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Abstract
Background—Children with severe allergic asthma have persistent airway inflammation and
oxidant stress.

Objectives—We hypothesized that children with severe allergic asthma would have increased
concentrations of the NO oxidation products nitrite, nitrate, and nitrotyrosine in the proximal and
distal airway epithelial lining fluid (ELF). We further hypothesized that NO oxidation products would
be associated with higher exhaled nitric oxide (FENO), greater allergic sensitization, and lower
pulmonary function.

Methods—Bronchoalveolar lavage (BAL) was obtained from 15 children with mild-to-moderate
asthma, 30 children with severe allergic asthma, 5 non-asthmatic children and 20 non-smoking adults.
The BAL was divided into proximal and distal portions and nitrite, nitrate, and nitrotyrosine were
quantified.

Results—Children with mild-to-moderate and severe allergic asthma had increased concentrations
of nitrite (adult control: 15 ± 3; pediatric control: 23 ± 4; mild-to-moderate asthma: 56 ± 26; severe
asthma: 74 ± 18 µM), nitrate (37 ± 13 vs. 145 ± 38 vs. 711 ± 155 vs. 870 ± 168 µM) and nitrotyrosine
(2 ± 1 vs. 3 ± 1 vs. 9 ± 3 vs. 10 ± 4 µM) in the proximal ELF. Similar results were seen in the distal
ELF although the concentrations were significantly lower (p < 0.05 for each). Although univariate
analyses revealed no associations between NO oxidation products and clinical features, multivariate
analyses revealed FENO to be a significant predictor of NO oxidation in asthmatic children.

Conclusions—NO oxidation products are increased in the ELF of asthmatic children. The
relationship between FENO and airway nitrosative stress is complicated and requires further study.
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CLINICAL IMPLICATIONS
Symptomatic children with mild-to-moderate and severe allergic asthma have significant nitrosative stress despite corticosteroid
treatment. Additional therapies to decrease airway nitrosative stress may be warranted in these children.
CAPSULE SUMMARY
Symptomatic children with persistent asthma have significant oxidation of nitric oxide (i.e.,“nitrosative stress”) in the airways despite
corticosteroid treatment. Nitrosative stress may account for ongoing symptoms in this group of children.
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INTRODUCTION
Severe allergic asthma in school-age children is a complex disorder characterized by persistent
airway inflammation, ongoing symptoms, and increased exhaled nitric oxide (FENO)
concentrations despite treatment with high doses of inhaled and oral corticosteroids.1,2
Although airway nitric oxide (NO) is essential for epithelial signaling and host defense,
excessive NO production results in NO oxidation and potential toxicity.3 This process of
excessive NO oxidation is commonly referred to as “nitrosative stress”4 and ultimately
promotes protein nitration, resulting in structural and functional protein alterations that may
enhance the inflammatory response.5 Thus, excessive airway NO concentrations in children
with severe allergic asthma may contribute to an ongoing cycle of airway destruction with
airway injury.6

In the human airway, the most readily detectable NO oxidation products include nitrite
(NO2

−) and nitrate (NO3
−), which can be derived from NO through a series of reactions

involving superoxide anion (O·2−) and oxygen (Figure 1). Nitrotyrosine is also easily measured
in airway samples and reflects the overall degree of protein nitration.7 Indeed, previous studies
have noted increased nitrite, nitrate and nitrotyrosine concentrations in the exhaled breath
condensate of asthmatic children8–10 and in the epithelial lining fluid (ELF) of adults with
mild-to-moderate and severe asthma.11,12 However, no study to date has examined NO
oxidation products in the ELF of asthmatic children. Because children with severe asthma have
profound airway oxidant stress,13 the purpose of this study was to quantify NO oxidation
products in the ELF of children with mild-to-moderate and severe allergic asthma. The
secondary purpose of this study was to determine the association between increased ELF NO
oxidation products and clinical features of asthma severity in children. We hypothesized that
children with severe allergic asthma would have increased concentrations of the NO oxidation
products nitrite, nitrate, and nitrotyrosine in the proximal and distal airway epithelial lining
fluid (ELF). We further hypothesized that these increased NO oxidation products would be
associated with increased FENO, greater allergic sensitization, and lower pulmonary function.

