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Abstract
In this work, the influence of nonlinear and diffraction effects on amplification factors of focused
ultrasound systems is investigated. The limiting values of acoustic field parameters obtained by
focusing of high power ultrasound are studied. The Khokhlov-Zabolotskaya-Kuznetsov (KZK)
equation was used for the numerical modeling. Solutions for the nonlinear acoustic field were
obtained at output levels corresponding to both pre- and post- shock formation conditions in the focal
area of the beam in a weakly dissipative medium. Numerical solutions were compared with
experimental data as well as with known analytic predictions.

I. INTRODUCTION
The study of problems that involve the focusing of intense ultrasonic beams is an important
area of nonlinear acoustics [1]. Recently, there has been increasing interest in these problems
mainly due to the development of new medical devices for nonlinear diagnostic ultrasound
imaging, for noninvasive destruction of tumors (high-temperature hyperthermia or acoustic
surgery), for cessation of internal bleeding (acoustic hemostasis), and for kidney stone
comminution [2,3]. All of these applications rely on the focusing of acoustic waves in a
nonlinear medium. In ultrasound surgery systems which are already used in clinical practice,
the intensity levels in the focal area can reach 10000 - 30000 W/cm2 [4]. At these intensities,
the shock formation distance for an initially harmonic plane wave with a frequency of 1.5 MHz
- typical for medical applications - is only 3 - 5 mm. In most ultrasound surgery devices, this
distance is less than the length of the focal area of the beam, therefore it is necessary to account
for nonlinear effects when characterizing the acoustic fields of such systems [3].

With an increase of pressure amplitude at the source, the combined effects of nonlinearity and
diffraction result in changes of the focusing gains of the acoustic parameters of the beam [5].
Moreover, these changes are different for each parameter of the field. With a further increase
of the source output, nonlinear saturation phenomenon occurs and the parameters of the field
at the focus no longer depend on the source pressure amplitude. Knowledge of these saturation
values in acoustic focusing systems is an interesting problem for fundamental studies of
nonlinear waves as well as for practical applications.

Approximate analytic models for estimation of focal pressures and saturation levels in
nonlinear beams were proposed more than 50 years ago [6,7]. These results are still used to
estimate the limiting pressures obtained due to focusing. It was shown that analytic predictions
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in general agree with experimental data; however, they cannot provide quantitatively correct
values for various parameters of the acoustic field [8]. The paraxial approach can be used to
analytically calculate the change of focusing gains in pre-shock formation regimes [9]. More
accurate and detailed investigation of nonlinear focused fields became possible using numerical
modeling [5,10-12]. The change of focusing gains and saturation of acoustic fields at the focus
due to nonlinear effects were investigated for initially Gaussian beams [5]. However, the
Gaussian source is an idealized model; real transducers have a finite size and therefore have
more complicated spatial field distributions. In the paper [11] the nonlinear effects in the field
of a weakly focused piston source with parameters typical for medical diagnostic sensors were
investigated in more detail. The problem of determining the change in focusing gains due to
nonlinear-diffractive effects in strongly focused beams, used in ultrasound surgery, has not yet
been solved.

In this work, this problem is investigated numerically using the Khokhlov-Zabolotskaya-
Kuznetzov equation. Simulations are performed over a wide range of parameters typical for
medical ultrasound transducers in a fluid of low absorption for beams of initially harmonic
waves with uniform pressure amplitude at the source. The pressure waveforms, spatial
distributions of peak pressures, intensity, and heat deposition (mainly due to absorption of the
wave energy at the shocks) are calculated. The maximum focusing gains of the systems working
in nonlinear regimes, and also the limiting values of the acoustic parameters in the focal area
of the beam are obtained. Numerical solutions are compared with experimental data as well as
with known analytic estimates. The results obtained in this work can be used for characterizing
the fields of high power focused ultrasound sources in water and in low-absorptive tissue
phantoms, for determining the focal values of acoustic parameters of nonlinear fields, and for
choosing the optimal operating parameters of medical ultrasound transducers.

