babies & Children’s
Hospital, University Hospitals Case Medical Center

H. Gerry Taylor
Department of Pediatrics, Case Western Reserve University and Rainbow Babies & Children’s
Hospital, University Hospitals Case Medical Center

Abstract
The extremes of birth weight and preterm birth are known to result in a host of adverse outcomes,
yet studies to date largely have used cross-sectional designs and variable-centered methods to
understand long-term sequelae. Growth mixture modeling (GMM) that utilizes an integrated person-
and variable-centered approach was applied to identify latent classes of achievement from a cohort
of school-age children born at varying birth weights. GMM analyses revealed two latent achievement
classes for calculation, problem-solving, and decoding abilities. The classes differed substantively
and persistently in proficiency and in growth trajectories. Birth weight was a robust predictor of class
membership for the two mathematics achievement outcomes and a marginal predictor of class
membership for decoding. Neither visuospatial-motor skills nor environmental risk at study entry
added to class prediction for any of the achievement skills. Among children born preterm, neonatal
medical variables predicted class membership uniquely beyond birth weight. More generally, GMM
is useful in revealing coherence in the developmental patterns of academic achievement in children
of varying weight at birth, and is well suited to investigations of sources of heterogeneity.
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Modern advances in perinatal care (e.g., assisted ventilation techniques for neonates and
maternal antenatal steroid medications) have led to the survival of increasing numbers of
children who are born very preterm (< 32 weeks gestational age) and/or with very low birth
weight (VLBW, <1500 g, 3 lbs. 5 oz). The increased survival of prematurely born infants has
been most dramatic in children born at the lower extreme of birth weight (Hack & Faranoff,
1999). Children with VLBW have higher rates of cognitive and academic deficits, behavior
problems, and neurosensory and other health disorders than do term-born children of normal
birth weights (Taylor, Klein & Hack, 2000). These adverse sequelae are more common and
more severe in children of lower extreme of birth weight or gestational age (Klebanov, Brooks-
Gunn, & McCormick, 1994, Hack, Klein, & Taylor, 1996). Although modern neonatal care
has contributed to lower rate of intraventricular hemorrhage (Wilson-Costello et al., 2007),
increases in survival have not been accompanied by decreases in the rates of other major
neonatal and postnatal medical complications. In fact, any benefit of improved neonatal care
has been offset by the survival of higher risk, lower birth weight infants (Anderson & Doyle,
2003; Taylor, Klein, Drotar, Schluchter, & Hack, 2006).

Neuropsychological methods detect more subtle cognitive weaknesses or “hidden” handicaps
that accompany these early complications. Even early in life, the adverse developmental effects
of VLBW are evident, including lower overall mental and motor skills, reduced visual
recognition memory, and poorer language, executive, and attentional skills (Espy et al.,
2002; Goyen, Lui, & Woods, 1998; Landry, Smith, Miller-Loncar, & Swank, 1997; Sullivan
& McGrath, 2003;). A substantial body of literature documents neuropsychological deficits
during the preschool years and early primary school that persists throughout the school-age
years (Anderson et al., 2004; Botting, Powls, Cooke, & Marlow, 1998; Friske & White, 1994;
Luoma, Herrgard, Martinkainen, & Ahonen, 1998; Msall, Buck, Rogers & Catanzaro, 1992;
Saigal, 2000; Taylor, Minich, Bangert, Filipek, & Hack, 2004a; Volke & Meyer, 1999).
Deficits in non-verbal skills, perceptual-motor abilities, executive control, and attention cannot
be attributed entirely to overall mental deficiency or neurosensory handicaps (Anderson et al.,
2004; Hack et al., 1992; Taylor, Klein, Minich, & Hack, 2000). Furthermore, these children
have more learning and social-behavioral problems than term-born children (Bhutta, Cleves,
Casey, Cradock & Anand, 2002; Hille et al., 2001; Klein, Hack & Breslau, 1989), including
lower adaptive behavior skills and social competence Saigal, Pinelli, Hoult, Kim & Boyle,
2003); more internalizing and externalizing symptomatology (Botting et al., 1997; Breslau &
Chilcoat, 2000; Szatmari, Saigal, Rosenbaum, Campbell & King, 1990; Whitaker et al.,
1997); and higher rates of learning disabilities. Mathematics disabilities are particularly
prominent (Anderson & Doyle, 2003; Espy et al., 2004; Litt, Taylor, Klein, & Hack, 2005;
Taylor, Hack, Klein, & Schatschneider, 1995). Children with VLBW also have lower levels
of academic achievement and higher rates of grade repetition and special education than term-
born controls (Klebanov, Brooks-Gunn & McCormick, 1994; Saigal, 2000; Taylor et al.,
2000).

Neurobiological risks, such as the degree of low birth weight, abnormalities on neonatal cranial
ultrasounds, chronic lung disease, septicemia, and composite biological risk indices account
for substantial variability in outcome (Hack et al., 1992; Hack, Wilson-Costello, Friedman,
Taylor, Schluchter, & Fanaroff, 2000; Koller, Lawson, Rose, Wallace & McCarton, 1997;
Landry, Fletcher, Denson & Chapieski, 1993; Liaw & Brooks-Gunn, 1993; McGrath &
Sullivan, 2002; Taylor, Klein, Schatschneider, & Hack, 1998; Taylor et al., 2006) Adverse
outcomes are observed even in children without major neonatal complications, making it
challenging to identify those at risk (Espy et al., 2002; Taylor et al., 2000; Taylor et al.,
2006). Environmental risks, including sociodemographic characteristics and financial
disadvantage, as well as more "proximal" family influences such as family functioning,
negative life events, and maternal psychological distress also are related to outcome
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(Bendersky & Lewis, 1995; Breslau, 1995; Breslau & Chilcoat, 2000; Taylor et al., 1998;
2006).