METHODS
Sample

Children 5–17 years of age with symptomatic asthma attending an asthma clinic at Emory
University were invited to participate in this study. Asthmatic children met published criteria
for persistent asthma14 and had a history of at least a 12% change in the forced expiratory
volume in one second (FEV1) after albuterol administration.15 Severe asthma was diagnosed
according to criteria developed by the NIH/NHLBI Severe Asthma Research Program,1 which
were adapted from the American Thoracic Society’s Consensus Panel Report (Online
Repository, Table E1).16 Thresholds for high-dose inhaled corticosteroids (ICS) were defined
as ≥ 440 mcg of fluticasone equivalent per day for children less than 12 years and ≥ 880 mcg
for children 12–17 years of age.14 Children with severe allergic asthma were treated with a
stable dose of ICS or oral corticosteroids for at least 6 months prior to recruitment. Adherence
to ICS therapy was monitored by an analysis of prescription refills. Informed consent was
obtained from all caregivers. Children also provided verbal and written assent.
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Children who fit criteria for severe allergic asthma underwent flexible bronchoscopy with
bronchoalveolar lavage (BAL) as indicated for persistent asthma symptoms despite appropriate
treatment with high-dose inhaled and systemic corticosteroids.17 Children with mild-to-
moderate asthma underwent bronchoscopy for suspected foreign body aspiration, recurrent
pneumonia, persistent cough, and suspected congenital anomalies. Controls for this study
included children with psychogenic (habit) cough or vocal cord dysfunction undergoing
bronchoscopy for definitive diagnosis and healthy, non-smoking adult volunteers. Control
subjects were nonsmokers with no family history of asthma and a negative bronchodilator
response.

Procedures
Spirometry was performed before and after 2 inhalations of albuterol sulfate (90 µg/inhalation)
with a portable spirometer (KoKo® Legend, Ferraris, Louisville, CO). The results fulfilled
ATS criteria for reproducibility18 and were interpreted according to reference standards.19

Atopic sensitization was assessed by skin prick testing using a standard kit (Multi-Test® II,
Lincoln Diagnostics, Decatur, IL) containing tree pollen, grass pollen, ragweed pollen, weed
pollen, dog hair, cat epithelium, alternaria, cladosporidium, aspergillus, Dermatophagoides
pteronyssinus, Dermatophagoides farinae, cockroach, normal saline, and histamine extracts
(Greer Laboratories, Lenoir, NC). The application site was examined 15 minutes after
application and considered positive if both a wheal ≥3 mm diameter and erythema ≥ 10 mm
diameter were present.

On the day of bronchoscopy, participants submitted FENO samples and underwent
venipuncture. FENO was collected with a reservoir bag within 1 hour prior to bronchoscopy.
For this procedure, subjects took two tidal breaths of NO-free air through a scrubbing filter,
followed by a 6-second exhalation at a fixed flow rate of 0.35 L/second.20 The first 150 mL
exhaled were discarded. Subjects repeated this procedure three times. The resulting samples
were analyzed offline by chemiluminescence (Sievers NOA™ 280-I, Ionic Instruments,
Boulder, CO) within 1 hour of collection. The data were averaged to reflect mean FENO. Serum
immunoglobulin (IgE) concentrations and plasma urea were determined after venipuncture.