II. ANALYTIC APPROACHES
In this section, a short overview of the most common analytic approaches used for calculation
of saturation levels at the focus of spherical transducers excited by initially harmonic waves
are presented. The analytic solutions will be compared with the numerical results obtained in
this paper. The first approach was proposed by Naugolnykh and Romanenko [6]. They
considered a converging spherical wave, which propagates from the surface of a spherical cap
with a radius F towards the focal region defined by a sphere of radius rf. The propagation of
this wave is described by the one-dimensional generalized simple wave equation [13]:

(1)

Here p is the acoustic pressure, x is the propagation coordinate, τ = t − x/c0 is the retarded time,
ε is the coefficient of nonlinearity, ρ0 is the ambient density, and c0 is the sound speed. The
distance rf is defined so that the pressure amplitude of the one-dimensional linear spherically
converging wave at rf is equal to the pressure amplitude at the geometrical focus of a linearly
focused beam described using the parabolic equation to account for diffraction effects [1]:

(2)

with boundary condition
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(3)

Here A0 is the pressure amplitude at the source, k is the wave number, ω0 = 2π f0 is the angular
frequency of the wave, r is the coordinate across the beam axis, and a0 is the source radius
(Fig. 1). Using the exact solution of Eq. (2) on the beam axis for a focused piston source, Eq.
(3):

(4)

we obtain that the pressure amplitude at the geometrical focus of the beam A(x = F) is equal
to A0G, where  is the focusing gain for the pressure. Substitution of A(x = F), Eq.
(4), into the linear solution for spherically converging wave yields the value of rf = F/G. At
this distance rf from the focus, the saturation values of pressure and intensity are calculated
from the exact solution of the one-dimensional nonlinear equation (1):

(5)

From the solution given by Eq. (5), it can be seen that the level of saturation pressure psat
depends on the source geometry (convergence angle of the wave from the source to the focus
sinα = a0/F), the characteristic internal pressure of the medium , and nonlinear parameter
of medium ε [6]. The limiting value of intensity Isat (5) at the focus is calculated under the
assumption that the waveform is sawtooth-like with a maximum pressure of psat.

Various other analytical models for estimating limiting values of acoustic fields at the focus
have been developed as well. Ostrovskii and Sutin employed an approximate approach for
step-by-step calculation of the acoustic field of a focused acoustic beam [3]. In this approach,
first, the nonlinear focusing of the beam is considered while ignoring diffraction effects. Then,
at some distance from the focus, nonlinear propagation is neglected and the linear diffraction
problem is solved. Finally, near the focus, nonlinear effects again dominate over diffraction
effects and the wave transforms into a sequence of pulses with nearly planar shock fronts. The
saturation pressures obtained using this method agrees within an order of magnitude with the
values obtained using Eq. (5).

The model of one-dimensional nonlinear propagation of a non-diffractive beam in a focused
tube with a Gaussian cross-section was also considered [14]. The saturation pressure at the
focus for the sawtooth wave given by this model

is very similar to Eq. (5) and practically coincides with it for high linear focusing gains G.

Bessonova et al. Page 3

Acoust Phys. Author manuscript; available in PMC 2010 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Some analytical results have been obtained for estimation of focusing gains in nonlinear beams.
It was shown that the pressure amplitude at the focus of a nonlinear beam can increase fourfold
and intensity can increase twofold as compared to the linear beam [7]. Nonlinear increase of
focusing gain for peak positive pressure was also calculated using the paraxial approximation,
but only for quasi-linear propagation, far from the shock solutions [9].

In the present work, a numerical approach will be used and the results for saturation levels will
be compared to the analytical estimation, Eq. (5).

III. NUMERICAL MODEL
The propagation of high intensity focused acoustic waves will be described by the KZK
equation [1]:

(6)

where Δ┴ is the transverse Laplacian, Δ┴ = 1/r ∂/∂r(r∂/∂r) for axially symmetric beam, b = ξ
+ 4/3·η is the dissipative coefficient, which is assumed to be small.

The boundary condition for a circular focused transducer with uniform amplitude distribution
in the parabolic approximation is written as

(7)

Equations (6) and (7) can be rewritten in dimensionless variables:

(8)

(9)

Here P = p/p0 is the acoustic pressure normalized to the initial amplitude p0 at the source; θ =
ω0τ is the dimensionless time; z = x/F is the dimensionless propagation coordinate normalized
to the focal distance, and R = r/a0 is the dimensionless transverse coordinate normalized to the
source radius.