Adding to these complexities is the differences in outcome that unfold across development.
Because cross-sectional designs are used most often in outcome studies, it is difficult to
determine whether the pattern of observed weaknesses is stable over time, resolves with age,
or worsens with development as the brain areas most compromised by early insult become
more engaged for skill acquisition and maintenance. In some studies, a relatively stable pattern
of weaknesses has been observed across school age into adolescence (Breslau, Chilcoat, Susser,
Matte, Liang & Peterson, 2001; Powls, Botting, Cooke, & Marlow, 1995; Rickards, Ryan, &
Kitchen, 1988). Other results suggest an exacerbation of impairment into adolescence (Botting,
Powls, Cooke & Marlow, 1998; Cohen, Beckwith, Parmelee, Sigman, Asarnow & Espinosa,
1996; O’Callaghan et al., 1996; Saigal, Hoult, Streiner, Stoskopf, & Rosenbaum, 2000; Taylor,
Klein, Minich, & Hack, 2000; Zelkowitz, Papageorgiou, Zelazo, & Weiss, 1995). Finally, in
one study, initial reductions on a test of vocabulary in young children with VLBW relative to
term-born peers diminished across development, with the two groups obtaining similar scores
by at age 8 years (Ment et al., 2003).

Although weaknesses in visuo-spatial-motor abilities, attention, executive control, memory,
and academic achievement are commonly identified in studies of children born very early and
at VLBW, these investigations have used “variable-centered” approaches (Muthen & Muthen,
2000), where the goal is to relate pre-established risk factors to outcomes of interest. Studies
exemplifying this approach are ones that examine neuropsychological proficiencies as a
function of birth weight, neonatal complications, and environmental disadvantage. In contrast,
“person-centered” approaches such as growth mixture modeling (GMM), although also
incorporating the variable-centered approach, use cluster or latent class analyses. These
approaches address questions on relations among individuals, where the interest is to subgroup
persons with similar outcomes and understand how subgroups differ from one another. Person-
centered approaches are particularly well suited to study of outcomes of VLBW because
individuals classified according to birth weight differ substantially in other risk factors, such
as perinatal complications. This approach may also be ideal for teasing apart developmental
trajectories associated with low base rate phenomena, such as the specific medical conditions
that can accompany VLBW.

Fortunately, recent statistical advances have resulted in the application of both variable- and
person-centered techniques to modeling of growth for longitudinally collected data.
Conventional growth modeling (CGM) is a variable-centered approach that can be conducted
using structural equations models (SEM), mixed linear models, or hierarchical linear (HLM)
models, which are known generally as multi-level models (Hedeker & Gibbons, 1994;
McCulloch & Searle, 2001; Muthen, 2004; Raudenbush, 2001; Raudenbush & Bryk, 2002;
Singer & Willett, 2003; Skrondal & Rabe-Hesketh, 2004). Although CGM is accomplished
somewhat differently in SEM and HLM methods, the results are identical when the same
growth parameters are modeled. These approaches now are applied routinely to address
developmental questions, including changes in brain responses to auditory stimuli across early
development (Espy, Molfese, Molfese, & Modglin, 2004) and variation in longitudinal
neuropsychological outcomes in children with VLBW (Taylor, Klein, Minich & Hack, 2004).

The major objective of the present study was to apply person-centered growth modeling
techniques to better understand individual variation in the development of academic skills in
children with VLBW. Learning difficulties at school age increase risks for long-term problems
in behavior adjustment and limited educational and vocational attainments (Ewing-Cobbs et
al., 2004; Klebanov, Brooks-Gunn, & McCormick, 1994). Identifying different patterns of
growth in academic achievement during the school-age years and risk factors associated with
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these patterns is thus critical to determine which children may need the most extensive early
interventions to promote skill development. Previous studies have documented persistent
deficits in academic skills (Hack, 2005), but it is unclear if these deficits are stable over time
or if the gap in skills between children with VLBW and their term-born peers widens with age.
Several longitudinal studies suggest relatively constant deficits in academic achievement
among VLBW cohorts across the school-age years (Breslau, Paneth, & Lucia, 2004; Schneider,
Wolke, Schlagmuller, & Meyer, 2004), while others suggest that these deficits may become
more pronounced with age (Saigal et al., 2000; Taylor, Klein, Minich, & Hack, 2000). It is also
important to investigate factors other than VLBW that may contribute to risks for poor
achievement and to determine whether growth in achievement is affected more adversely in
some children than in others.

In previous reports on outcomes for the sample of children followed in the present study, Taylor
and colleagues (Taylor et al., 1995; Taylor et al., 2000) assessed achievement in two groups
of children varying in the degree of VLBW (<750 g and 750–1499 g) and term-born controls
at the mean ages of 7 and 11 years. Results revealed lower scores for the <750 g group compared
with term controls on reading and mathematics at both follow-up assessments. Taylor et al.
(2000) also observed that the <750 g group made less positive gains in reading across the two
assessments than the term group. However, changes in achievement across subsequent follow-
ups at later ages were not examined in these earlier reports. Multiple assessments of
achievement as part of this larger study provided a unique opportunity to examine longer-term
achievement outcomes into adolescence. Application of both variable- and person-centered
GMM methods (Muthen & Muthen, 2000) also enabled better characterization of differences
in growth of academic skills with age and the correlates of these individual differences.

Specific aims were to 1) empirically characterize the developmental trajectories of differing
academic skills across childhood into adolescence, and 2) determine whether birth weight, non-
verbal neuropsychological abilities and environmental risk measured at early school age
predicted different patterns of academic proficiencies. Based on past literature, we anticipated
that birth weight would be a robust predictor of class membership, and that non-verbal
neuropsychological skills and environmental risk in early childhood would contribute
substantively to the prediction of class membership (Taylor et al., 1995). Finally, we
hypothesized that among children with VLBW, neonatal medical conditions would predict
class membership beyond birth weight alone (Taylor et al., 1998).

Methods
Participants

The total sample consisted of 196 children, 67 children born at term (>36 weeks) of normal
birth weight (> 2500 g) and 129 children born preterm and VLBW at < 1499 g. Most of the
children were recruited into the study at early school age (Hack et al., 1996), with a few
additional children recruited at the second follow-up assessment to maximize sample size for
study of developmental change (Taylor et al., 2004). Because there are fewer children born at
the lowest end of the birth weight spectrum, children <750 g (n = 64) were the sampled “target”
participant, representing 93% of the survivors in this range of birth weight born from July 1,
1982 through December 31, 1986 in the 6-county region surrounding Cleveland, Ohio.
Children in the 750–1499 g (n = 65) and term-born groups were individually matched with a
<750 g child based on birth date (within 3 months), race, and either the same hospital of birth
(750–1499 g children) or same school (term children).