Bronchoscopy in pediatric participants was performed by pediatric pulmonologists using a
laryngeal mask airway. BAL fluid was collected from the right middle lobe with three 1 mL/
kg (50 mL maximum) saline lavages flushed through the suction channel of a flexible
bronchoscope (Olympus BF-3C160 [3.7 mm] or BF-P160 [4.9 mm], Olympus America Inc.,
Melville, NY). Bronchoscopy was performed in adults using a flexible bronchoscope (Olympus
BF-1T20D) passed trans-nasally into the right middle lobe. Three 50 mL saline aliquots were
instilled and immediately aspirated. The first lavage from all participants was reserved for
evaluation of proximal airway constituents.21 The second and third lavages were pooled for
distal airway constituent analysis. In children, the BAL return volume was divided between
the research and clinical laboratories.

BAL was centrifuged at 1200 rpm within 1 hour of collection for 7 minutes at 4° C to separate
the supernatant and cellular fractions. Given the limited number of cells present in the proximal
airway lavage, the cell pellets from the proximal and distal airway lavages were pooled and
resuspended in 10 mL of Dulbecco’s Modified Eagles Medium with 10% fetal calf serum for
cell counting. Total cell counts were performed manually with a hemocytometer and cellular
differentials were determined from 300 consecutive cells after Wright staining.

The protein content of the BAL supernatant was assessed using a Coomassie (Bradford) protein
assay (Pierce Biotechnology, Rockford, IL) read at an absorbance of 595 nm with a detection
limit 1 µg/mL. Urea nitrogen was measured in plasma and BAL supernatant using a quantitative
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colorimetric assay (Pointe Scientific, Canton, MI) with sensitivity of 0.05 to 150 mg/dL. The
dilution of the proximal and distal BAL was calculated from [urea]plasma/[urea]BAL.22

Nitrite and total nitrite + nitrate concentrations were determined from the BAL supernatant
using a colorimetric assay (Cayman Chemical, Ann Arbor, MI) analyzed at 540 nM with a
lower detection limit of 0.1 uM. All samples were analyzed in duplicate. For this assay, nitrate
was converted to nitrite with nitrite reductase, followed by the addition of Griess reagent.
Nitrate concentrations were determined by subtracting the concentration of nitrite from total
nitrite + nitrate. To minimize false nitrate and nitrate readings during the assay, samples were
analyzed immediately after thawing. The background nitrite and nitrate content in the saline
lavage fluid was pre-determined and subtracted from the final concentration values.

Nitrotyrosine concentrations were determined spectrophotometrically using a microplate
sandwich ELISA (Oxis International, Foster City, CA) with sensitivity of 2.0 nM and inter-
assay precision of 11%. Samples were analyzed in duplicate and corrected for the background
levels of nitrotyrosine in the saline lavage fluid. Absorbance was measured at 450 nm.

Statistical analysis
Data were analyzed with SPSS® software (Version 15, SPSS Inc., Chicago, IL). Nitrite, nitrate,
and nitrotyrosine from the proximal and distal airway lavage were adjusted according to the
urea dilution22 and were logarithmically transformed. Nitrotyrosine concentrations were
further adjusted for the total protein content of the BAL supernatant. Differences between
groups and post-hoc tests were assessed by Kruskal-Wallis tests and Mann-Whitney U tests,
respectively. Pearson correlations were used to examine associations between NO oxidation
products and clinical features. To evaluate factors that might affect NO oxidation in the ELF
of asthmatic children, multivariate backward elimination linear regression was performed
using total nitrite + nitrate concentrations in the proximal and distal ELF as dependent variables
and age, gender, ethnicity, ICS dose, FEV1, FEV1 bronchodilator reversibility, serum IgE,
history of hospitalization, FENO, and the percentage of airway eosinophils and neutrophils as
predictors. Multicollinearity between predictors was assessed with tolerance statistics. Entry
and removal probabilities were set at 0.05 and 0.10, respectively. Significance was defined as
a two-tailed α ≤ 0.05 for all tests.