Equation (8) contains three dimensionless parameters: N = F/xs is the parameter of nonlinearity,
G = xd/F is the parameter of diffraction, and A = F/xa is the absorption parameter, where

 is the characteristic diffraction length,  is the characteristic nonlinear
length, which corresponds to the shock formation distance for a plane initially harmonic wave,
and  is the absorption length of the linear wave. If the absorption is low, i.e. A
≪ 1, then the value of the parameter A will only change the fine structure of the shock front
formed in the wave profile [1]. Thus, the set of physical parameters which determine the

Bessonova et al. Page 4

Acoust Phys. Author manuscript; available in PMC 2010 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



focusing of the wave in a weakly dissipative medium is reduced to only two dimensionless
parameters:  (nonlinearity) and  (diffraction).

Equation (8) with boundary condition (9) is solved numerically at each step along the
coordinate z using an operator splitting procedure. A combined time- and frequency- domain
approach is used to model diffraction, nonlinearity, and absorption:

(10)

Both the temporal waveform and its spectral representation are necessary to solve different
operators L in Eq. (10). Both representations are related by the Fourier transform:

(11)

where Cn is the complex amplitude of the nth harmonic in the spectrum of a propagating wave.

At each integration step along the beam axis from layer z to layer z+hz, the operator splitting
procedure consists of three substeps. At the first substep, diffraction effects are calculated using
independent parabolic equations for each of Nmax harmonics of the wave: ∂Cn/∂z = (i/4nG)
Δ┴Cn, where n is the harmonic number. In the nearfield of the transducer, where the acoustic
field has a strongly oscillatory structure (at distances of z < 0.1), an implicit backward finite
difference scheme, which is the most stable one, is used to solve Nmax independent equations
over a small step size hzIB [15]. The second order Crank–Nicholson scheme with a bigger step
size, hzCN, is used at longer distances of z > 0.1. The solution to the diffraction problem obtained
at the new layer z+hz is taken as the initial condition (i.e. on the layer z) for the second substep
to take into account nonlinear effects. The nonlinear equation ∂P/∂z = Lнелин is solved
independently for each grid point along the coordinate R using the Godunov-type method
[16,17]. This shock capturing scheme can be used to describe the propagation of nonlinear
waves with shock fronts, using only 4-5 temporal grid points at the front. The advantage of
this scheme is the absence of oscillations near the shock front in the numerical solution and
the presence of internal numerical viscosity, which only influences the width of the shock front
and therefore does not influence the general properties of the solution. The solution of the
nonlinear operator is used as the initial condition for the third substep to calculate the dissipative
effects: ∂Cn/∂z = Labs. The exact solution is used for the amplitudes of the harmonics of the
wave Cn(z + hz, R) = Cn(z, R)exp(−hz·An2).

The algorithm described above was used to obtain the non-dimensional waveforms P(z, θ,
R); the peak positive P+ and peak negative P− pressures, and also the time-averaged intensity
of the wave:

(12)

where Ĩn(z, R) is the intensity of the nth harmonic [18].

The heating rate is calculated at each step of the grid along z as the intensity difference
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(13)

before and after calculation of nonlinear and dissipative operators. The energy absorbed at the
shock fronts due to the numerical viscosity of the Godunov scheme is also taken into account
in Eq. (13).

Equation (8) was numerically solved using a wide range of values for parameters G and N. The
linear focusing gain of the beam G was varied from 10, which corresponds to the case of weakly
focused diagnostic transducers, to high values G = 40 ÷ 60, which are typical for transducers
used for noninvasive surgery. The nonlinear parameter N, which is determined by the source
amplitude, was varied over the range 0 ≤ N ≤ 6. The following values of the parameters of the
numerical scheme were used: the number of the calculated number of harmonics in the
spectrum was Nmax = 256; the number of the time grid points over the wave period was 512;
the integration distance along the beam axis was 0 ≤ z ≤ 1.5; the grid boundaries in the transverse
coordinate were 0 ≤ R ≤ 3. The number of grid points along the coordinate R and the spatial
steps were adjusted depending on the linear focusing gain G of the system. The steps in the
longitudinal and transverse coordinates hzCN and hr were related as hzCN~(hr)2. The number
of grid points along R was varied from 1500 to 6000. For small values of the focusing gain,
G = 10, the steps were hzCN = 4·10-4 and hr = 2·10−3. As the parameter G was increased, the
grid step along R was decreased inversely with G, in accordance with the narrowing of the
focal width. The minimum absorption parameter A was chosen for each value N so that the
shock front of the wave would have no less than six time grid points. As the nonlinear parameter
N was increased, the value of the absorption coefficient A was varied from A = 0.01 to A = 0.2.