Table 1 presents the sample background and perinatal characteristics. The number of females
and males were approximately equal between term and higher (750–1499 g) and lower (< 750
g) weight children with VLBW, χ2 (2, N=196) =0.066, p > .97. The number of children of
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minority race also did not differ by birth weight group, χ2 (2, N=196) = 0.092, p > .95. Finally,
birth weight groups did not differ in socioeconomic status (SES), F (2, 175) = 0.25, p > .78,
calculated using the Hollingshead index (Hollingshead, 1957) composite of parent education
and occupation (reversed scored so that higher score reflected higher SES) and then normalized
within the sample. Not surprisingly, the birth weight groups differed in length of
hospitalization, F (1,126) = 43.28, p < .001, days on the ventilator, F (1,126) = 32.10, p < .
001, and number of children with chronic lung disease, χ2 (1, N = 128) =19.14, p < .001,
septicemia χ2 (1, N =128) = 5.16, p = .024, and apnea χ2 (1, N = 129) = 5.44, p = .023. Further
sample information is provided in Taylor, Minich, Klein, and Hack (2004b).

A sequential panel design (Mehta & West, 2000; Muthén, Khoo, Francis, & Boscardin,
2003; Nesselroade & Baltes, 1979; Tony, Ohlin & Farrington, 1991) was used, where
participants were enrolled in early elementary school, around age 7 years (M = 6.87 years,
SD = 0.93; Range 5.31 – 9.34 years). Children were assessed approximately 4 years after the
initial visit and annually for 4 subsequent assessments. Given the variability in age at study
entry, the respective follow-up intervals spanned from ages 10 through 16 years, shown in
Table 2. Age-related change in children’s academic achievement scores was modeled because
the interest is in growth across development, not change between visits. Because variability in
the age at entry was large relative to the other ages, the difference in the actual age at enrollment
from age 7 was used as a covariate for this assessment only. Because of this sampling,
subsequent assessment schedule, and some attrition (sample retention = 92%), there were a
different number of assessments at each age period, resulting in an unbalanced design. At each
age, however, the mean ages and sample sizes were approximately equal across the three birth
weight groups (see Table 2).

Outcome Measures
Three subtests from the Woodcock-Johnson Psycho-Educational Battery-Revised (WJ-R)
Tests of Achievement (Woodcock & Johnson, 1989) were administered to measure academic
achievement outcome. Calculation requires the examinee to perform mathematic operations
that vary in difficulty. In Applied Problems, examinees analyze and solve practical
mathematics problems. Letter-Word Identification assesses reading decoding by requiring
examinees to orally read a list of single words of increasing difficulty. These subtests were
chosen for their demonstrated high reliability and validity and because the resultant W scores
are Rasch model-derived values that represent equal-interval measurement both within and
across individuals, where any given difference along the scale has the same implication for
performance at any level or age, a desirable property for growth modeling. For simplicity, we
refer to scores on Calculation, Applied Problems, and Letter-Word Identification as
Calculation, Problem-solving, and Decoding, respectively.

Predictors
The central predictor was birth weight (BWT), a continuous variable measured in grams. At
the initial evaluation at study entry, children were administered a neuropsychological battery
that included the tetrad short-form of the Kaufman Assessment Battery for Children (K-ABC,
Kaufman & Applegate, 1988), as well as tests of picture naming, verbal short-term memory
and verbal comprehension, perceptual-motor skills, and attention and executive function
(Taylor, Hack, Klein, & Schatschneider, 1995). A principal axis factor analysis with varimax
rotation was conducted on age-standardized scores, as described in Taylor, Burant, Holding,
Klein, and Hack (2002), to reduce the number of predictors and to identify distinct cognitive
constructs. Tests with low primary loadings or high cross-loadings were excluded after the
initial analysis. The final factor analysis yielded two factors accounting for 63% of the variance
in scores. Factor 1 had an Eigen value of 4.46 and explained 50% of the variance in scores,
and Factor 2 had an Eigen value of 1.21 and explained 13% of the variance in scores. Tests
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loading on Factor 1, referred to as the visuospatial/perceptual-motor factor (VSPM), included
the Developmental Test of Visual-Motor Integration (Beery, 1989), the short-form of the Test
of Motor Proficiency (Bruininks & Bruininks-Oseretsky, 1978), the Purdue Pegboard
(Gardner, 1979), the Computerized Test of Attention (Murphy-Berman & Wright, 1987) and
Triangles and Matrix Analogies subtests of the K-ABC. Tests loading on Factor 2, referred to
as the verbal memory factor, included the Pseudoword Repetition Test (Taylor, Lean, &
Schwartz, 1989), Recalling Sentences subtest of the Clinical Evaluation of Language
Fundamentals-Revised (Semel, Wiig, Secord, & Sabers, 1987), and Word Order subtest of the
K-ABC. Factor composites were computed by averaging the age-adjusted standard scores of
the constituent tests. Because VSPM and the verbal memory factor were correlated
significantly (ρ = 0.32, p < .001) and VSPM accounted for the greatest variance, only VSPM
was retained as a predictor of class membership in the subsequent analyses.

To assess the contribution of the child’s social environment to class membership, the Life
Stressors and Social Resources Inventory-Adult Form (LISRES-A; Moos & Moos, 1994)
administered at study entry was used as an index of proximal life stressors and social resources
(Taylor et al., 2004b). A summary score of environmental risk (ER) was created from the mean
of the T-scores for six stressors scales (health, work, spouse, extended family, friends, and
negative life events). Because the daily care for a preterm child can contribute to perceived
family stress, items pertinent to the child were removed in computing the summary score for
all participants. The ER score was used as the predictor of class membership, where higher
scores reflected more stressful environments. There was no difference in the ER score among
the birth weight groups, F (2, 193) = 0.68, p = .51.

Several neonatal medical variables were selected as predictors of class membership: two
continuously distributed variables, Length of Hospital (in days) and Days of Ventilation, and
four categorical variables, Apnea, Chronic Lung Disease, Jaundice, and Necrotizing
Enterocolitis (coded 1 for children who experienced the medical condition and 0 for those who
did not).