RESULTS
Initially, 49 asthmatic children (severe asthma, n = 32), 7 pediatric controls, and 20 healthy
adult controls were recruited for this study. However, five children, including 2 pediatric
controls, 2 mild-to-moderate asthmatics, and 2 severe asthmatics were infected with
Streptococcus pneumoniae, Haemophilus influenzae, and/or Moraxella catarrhalis and were
excluded from data analysis due to potential denitrification.23 The features of the excluded
children appear in the online repository (Online repository, Tables E2–E3). Thus the final
sample included in data analysis contained 30 children with severe allergic asthma, 15 children
with mild-to-moderate asthma, 5 pediatric controls, and 20 adult controls.

Because bronchoscopy was performed only for clinical indications, all of the asthmatics were
symptomatic. None of the children with mild-to-moderate asthma had evidence of airway
infection or chronic aspiration syndromes. The features of the final sample are presented in
Table I. Whereas all (100%) children with severe asthma had allergic sensitization, allergic
sensitization was present in only half (53%) of the children with mild-to-moderate asthma
(Online repository Table E4). Children with severe allergic asthma were also treated with
higher doses of ICS but had significantly lower baseline pulmonary function and increased
bronchodilator reversibility. Whereas FENO was elevated in both groups of asthmatics, there
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were no differences in FENO between children with mild-to-moderate and severe allergic
asthma (Table I).

The characteristics of the BAL fluid are presented in the online repository (Table E5). Although
larger lavage volumes were used for adult controls, the percentage of BAL return was similar
between adult and pediatric controls (proximal lavage: 23 vs. 27%; distal lavage: 49 vs. 35%
for adult vs. pediatric controls). However, the BAL samples from adult controls were
characterized by higher total cell counts (adult control: 7.81 ± 3.61; pediatric control: 3.53 ±
2.32; mild-to-moderate asthma: 3.81 ± 3.06; severe asthma: 3.32 ± 2.02 × 106, p < 0.01).
Whereas severe asthmatics had the highest percentage of BAL eosinophils (adult control: 0.4
± 0.5; pediatric control: 0.3 ± 0.5; mild-to-moderate asthma: 0.7 ± 0.7; severe asthma: 1.9 ±
3.2%, p = 0.03), mild-to-moderate and severe asthmatics had higher percentages of neutrophils
compared to both groups of controls (adult control: 3.5 ± 3.2; pediatric control: 3.2 ± 1.4; mild-
to-moderate asthma: 5.3 ± 3.9; severe asthma: 5.2 ± 3.2, p = 0.04).

NO oxidation products in the proximal and distal airway lavage
Compared to controls, children with mild-to-moderate and severe allergic asthma had
significantly higher concentrations of nitrite, nitrate and nitrotyrosine in the ELF (Figure 2).
However, no significant differences in NO oxidation products were observed between children
with mild-to-moderate and severe allergic asthma. In each group, nitrate was the most abundant
NO oxidation product measured, with concentrations nearly 10-fold higher than those of nitrite.
Furthermore, nitrite, nitrate and nitrotyrosine concentrations were also consistently higher in
the proximal versus the distal airway ELF (Figure 2). Similar increases in NO oxidation
products were also apparent in the raw BAL samples without adjustment for the urea dilution
(Online repository Figure E1). Analysis of the entire sample (all asthmatics and controls)
revealed strong correlations between proximal and distal airway ELF concentrations of total
nitrite + nitrate (r = 0.76, p < 0.01), nitrite (r = 0.50, p < 0.01), nitrate (r = 0.76, p < 0.01), and
nitrotyrosine (r = 0.34, p = 0.02). When this analysis was restricted only to asthmatic children,
similar correlations between the proximal and distal ELF NO oxidation products were observed
(total nitrite + nitrate: r = 0.44, p = < 0.01; nitrite: r = 0.58, p < 0.01; nitrate: r = 0.31, p = 0.05;
nitrotyrosine: r = 0.35, p = 0.05). Within the proximal and distal airway ELF, high agreement
was further observed between the measured concentrations of total nitrite + nitrate and
nitrotyrosine (Figure 3).