IV. RESULTS
One of the most important characteristics of focusing systems is the focusing gain, or
amplification factor, i.e. the ratio between the value of some acoustic field parameter at the
focus x = F and the corresponding quantity at the source. For the case of a focused linear
harmonic wave, Eq. (4), the focusing gain for the pressure amplitude 
uniquely determines the amplification of all acoustic parameters of the field at the focus. The
peak positive and peak negative pressures in the profile increase G times while the mean
intensity of the wave and heat deposition increase G2 times.

The relationship between acoustic parameters in nonlinear beams is much more complicated.
Focal waveform becomes asymmetric due to the combined effects of nonlinearity and
diffraction; and the peak positive pressure noticeably exceeds the peak negative pressure. To
determine the wave intensity and heat deposition, it is necessary to know not only the pressure
amplitude but also the temporal waveform or wave spectrum, Eq. (12). With an increase of the
initial wave amplitude, i.e. with an increase of the parameter N in Eq. (8), the focusing gains
will change in different ways for different acoustic parameters and for different values of linear
focusing gain G.

Figure 2 shows the correction indices K = Gnonlin/Glin to obtain nonlinear focusing gains for a
given nonlinear parameter N. The curves are calculated for the peak positive (a) and negative
(b) pressures as well as for the intensity of the wave (c). At N = 0, which corresponds to small
amplitude linear propagation, the correction indices are equal to one. As shown in the figure,
with increase of the source amplitude, i.e. with increase of N, the focusing gains rise noticeably
for peak positive pressure (KP+) and intensity (KĨ). Enhancement of focusing in nonlinear
beams is more pronounced for higher linear focusing gains G = 40 and 60, i.e. for more focused
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transducers. The intensity focusing gain increases up to 1.5 times the linear case due to better
focusing of the higher harmonics. The strongest increase in focusing gain (up to 3.5 times) is
observed for the peak positive pressure, which is due to the diffraction phase shifts between
the higher harmonics and also their better focusing.

The analysis of simulation results indicates that the maxima of the curves in Fig. 2 correspond
to such values of N (proportional to the source amplitude) when the shocks form close to the
focus. With increase of linear focusing gain G, the shocks form at lower initial wave amplitude
and thus the maximum of enhancement occurs at smaller values of N. With further increase of
the source amplitude, the shock front forms in the prefocal region, which leads to additional
losses of wave energy on the way to the focus, and to a decrease of the correction indices
KP+ and KĨ. For peak negative pressure (KP−) the focusing gain decreases monotonically with
increase of N, i.e. the value of P− at the focus of nonlinear beam is always less than predicted
in linear approximation. In the area of maximum enhancement, when the shock front forms
close to the focus, the focusing gain for P− is 60% of its linear value.

Using the results shown in Fig. 2, the focal values of peak pressures and intensity can be
obtained for any piston transducer at any level of its excitation. Thus, they can be used as
calibration curves for nonlinear corrections to acoustic quantities at the focus of ultrasound
transducers operating at high intensity levels. These results are of practical importance and can
be used for regulating the fields of high power focused ultrasound sources, for determination
of the focal values of acoustic parameters of nonlinear fields, and for choosing optimal
operating levels.

For higher source output levels, shock fronts form closer to the source, an effective absorption
of energy occurs at the shock fronts, and saturation of the acoustic field at the focus ensues.
The calculated saturation curves for peak pressures (a, b) and intensities (c) are shown in Figure
3. On the right side of each plot, horizontal lines depict the levels of saturation corresponding
to Eq. (5). For convenience, graphs are presented in dimensionless quantities. The ordinate
axes on the top two figures correspond to the values proportionate to peak pressures at the
focus  and , on the bottom figure –

intensity of the wave . As can be seen in Fig.3, the saturation
levels for peak negative pressures are about twice lower and for peak positive pressure about
twice higher than analytic predictions given by Eq. (5). At the same time, for intensity and
half-sum of peak pressures, the results obtained from the simple model of one-dimensional
spherically converging wave, Eq. (5), and calculated data are very close. Also, it is important
to note that saturation at the focus is reached at lower values of N for transducers with higher
linear focusing gains G.