Growth Mixture Modeling (GMM)
Like the conventional HLM and SEM approaches to growth modeling, GMM can be used to
examine a mean growth trajectory and individual variation within a population, considering
both the person-centered and variable-centered approaches (Muthen & Muthen, 2000). Unlike
conventional growth models, however, GMM utilizes a “mix” of latent continuous and
categorical variables, and is used to identify meaningful subpopulations within the larger
population to examine the mean trajectories and individual variation across and within the
subpopulations. Importantly, these subpopulations are not known a priori, but rather are
determined empirically, termed “latent classes.” Individuals are assigned to subpopulations or
latent classes based on their posterior probabilities using multinomial logistic regression
(Muthén & Shedden, 1999). Latent class analysis (Nagin, 1999; Nagin & Tremblay, 2001) is
similar to GMM in terms of identifying the latent classes and modeling the growth trajectory
across classes, but GMM has the added advantage of allowing for within-class variation of
variable-centered methods (Nagin & Tremblay, 2005; Muthén, 2006). GMM is the “second
generation” of SEM-parameterized growth models, which fully incorporates the multilevel
approach to understand nested, individual variation (Muthén, 2001a, 2001b, 2002). GMM has
the same advantages as CGM in accommodating missing data, and thus can be applied to
unbalanced designs.

GMM starts from conventional growth models to identify the growth functions (e.g., linear or
quadratic). In GMM, the CGM assumption that all participants are drawn from a single
population with common population parameters (e.g., intercepts, slopes, or acceleration) then
is relaxed. GMM uses latent categorical variables to allow for the parameter variation within
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and across unobserved latent classes. Figure 1 depicts a general diagram of the GMM as applied
to our data. Double-arrowed curved lines represent growth factor covariance and single-
arrowed lines represent estimated path values. Each growth factor in the respective circles has
indicators y1 to y8 representing reading or math scores at the 8 ages (7, 10, 11, 12, 13, 14, 15,
and 16 years), respectively. Residuals are represented by ε1–8 in squares, where Age7 in the
square represents the age covariate for the initial assessment y1. The three predictors of interest
BWT, VSPM, and ER, are shown in the lower left box. The categorical latent growth trajectory
variable c is below the black line, representing the unobservable latent “class” of children, who
are determined empirically to represent a coherent subgroup based on the pattern of variation
in their growth trajectory.

Using CGM, unconditional models with only the growth coefficients (linear and quadratic),
no predictors or covariates, and no latent classes were run first for Calculation, Problem-
solving, and Decoding across age. In these and all subsequent models, age 13 was chosen as
the centering point for greater measurement precision, as the majority (72%) of participants
had completed assessments at this age. By setting the intercept at the age of 13, the intercept
is the estimated subtest performance at age 13 and the variance estimate also reflects the value
at age 13. Because a quadratic model best fit the data, the slope parameter is the estimated
increase in achievement per unit of age at age 13. Finally, the quadratic parameter is the
estimated change in slope across the observation period, and identifies whether growth is
“convex (troughed)” or “concave (peaked)”. The positive sign of the quadratic parameter
indicates accelerating growth and the negative sign indicates deceleration. For achievement
outcomes, a “concave” pattern with a peak is expected as children’s skills grow towards a
maximum value. Using calculus, the age at which the quadratic function reaches its peak can
be calculated by [13- ½(αs/αq)] where αs and αq represent the estimates for slope and quadratic
parameters, although as with any polynomial, the timing of the peak may not fall within the
range of the data. In general, these CGM models examine the latent growth factors and growth
trajectory shape drawn from a single population, where individual trajectories were allowed
to vary around a single population mean trajectory.

In GMM, the heterogeneity of population growth trajectories is captured by the latent
categorical variable c with K classes, where the continuous latent growth variables for
individuals in the kth class are related to c and the observed predictors x. Here, the mixture
models contain three growth factor means in the kth class (intercept, slope, acceleration), and
the 3 fixed-effect coefficients (BWT, VSPM, and ER) of xi on the 3 latent growth factors. A
multinomial logistic regression model is applied in GMM to describe the relation between
predictors and latent trajectory classes, where the probability of being in the kth class for child
i is conditional on the predictors.

Model Estimation and Assessment
In this study, all models were estimated by maximum likelihood using the expectation
maximization algorithm (Dempster, Laird & Rubin, 1977; Muthén & Shedden, 1999; Muthén
& Muthén, 2001, 2006). This method is appropriate for analysis of data that are collected under
conditions of “planned missingness” and are considered missing at random (Graham, Taylor,
& Cumsille, 2001; Little & Rubin, 2002; Schafer & Graham, 2002), as was the case for this
study. The maximum likelihood estimator with robust standard errors and χ2 likelihood ratio
test allows missing data that is consistent with missing at random assumption, as well as non-
normal and non-independence outcomes (Yuan & Bentler, 2000). Local maxima are
encountered often in GMM, especially with an increasing number of latent classes (Muthén,
2004; Muthén & Muthén, 2006). For K ≥ 2, this study used 100 – 10,000 random sets of starting
values at the initial stage and 5–20 optimizations at the final stage to avoid local maxima.
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To determine the CGM trajectory shape, the χ2 test, based on maximum log-likelihood ratio
(MLR) and scaling correction factors (Satorra, 2000), was used to compare relative fit among
models that included linear and quadratic growth functions, respectively. The selected latent
class model then was adopted in subsequent models examining the effects of predictors of class
membership. The a priori models were tested by holding parameters invariant across classes,
fixing or freeing parameters within and across classes, and then adding predictors. The χ2

likelihood ratio test is not appropriate for comparing models with different numbers of classes.
An integrated approach was adopted here, where the number of latent classes was determined
by the overall evaluation of the four criteria: (a) Bayesian Information Criteria (BIC; the smaller
information criterion indicates better fit), (b) entropy, (c) bootstrap likelihood ratio test (BLRT)
and (d) graphs of estimated class mean trajectories with and without covariates. BIC (Schwartz,
1978) was selected because it best identifies the correct number of classes in GMM using the
common information criteria (Nylund, Asparouhov & Muthén, 2006). Entropy (Ek) was used
to measure the classification quality based on participant’s posterior class membership
probabilities (Nagin, 1999; Ramaswamy et al., 1993), where entropy values closer to 1 indicate
clear classification. BLRT uses bootstrap samples to estimate the distribution of the log
likelihood difference test statistic and was regarded as a powerful indication of the correct
number of clusters (Nylund, Asparouhov & Muthén, 2006). A low p-value of BLRT (e.g., p
< .05) indicates the rejection of k -1 classes in favor of k classes. Because the prediction of
class membership is a key feature of GMM that permits testing empirically derived hypotheses,
Muthén (2004) has recommended that predictors be included in models to help determine the
number of classes. Therefore, graphs of class mean trajectories were plotted with and without
predictors to examine whether the latent classes were substantive. For example, the kth class
mean trajectory may be so close to the (k -1)th class as to render the distinction between the
two latent classes a trivial one.