Relationship of NO oxidation products to FENO and other clinical features in asthmatic
children

To determine the clinical implications of increased ELF oxidation products in children with
mild-to-moderate and severe asthma, correlational analysis was first performed between NO
oxidation products and clinical features of asthma severity, including FENO, serum IgE, the
number of skin prick responses, FEV1, FEV1 bronchodilator reversibility, and the percentage
of BAL eosinophils and neutrophils. This analysis was restricted to children with mild-to-
moderate and severe asthma and did not include controls. No significant correlations were
observed between NO oxidation products and any the clinical features measured, including
FENO (Online repository Table E6). However, FENO was significantly associated with the
percentage of BAL eosinophils (r = 0.35, p = 0.04) and serum IgE (r = 0.30, p = 0.02).

To further evaluate factors that might affect NO oxidation in the ELF of asthmatic children,
multivariate backward elimination linear regression was performed using total nitrite + nitrate
concentrations in the proximal and distal ELF as the dependent variables and age, gender,
ethnicity, ICS dose, FEV1, FEV1 bronchodilator reversibility, serum IgE, history of
hospitalization, FENO, and the percentage of airway eosinophils and neutrophils as predictors.
Control data was excluded. In the proximal ELF, age (p < 0.01), gender (p = 0.02), and
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FENO (p = 0.06) were significant predictors of nitrite + nitrate concentrations (final model R2

= 0.49, p = 0.01, online repository Table E7). Likewise, gender (p = 0.05) and FENO (p = 0.05)
were significant predictors of total nitrite + nitrate concentrations in the distal ELF of mild-to-
moderate and severe asthmatic children (final model R2 = 0.25, p = 0.05, online repository
Table E8). In both the proximal and distal airway ELF, the relationship between FENO and NO
oxidation was negative, such that higher FENO concentrations were associated with lower NO
oxidation product formation.

DISCUSSION
To our knowledge, this is the first study to directly measure NO oxidation products in the ELF
of children with persistent asthma. Compared to controls, children with mild-to-moderate and
severe allergic asthma had increased concentrations of nitrite, nitrate, and nitrotyrosine in the
ELF which were consistently higher in the proximal versus the distal airways. Contrary to our
hypothesis, we failed to detect significant differences in NO oxidation products between mild-
to-moderate and severe asthmatic children. Furthermore, no associations between NO
oxidation products and clinical features such as FENO were detected using univariate analyses.
However, with multivariate modeling to control for the potential confounding effects of ICS
and atopy on NO synthesis, FENO was identified as a modest predictor of NO oxidation product
formation. While the clinical relevance of this finding is yet unclear, these data highlight the
complexity of NO biology in children with asthma and suggest that the relationship between
FENO and NO oxidation is not directly proportional. Thus in children with severe asthma, lower
FENO concentrations may not necessarily indicate the absence of airway inflammation, but
instead may reflect decreased NO bioavailability from increased NO oxidation.

Airway NO biochemistry is complex and the exact contribution of NO to the pathogenesis of
asthma is not fully understood. NO is produced by nitric oxide synthases (NOS) in a variety
of cell types and serves as an important signaling molecule both within and outside of the cell.
3 NO production is also vital to the epithelial antiviral and immune defenses of the airways.
24 While the generation of NO oxidation products from NO is important for transcription factor
activation and the regulation of airway inflammation,3 excessive airway NO production from
altered NOS isoforms or lack of endogenous NOS inhibition can lead to the oxidation of NO
and potential nitrogen oxide toxicity.25 The resulting nitrosative stress may ultimately
contribute to protein dysfunction and airway cellular destruction.26 Our findings of increased
nitrite, nitrate and nitrotyrosine in the ELF of asthmatic children confirm that nitrosative stress
is a distinguishing feature of the asthmatic airway. However, the underlying mechanisms
responsible for this finding are unclear and warrant further study.