Calculations have shown that for weakly focused transducers (G <10), the maximum of the
field can occur in the lobe preceding the main focal lobe, even though saturation at the focus
has not yet occurred. Such situation is shown in the Figure 4, where the distribution of
dimensionless intensity of the wave along the beam axis is presented for G = 10 and N = 4. For
strongly focused transducers (G = 20, 40, 60), the maximum of the field always occurs spatially
within the focal lobe up to the saturation levels.

Figure 5 illustrates how the acoustic field of a nonlinear spherically converging one-
dimensional wave, Eq. (1), differs from the field of a real transducer, which has strongly
oscillatory structure in the nearfield. Figure 5 presents the dimensionless peak pressures P+
and P− (dash and dash-dot lines accordingly) which were obtained by numerical solution of
the KZK equation (8), and the pressure amplitude (solid line) obtained using the Eq. (1) for a
nonlinear spherically converging wave along the beam axis. The figures are plotted assuming

Bessonova et al. Page 7

Acoust Phys. Author manuscript; available in PMC 2010 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



a focusing gain G = 10 for different parameters N that correspond to the cases when a shock
front is not yet formed (N = 0.25, a), is formed close to the focus (N = 0.33, b), and prefocally
(N = 1.17, c). The pressure amplitudes for a one-dimensional wave at the distance 1/G = 0.1
from the focus, where saturation levels, Eq. (5), are analytically estimated, are marked by
crosses on the figures. The corresponding waveforms obtained using the KZK equation in the
geometrical focus, and for one-dimensional spherical converging wave at a distance 1/G before
the focus are shown in the top left corner of the figures. As can be seen from the figures, the
pressure amplitude calculated using the one-dimensional nonlinear model strongly
underestimates the peak positive pressure and overestimates the peak negative pressure at the
focus, which was also shown for the saturation pressures (Fig. 3).

In Figure 5, it can be seen that the positions of the spatial maxima for P+ and P−, which are
coincident when N = 0, are shifted with increasing N along the beam axis in different ways, in
some cases not monotonically. The maximum for the peak negative pressure is shifted towards
the source with increasing values of N. Conversely, the maximum value of peak positive
pressure shifts towards the geometrical focus at first, even passing behind the focus in some
range of values of N (Fig. 5a), and then moves back towards the transducer. Such non monotonic
behavior can be explained by the self-defocusing effect due to asymmetrical distortion of the
wave profile and to the increase in propagation velocity of the compressive phase of the wave
close to the beam axis. For small profile distortion (N = 0.25), the self-defocusing effect is
small and leads to a displacement of the pressure maximum P+ away from the source. For the
case of maximum asymmetry (N = 0.33), the defocusing effect becomes stronger and the
pressure maximum P+ shifts towards the source. With a further increase of N, the absorption
of wave energy at the shocks in the prefocal area leads to additional displacement of the
maximum towards the source. On the other hand, with increasing N, the propagation velocity
of the rarefaction phases of the wave close to the beam axis decreases, which leads to an increase
in self-focusing and monotonic displacement of the pressure P− maximum towards the source.
For strongly focused transducers, the displacements of spatial maxima of various field
parameters in the focal area are less pronounced because the focal area is smaller.

In this work, the focusing gains of nonlinear beams are calculated at the geometrical focus.
However, as can be seen from Fig. 5, the maximum values of various acoustic parameters of
the field in space are different than corresponding values at the geometrical focus. For example,
for values of the nonlinear parameter N where the maximum focusing gain of the peak positive
pressure is achieved (Fig. 2), the maximum pressure P+ in space differs from the pressure at
the geometrical focus for G = 10 by 13.5 %, for G = 20 by 3.4 %, for G = 40 by 0.8 %, and for
G = 60 is practically the same.

The difference of saturation levels for peak positive pressure, calculated at the geometrical
focus (Fig. 3), and at the point of spatial maximum of the field, changes none monotonically
and corresponds to a difference of 12 % (G = 10), 0.38 % (G = 20), 6 % (G = 40) and 20 %
(G = 60). Therefore, it is necessary to take into account these differences when estimating
focusing gains and limiting values of acoustic field parameters for high power ultrasound
transducers.