Results
The longitudinal achievement data was analyzed to address our objectives through the
following steps: (1) establish the trajectory shape, (2) identify the latent classes, and (3)
examine the prediction of class membership from the predictors of particular interest. To
establish the trajectory shape, unconditional linear and quadratic functions were fit to the data
using conventional growth models, respectively. The χ2 difference test based on MLR and
scaling factors indicated a quadratic growth curve model best fit the data for Calculation, χ2
(4) = 55.54, p < .001, Problem-solving, χ2 (4) =322.30, p < .001, and Decoding, χ2 (4) = 337.46,
p < .001. The quadratic term was significant and negative in sign, indicating that with advancing
age, the rate of linear growth was progressively smaller for the three achievement scores:
Calculation aq = −1.18, p < .001, Problem-solving aq = −0.76, p < .001, Decoding aq = −1.28,
p < .001 (see Table 3). Figure 2 displays these quadratic growth curves for the entire sample,
and Table 3 contains the growth statistics.

For GMM, the unconditional mixture models were fit to the achievement data by assuming
that the three continuous latent growth coefficients were invariant within classes (Muthen &
Muthen, 2007; Nagin, 1999). Because the variances of intercepts and residuals differed across
classes based on the χ2 likelihood ratio tests for the model of the same classes, these terms were
allowed subsequently to vary within classes. As initial exploratory modeling showed that the
GMM with more than 3 classes (k > 3) contributed trivially to class identification, the models
with k > 3 were not investigated further and only models with 2- and 3-classes were studied
in comparison to the 1-class conventional growth model.
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Class identification
To compare the models with different numbers of classes, the integrated criteria were applied
initially for each of the achievement models without the inclusion of any predictors, shown in
Table 3. For the comparison of 1-class CGM and 2-class models, the smaller BIC and
significant p-value of the BLRT test indicated that the 2-class mixture model better fit the data
(see Table 3). The contrast of 2- and 3-class unconditional models showed some support for
selection of the 3-class model for Calculation. The BIC was smaller for the 3-class model than
for the 2-class model (BIC = 6997.87 vs.7018.31). The LMR likelihood ratio test for the 3-
class model also indicated better fit, and the entropy value showed just slightly better
classification quality (Ek = .94 vs. Ek = .93). However, examining the plots of estimated mean
trajectories raised concern about the utility of the 3-class model for Calculation, as the two
higher mean class trajectories in the 3-class model overlapped nearly entirely, indicating that
there were not substantive differences in the Calculation trajectories between classes. The 2-
class model was thus adopted for Calculation based on the overall evaluation of the application
of the four criteria. For the Problem-solving models, all criteria indicated the 2-class solution
was preferred. For Decoding, entropy and BLRT suggested a 3-class solution, whereas BIC
and the plots of the estimated mean trajectories pointed to a 2-class model as best-fitting.

To confirm the selection of the 2-class model, the predictors then were included in the
respective achievement GMMs. With the inclusion of BWT, VSPM, and ER, all fit criteria
indicated that the 2-class solution better described the observed Calculation, Problem-solving,
and Decoding achievement data, also depicted in Table 3. The BIC was smaller for the
conditional 2-class model (BIC = 6291.26) than for the 3-class model (BIC = 6350.53). The
BLRT also favored the 2-class model, and the entropy value of the conditional 2-class model
(Ek = 0.85) was substantially larger than that for the conditional 3-class model (Ek = 0.76).
Table 4 shows the average probabilities of being in a class given a 2-class solution. In support
of this model, values on the diagonal were close to 1 and those on the off-diagonal were low
and close to 0 (Muthen & Muthen, 2007). As expected based on the unconditional results, the
conditional 2-class Calculation model fit better than the conditional 1-class CGM. A final
consideration in selecting the 2-class model for Calculation was that the plots for the two higher
achieving classes were closely adjacent to each other in the 3-class conditional model. Because
these same criteria indicated a better fit of the 2-class model for Problem-solving and Decoding,
the 2-class model also was retained for these achievement outcomes.

Figure 3 displays the expected mean trajectory for Calculation, Problem-solving, and Decoding
for the 2-class model. The mean trajectories of the two identified latent classes (termed
“Average” and “Low”) are shown separately. The growth parameter estimates for these two
classes for Calculation, Problem-solving, and Decoding are shown in Table 5. For Calculation,
the Average class scored more than 60 W score points higher (intercept α0) than the Low class
at age 13 years and their linear change rate (slope αs) also was faster at this age. Acceleration
(αq) for both groups was negative in sign, meaning that the rate of linear change was
progressively slowing across age, with a larger magnitude of deceleration for the Average class
than for the Low class. The estimated peak of the developmental trajectory for the Average
class was at age of 15.6 years compared with an estimated peak at 17.4 years for the Low class,
although the gap in achievement between Low and Average classes persisted across age, as
evident in Figure 2. Furthermore, there was significant variation in the Calculation intercepts
at age 13 for both the Average and Low classes, as well as significant variation in slopes at age
13 for the Average class. Because variation in acceleration was non-significant for both classes,
the quadratic parameters were fixed to 0. Participants in the Average class performed better
on Calculation than the Low class at enrollment, and this performance difference between
classes was evident at all ages. The Average class, though, showed faster skill growth early in
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the developmental period and greater deceleration across age, which resulted in obtaining the
maximal level of Calculation achievement at a younger age relative to those in the Low class.

The plots and growth parameter estimates for Problem-solving was similar to those for
Calculation, with a higher intercept and faster linear rate of change at age 13 for the Average
class compared to the Low class. Because growth deceleration also was faster for the Average
class, the estimated maximal Problem-solving score was at age 16.1 years for the Average class
and at 17.0 years for the Low class. The pattern of individual differences in variances of the
growth parameters for the two latent classes was identical to that for Calculation. Overall, for
Problem-solving, participants in the Average class performed better than those in the Low class
across age. Similar to Calculation, children identified in the Average class showed faster skill
growth early in the developmental period, although the magnitude of the difference in early
growth between Average and Low classes was smaller than for Calculation (estimated
Calculation growth was 22.11 for the Average class and 14.37 for the Low class at age 7, for
Problem-solving the respective values for these classes were 14.55 and 11.02). With greater
growth deceleration, the Average class obtained the maximal Problem-solving achievement at
a younger age compared to the Low class.