Although this is the first study to directly measure NO oxidation products in the ELF of children
with mild-to-moderate and severe allergic asthma, our findings support previously-reported
observations in the exhaled breath condensate. In these previous studies, baseline
concentrations of nitrite, nitrate and nitrotyrosine were significantly higher in the exhaled
breath condensate of asthmatic children.8,10,27 Whereas others have shown reductions in nitrite
and nitrate after 8 weeks of ICS therapy,28 we observed NO oxidation in the ELF of children
with mild-to-moderate and severe allergic asthma despite ICS treatment. This observation is
intriguing and may reflect decreased sensitivity to ICS in this population. Alternatively, NO
oxidation products in the ELF may reflect complex biochemical abnormalities that are distinct
from other types of airway inflammation and are not necessarily influenced by ICS treatment.
29

While there is increasing evidence of distal airway inflammation in human30 and
experimental31 models of asthma, our results show that airway nitrosative stress is consistently
higher in the proximal versus the distal airways. For this study, we performed sequential BAL
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of the right middle lobe to separate proximal and distal airway constituents.21 Because this
method of lavage was adapted for children to account for different body weights, our data may
not accurately reflect nitrosative stress in the bronchial versus alveolar airspace. Thus our distal
airway samples may have contained a pooling of bronchial and alveolar NO oxidation products.
However, our findings are similar to those of others showing increased inflammation in the
bronchial versus alveolar space in asthmatic adults32 and lend support to the more proximal
involvement of the airways in asthmatic children.

Our data do not show clear linear associations between ELF NO oxidation products and clinical
features of asthma in children, which may be a function of our limited sample size or our patient
selection. In addition, it is possible that our measurements of FENO and NO oxidation products
were confounded by ICS and atopy. In steroid-naïve asthmatics, FENO falls in a dose-dependent
manner after the initiation of ICS.33 Allergic sensitization is also associated with increased
FENO independent of asthma,34 a finding which may be attributable to a late-phase influx of
eosinophils. In the present study, all of the children with severe asthma were treated with ICS
and had objective evidence of aeroallergen sensitization. Furthermore, 80% (n= 12) of the
children mild-to-moderate asthma were taking daily ICS and 53% (n = 8) had positive skin
prick responses. Whereas NO metabolites were not associated with any clinical features, like
others,35 we did observe an association between FENO and airway eosinophils. This finding
may explain the utility of FENO in guiding ICS reduction and evaluating asthma control.36

Because there may also be neutrophilic or other patterns of airway inflammation in children
with severe asthma, our findings also may reflect the marked heterogeneity of this group of
patients. Alternatively, the differences in FENO among asthmatics may be due to airway
pH37 or altered s-nitrosothiol metabolism38 and not NO oxidation.

This study had a number of limitations. Because bronchoscopy cannot be ethically performed
in healthy children, our pediatric control group was limited to non-asthmatic children with
significant respiratory symptoms. The inclusion of these children may have resulted in
inadvertent selection of a group of children with significant nitrosative stress. It is also possible
that some of our mild-to-moderate asthmatics were under-treated. Thus, the NO oxidation
products measured in our group of children with mild-to-moderate asthma may not be reflective
of the larger population and may have been reduced with more aggressive ICS treatment.

In summary, we have demonstrated significant increases in the formation of NO oxidation
products in the proximal and distal airway ELF of children with persistent asthma. Contrary
to our hypothesis, NO oxidation products did not differ between children with mild-to-
moderate and severe allergic asthma. While these data highlight the magnitude of oxidant stress
that is present in the airways of children with symptomatic asthma, the relationship of this
nitrosative stress to asthma severity is yet unclear. Additional studies are warranted to
determine the clinical utility of measuring NO oxidation products in asthmatic children,
particularly given the marked heterogeneity of the disease. It may be that targeted interventions
to reduce nitrosative stress are indicated in children with significant nitrosative stress despite
ICS treatment.
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ABBREVIATIONS
BAL, Bronchoalveolar lavage
ELF, Epithelial lining fluid
FENO, Fraction of exhaled nitric oxide
FEF25–75, Forced expiratory flow
FEV1, Forced expiratory volume in one second
FVC, Forced vital capacity
ICS, Inhaled corticosteroid
IgE, Immunoglobulin E
NO, Nitric oxide
NO2

−, Nitrite
NO3

−, Nitrate
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Figure 1.
Diagram of nitric oxide (NO) metabolite formation in the airways.