As nonlinear effects increase, not only the focusing gains and locations of spatial maxima of
different acoustic parameters of the beam change, but also the spatial structure becomes
different [19]. Figure 6 shows the spatial distributions of the positive P+ and negative P− peak
pressures, intensity Ĩ, and heat deposition H in the axial plane for linear (a, b) and nonlinear
(c-f) focusing (G = 40). The value of the nonlinear parameter N = 0.25 corresponds to the case
of the maximum enhancement of focusing gain for peak positive pressure (Fig. 2). The figures
are plotted on a linear scale using eight equal contour levels that vary from zero to the maximum
amplitude of the corresponding quantity. For the linear beam (left column), only the
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distributions of pressure amplitude P± and intensity Ĩ are presented, because in this case, the
distributions of peak positive and negative pressure are identical, and the distributions of wave
intensity and heat deposition are proportional to each other, i.e. they also have identical spatial
structure. Since the propagation of acoustic wave was simulated in a weakly dissipative
medium, an increase in absorption of wave energy was observed during shock wave formation.
As can be seen from the figures, in a nonlinear field, the focal area of peak positive pressure
(c) and especially heat deposition (f) are more localized in space as compared to the linear
field. On the other hand, the focal area of the peak negative pressure (d) is noticeably displaced
towards the source and is much less localized in space, especially in the direction across the
beam. Interestingly, the distribution of the intensity in a nonlinear beam (d) weakly differs
from the linear case, even though the focal waveform contains a shock front.

Since various parameters of the acoustic wave are responsible for different effects of ultrasound
on tissue, it is necessary to take into account the mentioned changes that can occur in the spatial
localization of acoustic parameters in nonlinear fields when planning the therapeutic impact
of high power ultrasound on biological tissue. The negative phase of the waveform determines
cavitation impact, while the absorption of the wave at the shocks leads to faster heat deposition.
It is expected, therefore, that in high power focused fields, cavitation phenomena will be more
pronounced in a wider area and closer to the transducer as compared to thermal effects, and
that very high heating rates are possible in the focal area [12]. It is also clear that in the nonlinear
regime of focusing, the wave intensity cannot be used to estimate heat deposition.

To illustrate the practical use of the calibration curves depicted in Fig. 2, a specific example
will be considered. The acoustic field generated in water by a transducer with frequency f0 =
2 MHz, radius a0 = 22.5 mm and focal length F = 44.4 mm is used as an example. These
parameters correspond to G = 48. If the acoustic power is 120 W, then the pressure amplitude
at the source is p0 = 0.4 MPa and the initial intensity is I0 = 5 W/cm2, which corresponds to a
value for the nonlinear parameter of N = 0.25 [10]. Based on the curves for nonlinear correction
of focusing gains (Fig. 2), the values of acoustic parameters of the beam at the focus for the
quantities N = 0.25 and G = 48 can be estimated. As can be seen from the figure, at this output
level, the values of the correction indices for focusing gains of peak positive pressure and
intensity are close to their maximum values. Let us choose the values of correction indices
between the curves for G = 40 and G = 60: KP+ = 3.27, KP− = 0.6 and KĨ = 1.4. In this case,
at the focus, p+(F) = p0G KP+ = 61.4 MPa, p−(F) = p0G KP− = 10.8 MPa, and I(F) = I0G2KĨ
= 16.6 kW/cm2. At the same time, the linear estimates give different values: 19 MPa for peak
pressures and 11.5 kW/cm2 for intensity of the wave at the focus. These values will be compared
with results of numerical modeling for this transducer and this acoustic output, and with
experimental results obtained in water. Figure 7 shows the profile of experimental impulse at
the focus (a), and also the comparison of two periods of the measured and simulated signals
(b) and their spectra (c). The measurements of the pressure profiles at the focus were performed
using a broadband fiber-optic hydrophone with an active diameter of 100 μm in a pulse mode
(30-40 periods in pulse) to avoid development of cavitation [10]. The solid line is the
experimental data, while the dashed line is the modeled result. As can be seen from the figure,
the experimental results are in good agreement with numerical simulations, and peak
parameters of the simulated waveform (p+ = 63.5 MPa and p− = 11.5 MPa) practically coincide
with the estimations on the curves shown in Fig. 2. Differences between experimental and
numerical data for the peak positive pressure are due to the limited bandwidth of the
hydrophone (100 MHz). Thus, the algorithm developed in the work presented herein allows
the fields of focused transducers to be obtained with high accuracy, even in the regime of
developed shocks, and the results of modeling can be used as an alternative to physical
measurements.
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The breaking point of piezoceramics and the presence of cavitation activity make it technically
difficult to achieve saturation levels experimentally. Using the results shown in Fig. 3, we can
estimate the limiting values of the field of the transducer considered above: the limiting peak
positive pressure is 117 MPa, peak negative pressure is 39 MPa, and intensity is 96 kW/cm2.
In the experiment, the fields at the focus were measured up to the values of p+