For Decoding, the two latent classes differed in all three growth parameters. The Average class
was estimated to score more than 50 W points higher than the Low class at age 13 years. In
contrast to the two mathematics scores, the linear rate of change for Decoding at age 13 was
higher for the Low relative to the Average class. Similar to the two mathematics scores, both
latent classes showed deceleration in growth, with a faster rate of deceleration for the Average
class. The Average class was estimated to reach maximal Decoding score at 15.4 years, whereas
the Low class was estimated to reach its peak at 17.8 years, again with a persistent gap in
achievement scores noted across the observation period. The variance of the intercept for the
Low class was relatively larger than that for the Average class, whereas the variance for the
slope and quadratic parameters did not differ from 0 and thus was fixed. Similar to the two
mathematics outcomes, participants in the Average class performed better on Decoding than
those in the Low class across age, showed faster skill growth early in the developmental period,
and greater growth deceleration, again resulting in a higher maximal level of Decoding
achievement at a younger age compared to the Low class. The early, age-related difference
between the Low and Average classes in linear growth in Decoding were similar in magnitude
to Calculation (at age 7, estimated growth in Decoding was 23.55 for the Average class and
17.24 for the Low class)..

Prediction of Class Membership
To characterize the relation between class membership and the predictors of interest, the
categorical latent class variable, c, was regressed on BWT, VSPM, and ER simultaneously,
which revealed the effects of each predictor controlling for the influences of the others. For
Calculation and Problem-solving, BWT was the only significant predictor of class membership
(γBWT_calculation = 0.001, p = 0.014; γBWT_problem-solving = 0.001, p = 0.031). For Decoding,
the effect of BWT on class membership was marginal (γBWT_decoding = 0.001, p = 0.086). As
BWT is continuously distributed, these coefficients indicate that the log odds of being in the
Average relative to the Low class increases by .001 for each unit increase in BWT. The
probability plots of BWT by the latent classes for each achievement outcome are displayed in
Figure 3. For Calculation, the probability of being classified into the Average achievement
group increased from 0.46 to 0.54 as BWT increased from 439 to 750 grams; from 0.54 to 0.71
as BWT increased from 750 to 1499 grams; and from 0.71 to 0.99 as BWT increased over 1500
g. The probability plot indicates that children born at less than 600 grams had a greater
probability of being assigned to the Low class relative to the Average for Calculation (i.e.,
where the Low and Average class probability plots cross, as the probability of Low class
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assignment > 0.50). For Problem-solving, the probability of being classified into the Average
group increased from .54 to 0.62 as BWT increased from 439 to 750 grams; from 0.62 to 0.77
as BWT increased from 750 to 1499 grams; and from 0.77 to 0.99 as BWT increased beyond
1500 g. In contrast to the pattern evident for Calculation, children across the BWT spectrum
were more likely to be identified as average-achieving for Problem-solving. For Decoding, the
coefficient was not significant; therefore, the probability of identification in the Average class
relative to the Low was a constant (0.63) for children irrespective of BWT. Neither VSPM nor
ER predicted class membership beyond BWT for Calculation (γvspm_calculation = 0.279, p =
0.258; γER_calculation = 0.05, p = 0.325), Problem-solving (γvspm_problem-solving = 0.279, p =
0.258; γES_problem-solving = 0.05, p = 0.325), or Decoding (γvspm_decoding = 0.236, p = 0.492;
γES_decoding = 0.067, p = 0.195).

The final step in analysis was to examine the impact of the neonatal medical variables on group
membership after controlling for BWT. Because these conditions were coded only for children
with VLBW, the analyses were conducted without inclusion of term children, although the
class membership derived from the full sample GMM analyses was utilized. Days on
Ventilation significantly predicted class membership for all three achievement outcomes
(γvent_calculation = 0.015, p = 0.048, γvent_problem-solving = 0.015, p = 0.034, and γvent_decoding =
0.017, p = 0.028). Children with VLBW who required more ventilation days were more likely
to be classified in the Low class relative to the Average class on Calculation, Problem-solving
and Decoding, as the log odds increases by 0.015–0.017 for a unit increase in Day on
Ventilation. The probability plots of the significant neonatal variables by latent classes for the
three achievement outcomes are shown in Figure 4. The plot for Calculation demonstrates that
children receiving ventilation for 34 days or more (again where the Low and Average class
probabilities cross and the probability of Low class assignment > 0.50), were more likely to
be classified into the Low relative to Average class. Similarly, children who received 43 or
more days of ventilation were more likely to be in the Low relative to Average class on
Problem-solving; and those who received 70 or more days of ventilation were more likely to
be in the Low compared to Average class on Decoding.

Controlling for BWT, Length of Hospitalization predicted class membership for the
Calculation and Decoding variables, (γhosp_calculation = 0.012, p = 0.040, γhosp_decoding = 0.013,
p = 0.023). Specifically, the respective odds ratio of being classified in the Low versus Average
class for Calculation and Decoding was 1.012 and 1.013 for a unit (i.e. one day) increase in
hospitalization. For Calculation, children who were hospitalized for 101 days or more were
more likely to be classified in the Low class than in the Average class. For Decoding, the
probability of a child being classified in the Low compared to Average class exceeded .50
when the length of hospitalization was 136 days or more.

Again controlling for BWT, Chronic Lung Disease was associated with class membership for
Problem-solving (γlung_problem-solving = 1.072, p = 0.032). Children with VLBW with chronic
lung disease had a probability of being assigned to the Low compared to the Average class for
Problem-solving of .58, whereas children with VLBW without chronic lung disease had a
probability of being assigned to the Average compared to Low class of .80.

Discussion
GMM, an integrated person- and variable-centered approach, was applied to longitudinal
academic achievement data from a large cohort of children born early and at VLBW in order
to better understand the heterogeneity of outcome across development. Two latent classes were
identified empirically, defining subgroups of average- and low-achieving participants whose
pattern of longitudinal growth was similar enough to successfully result in cohesive
classification. These results demonstrate how GMM extends CGM approaches by
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incorporating the concept of latent classes into growth variation, therefore explaining more
variance of the individual growth trajectories. The findings confirmed our hypotheses that the
degree of VLBW is related to suboptimal growth in Calculation, Problem-solving, and
Decoding skills across childhood and into adolescence.