Fitzpatrick et al. Page 11

J Allergy Clin Immunol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
(A) Total nitrite + nitrate, (B) nitrite, (C) nitrate, and (D) nitrotyrosine concentrations (µM) in
the proximal (dark bars) and distal (light bars) airway ELF. Data represent the mean ± SEM
with AC = adult control, PC = pediatric control, MA= mild-to-moderate asthma, and SA =
severe asthma. ap < 0.05 versus AC, bp < 0.05 versus PC.
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Figure 3.
Scatterplot depicting the relationship between total nitrite + nitrate and nitrotyrosine
concentrations (µM) in the proximal (dark circles) and distal (light circles) airway ELF. Data
were logarithmically transformed.

Fitzpatrick et al. Page 13

J Allergy Clin Immunol. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fitzpatrick et al. Page 14

Table I

Features of the sample. Data represent the mean ± SD or the frequency (%).

Adult
control
(n = 20)

Pediatric
control
(n = 5)

Mild-to-Moderate
asthma
(n = 15)

Severe
asthma
(n = 30)

Age (in years) 39 ± 10 11 ± 4a 10 ± 4a 10 ± 4a
Male gender 8 (40) 3 (60) 10 (67) 15 (50)
Caucasian 8 (40) 4 (80) 14 (93)a 9 (30)b,c
African-American 11 (55) 1 (20) 1 (7)a 20 (67)b,c
ICS dose (µg fluticasone/day) 0 0 262 ± 189a,b 917 ± 236a,b,c
Asthma medications
    Budesonide 0 0 3 (20) 7 (23)
    Fluticasone 0 0 1 (7) 1 (3)
    Fluticasone/salmeterol 0 0 8 (53)a,b 22 (73)a,b,c
    Montelukast 0 0 10 (67)a,b 28 (93)a,b,c
Prednisone 0 0 0 11 (37)a,b,c
Emergency room visit (previous year) 0 0 3 (20) 28 (93)a,b,c
Hospitalization (previous year) 0 0 1 (7) 26 (87)a,b,c
Intensive Care Unit admission (ever) 0 0 0 14 (47)a,b,c
Intubation (ever) 0 0 0 6 (20)a,b,c
FVC (% predicted) 98 ± 16 102 ± 18 102 ± 15 87 ± 19a,b,c
FEV1 (% predicted) 103 ± 16 101 ± 15 100 ± 15 73 ± 20a,b,c
FEV1 FVC 0.86 ± 0.07 0.89 ± 0.03 0.87 ± 0.06 0.74 ± 0.12a,b,c
FEF25–75 (% predicted) 121 ± 32 92 ± 16a 94 ± 23a 51 ± 25a,b,c

FEV1 bronchodilator reversibility (%)1 3 ± 6 6 ± 5 9 ± 11 23 ± 17
FENO (offline, ppb) 5 ± 3 7 ± 4 11 ± 12a 13 ± 10a,b
Elevated baseline FENO (> 10 ppb) 4 (20) 2 (40) 3 (20) 20 (67)a,b,c
Reported allergies Not assessed 2 (40) 9 (60) 25 (83)
Reported atopic dermatitis Not assessed 0 5 (33) 21 (70)
Number of skin prick responses Not assessed 0 2 ± 2 5 ±3b,c
Serum IgE (kU/L) 100 ± 194 80 ± 64 94 ± 139 487 ± 730a,b,c

1
Calculated by: [(FEV1; post-bronchodilator – FEV1 pre-bronchodilator)/predicted FEV1]*100

a
p < 0.05 vs. adult control

b
p < 0.05 vs. pediatric control

c
p < 0.05 vs. mild-to-moderate asthma
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