The GMM models revealed important information regarding the nature of academic
achievement skill growth in children of varying BWT. With two latent classes, a coherent, low-
performing group was identified empirically that differed from average-achieving children,
calculation, problem-solving, and decoding skills. The consistency of the two class solution
across differing achievement skills, as well as when term-born children are included in the
models or not (results available from the author), suggests a coherent person-level group
structure from school age into adolescence. A key feature of GMM is the assumption that
individual differences also exist within each of the empirically identified groups. For example,
some of the lightest children with VLBW performed as well as those born at term at certain
ages, and concomitantly, some term-born children scored as poorly as the VLBW children
across ages. Less than half of the lightest VLBW children (< 750 g) were identified as members
of the Low class for Calculation (28 of 60, 47%) and for Problem-solving (24 of 60, 40%), and
about one-third (21 of 60, 35%) were classified in the Low class for Decoding (see Table 6).
These findings confirm the degree of heterogeneity in academic outcomes, as even among the
lightest of children with VLBW, the majority does not show sub-optimal patterns of academic
achievement skill growth. The GMM approach that includes CGM and latent classes can be
utilized to effectively capture the variation within and across groups of children in
developmental periods of interest.

Importantly, the difference between the low- and average-achieving classes was apparent
across the developmental period from age 7 to 16 years for Calculation, Problem-solving, and
Decoding, with the Average class outscoring the Low class by a substantial margin. However,
the GMMs revealed a more complicated developmental picture. Given the faster linear rates
of change early in the observation period, as well as in the greater growth deceleration, children
in the average-achieving class were estimated to obtain maximal achievement performance
between 15 and 16 years (depending on outcome type), whereas low-achieving children were
estimated to achieve their maximal scores at later ages, beyond age 17, although a persistent
gap in achievement for the Low class was evident across age. Furthermore, the early, age-
related growth and the differences between the Low and Average classes in linear growth both
were greatest for Decoding and Calculation compared to Problem-solving, which is consistent
with the early, rapid acquisition and application of sound-symbol relations and mathematic
operations for typically developing children.

For low-achieving children, this developmental pattern suggests that early achievement skill
acquisition is fundamentally disrupted early in life that persists and skill growth is further
impaired across development. These findings extend the earlier achievement findings of Taylor
et al. (2000) by revealing continued and even increasing deficits in achievement over time in
children with more extreme VLBW compared with term-born controls. The results are also
consistent with studies that have either found stable deficits across development in children
with VLBW (Breslau et al., 2001; Powls et al., 1995; Richards et al., 1988; Stevenson et al.,
1999) or that have raised the possibility of slower age-related acquisition in some skills (Botting
et al., 1998; Cohen et al., 1996; O’Callaghan et al., 1996; Zelkowitz et al, 1995). The observed
pattern of deficits between low- and average-achieving classes identified here with GMM
approach that includes meaningful subgroups further refines our knowledge of individual
variation in academic skill developmental patterns. The different trajectory patterns suggests
that there are distinct biologically determined upper limits of achievement skill acquisition,
and that children identified in the Low class can continue to benefit from learning inputs and
academic instruction beyond the age at which academic learning typically levels off in average-
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achieving children in order to achieve maximal proficiency. Of course, a different
developmental pattern might have been observed during the transition from preschool to school
age, or into adulthood.

Consistent with previous research, poorer achievement outcomes were related to several
biological risk factors (Taylor et al., 2004a, 2006). What is newly demonstrated here using the
GMM approach is the impact of these risks at the person level. More than half of the respective
low-achieving classes for Calculation (28 of 38; 74%), Problem-solving (24 of 43; 56%), and
Decoding (21 of 36; 58%) were the lightest VLBW children (<750 g). These findings were
reinforced by GMM analyses that identified the individuals within the sample who were at
highest risk for sub-optimal achievement growth. For Calculation, children under 600 g were
more likely than not to be classified as low-achieving. For the other two academic skills,
Problem-solving and Decoding, the probability of identification in the average-achieving group
relative to the low-achieving group was greater across the entire BWT spectrum. For these
measures though, the specificity of more extreme VLBW was low, as less than half of the
lightest VLBW children were identified as members of the Low classes.

Contrary to expectations, nonverbal skills as assessed by the VSPM Factor score were not
related to latent class membership for Calculation, Problem-solving, or Decoding when
controlling for BWT. The failure of the VSPM score to predict poorer outcomes is surprising
given the well-documented associations of these skills with academic achievement (Grunau,
Whitfield, & Davis, 2002; Taylor et al., 2002). A likely explanation is that the influence of
nonverbal skills on academic achievement was mediated in large part by BWT. The GMM
results enrich this interpretation by including person-level effects, suggesting that impact of
both BWT and nonverbal skills overlaps substantially at the person level and therefore leaves
little systematic variation to predict achievement growth patterns. Environmental risk also
failed to contribute to group membership beyond the influence of BWT for any of the
achievement outcomes, contrary to extant findings (Breslau & Chilcoat, 2000; Bendersky &
Lewis, 1995; Taylor et al., 1998; 2006). Including the person-level suggests that the
neurobiological consequencea of very preterm birth at weights at the extreme of the continuum
are the more significant contributors to sub-optimal patterns of academic achievement in school
age and into adolescence (Taylor et al., 1998, 2006).

Although BWT was the central predictor, it is only a proxy for the impact of prematurity and
related neonatal medical complications on the developing brain. Among the children with
VLBW, risk factors that marked a more complicated neonatal course, including more days on
ventilation, a longer period of neonatal hospitalization, and chronic lung disease predicted class
membership for one of more of the achievement outcomes. While consistent with previous
findings (D’Angio et al., 2002; Short et al., 2007; Taylor, 1998, 2006), these results extend
this literature by indicating that these associations are independent of BWT. Calculation was
the most sensitive to disruption among the two mathematics domains, as the probability of
classification as low- compared to average-achieving for Calculation was higher than that for
Problem-solving at the fewer days of ventilation (34 days compared to 43 days with BWT
controlled). Decoding skills were more “resilient,” where identification into the Low relative
to Average class for this outcome exceeded .5 after 70 days of ventilation. Chronic lung disease
and days on ventilation also predicted class membership for Problem-solving, potentially
pointing to the impacts of prolonged oxygen imbalances on mathematics applications.
Although these neonatal medical variables are more specific indicators of neurobiologic risk
than BWT, they do not directly or specifically quantify the impact on the central nervous
system. Because complications vary across children and likely have variable impact on the
brain, neuroimaging methods may provide one means for further distinguishing the level of
individual risk. More refined methods of assessing brain status thus may thus improve our
understanding of the sources of variability in achievement skill growth across development.
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Larger multi-site samples also may be required in investigations of the impact on achievement
outcome of low base rate neonatal complications.

Subgroups of average- and low-achieving children were identified empirically and were related
to predictors of interest, demonstrating the flexibility and capacity of the GMM approach to
understand heterogeneity of outcome. This two-group classification likely does not reflect what
would be determined in a representative sample of all children between ages 7 and 16 years,
as such a sample would include on average over 90% of children born term at weights > 2500
and very few children at weights <750 g. Indeed, the sampling used here was ideal to determine
empirically whether differing classes of children with distinctive developmental trajectories
could be identified to understand heterogeneity in academic outcomes among children at-risk
due to VLBW. If a different sampling strategy was used, it is likely that other coherent
subgroups would have emerged. GMM extends conventional models that are predicated on a
variable-centered orientation, and then incorporates latent class growth analysis to identify the
number of coherent classes of individuals using a person-centered approach. Other analytic
approaches also can be accommodated by GMM. For example, using Markov or piecewise
GMM analysis and assuming transition stages or critical time points, the class membership
shifting of children of varying BWT groups across latent classes can be modeled to address
whether some children are average-achieving early in life and then shift to a low achieving
sub-group during a critical period. The flexibility of GMM makes it an ideal framework with
which to better model the complexities and heterogeneities of preterm and other at-risk children
as they develop across time.
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Figure 1.
General diagram of growth mixture models for of birth weight risk.
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Figure 2.
Individual curves are plotted around a single mean population trajectory and around two sub-
population trajectories for quadratic conventional growth model and 2-Class growth mixture
models respectively, for academic achievement outcomes.
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Figure 3.
Probability for class membership against weight by latent classes
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Figure 4.
Probability for class membership against significant neonatal medical variables by latent
classes with birth weight controlled
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Table 1

Sample Characteristics

Birth Weight Group (N = 196)

Sample Characteristics Term
(n = 67)

M/n (SD/%)

750–1499 g
(n = 64)

M/n (SD/%)

<750 g
(n = 65)

M/n (SD/%)

Sex:  Males 23 (34) 21 (33) 21 (32)
   Females 44 (66) 43 (67) 44 (68)
Race Blacks 34 (51) 31 (48) 33 (51)
   Whites 33 (49) 33 (52) 32 (49)
SES 0.05 (1.01) .02 (1.06) −0.07 (1.00)
LISRES-A Environmental Risk 50.33 (6.02) 49.21 (4.55) 49.79 (5.81)
VSPM Factor Score* 0.07 (0.96) 0.22 (1.02) −0.29 (0.97)
Birth Weight (g) *** 3370 (575) 1179 (212) 670 (67)
Gestational Age (weeks) *** -- 29.5 (2.3) 25.8 (1.8)
Length of hospitalization (days) *** -- 57.2 (36.59) 126.30 (75.67)
Days on Ventilation *** -- 9.7 (18.76) 43.38 (43.69)
Apnea * -- 47 (73.4) 58 (89.2)
Chronic Lung Disease *** -- 6 (9.4) 27 (42.2)
Jaundice -- 25 (39.7) 18 (28.6)
Septicemia * -- 15 (23.4) 27 (42.2)
Necrotizing Enterocolitis -- 5 (7.8) 4 (6.3)

*
Note. p < .05

**
p <.01,

***
p <.001.

SES = socioeconomic status z-score; LISRES-A = Life Stressors and Social Resources Inventory, Adult Form; VSPM = visuospatial/perceptual-motor.
Chronic lung disease is defined as oxygen dependence for ≥36 weeks corrected age, and jaundice as a maximal indirect serum bilirubin >10 mg/dL.
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Table 4

Averaged Latent Class Probabilities by Classes

Calculation

Average class Low class

Average class 0.94 0.06
Low class 0.04 0.96

Problem-solving

Average class Low-applied-problem class

Average class 0.99 0.01
Low class 0.08 0.92

Decoding

Average class Low class

Average class 0.92 0.08
Low class 0.06 0.94
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Table 5

Growth Parameter Estimates

Calculation

Parameter Average Class (SE) Low Class (SE)

α0 520.15 (1.40)*** 456.58 (7.86) ***
αs 6.63 (0.23)*** 6.09 (0.79)***
αq −1.29 (0.05)*** −0.69 (0.18)***

V(ζ0) 224.21 (45.53) *** 224.20 (45.52) ***
V(ζs) 1.54 (0.66)* 4.44 (2.36)
V(ζq) -- --

Problem-solving

Parameter Average Class (SE) Low Class (SE)

α0 511.48 (1.38)*** 454.43 (7.98) ***
αs 4.95 (0.37)*** 4.42 (1.04)
αq −0.80 (0.07)*** −0.55 (0.24)***

V(ζ0) 183.97 (26.50) *** 183.98 (26.47) ***
V(ζs) 6.03 (2.82)* 6.02 (2.83) *
V(ζq) 0.25 (0.11)* 0.30 (0.10)*

Decoding

Parameter Average Class (SE) Low Class (SE)

α0 519.96 (1.60)*** 468.19 (8.18) ***
αs 6.63 (0.21)*** 7.64 (0.59)***
αq −1.41 (0.05)*** −0.80 (0.10)***

V(ζ0) 192.16 (33.92) *** 1444.82 (361.92) ***
V(ζs) -- --
V(ζq) -- --

*
Note. p < .05

**
p <.01,

***
p <.001.

-- is fixed to 0, α0, αs, and αq are the mean estimates, and V(ζ0), V(ζs) and V(ζq) are the variance estimates of growth intercepts, slopes and deceleration
rates, respectively.
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Table 6

Counts of Term, 750–1499 g, and <750 g children by Latent Growth Classes

Calculation

Birth Weight Group

Term 750–1499 g <750 g Total

Average Class 57 51 32 140
Low Class 2 8 28 38
Total 59 59 60 178

Problem-solving

Birth Weight Group

Term 750–1499 g <750 g Total

Average Class 53 46 36 135
Low Class 6 13 24 43
Total 59 59 60 178

Decoding

Birth Weight Group

Term 750–1499 g <750 g Total

Average Class 54 49 39 142
Low Class 5 10 21 36
Total 59 59 60 178
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