F = 80 MPa,
p−F = 15 MPa, IF = 33 kW/cm2 [10]. Consider now characteristic values of acoustic fields for
some other transducers used in experimental research on ultrasonic surgery. For example, the
ultrasound transducer used at the Royal Marsden hospital in Sutton (United Kingdom) has the
frequency f = 1.7 MHz, the radius a0 = 42 mm and the focal distance F = 150 mm which
corresponds to G = 42.2. At typical output levels used to generate thermal damage in tissue,
the intensity of the field at the focus is equal to 1500 W/cm2 in linear approximation [18]. In
accordance with Fig. 2, this output level (N = 0.27) is close to the maximum for enhancement
in gain of the peak positive pressure. In strongly focused fields (G > 20), the acoustic parameters
of the focal waveform in tissue and in water will be similar when the same intensity level is
reached at the focus; therefore, in tissue, the focal wave profile also has a shock front and the
maximum localization of heat deposition is observed for these regimes [18]. The limiting values
of the field at the focus for this transducer (from Fig. 3) correspond to a peak positive pressure
of 35.5 MPa and a peak negative pressure of 11.6 MPa. At this output level, the half-sum of
the peak positive and negative pressures is 23.6 MPa and the limiting intensity value of the
field is 10.6 kW/cm2, which are close to the saturation pressure of 20.7 MPa and intensity of
9.6 kW/cm2 obtained using Eq. (5).

For a source with higher frequency f0 = 5.5 MHz, radius a0 = 9.5 mm and F = 19 mm (G = 55)
the limiting peak positive pressure at the focus is 113 MPa, limiting peak negative pressure is
34.7 MPa, intensity is 85 kW/cm2. In the experiment the pressure was measured up to p+ =
34.5 MPa and p− = 15.5 MPa, which is also far from saturation [8].

V. CONCLUSION
In this work, the nonlinear-diffractive effects which occur in high power sound beams in a
weakly dissipative medium are investigated numerically. The quantitative data for nonlinear
corrections of focusing gains and saturation of the field at the focus are obtained. Various
characteristics of nonlinearly distorted waveforms are calculated over a wide range of
parameters for piston transducers. It is shown that as the pressure amplitude at the source
increases, the focusing gains of the field for peak positive pressure and intensity change none
monotonically; at first, they noticeably increase (up to 3.5 times for p+ and 1.4 times for I) and
then they decrease. The maxima on these curves correspond to the initial amplitude when the
shock front is formed in the wave profile near the focus. The effect of enhancement of field
concentration is more pronounced for sources with higher linear focusing gains G. For peak
negative pressures, the focusing gain decreases monotonically as the source pressure amplitude
increases and is only 60% of its linear value when the focusing gain for peak positive pressure
is at a maximum.

It was established that the present analytical estimations (5) for saturation levels at the focus
underestimate the values for peak positive pressure and overestimate the values for peak
negative pressure (by about 2 times). At the same time, these estimations are sufficiently close
to numerically calculated intensities and to half-sum of peak pressure values. The main
differences in the spatial distribution of different acoustic parameters in nonlinear acoustic
fields were presented: peak positive pressure, intensity and heat deposition are strongly
localized and, on the contrary, the area of peak negative pressure is extended and shifted
towards the source.
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The results of modeling are in good agreement with the experimental data and can be used for
calibration of real therapeutic ultrasound transducers and for optimization of clinical protocols.
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FIG. 1.
Distributions of the dimensionless amplitude of harmonic wave along the axis z = x/F of the
piston transducer for 1D spherically convergent wave (solid line) and linear focused beam
(dashed line) with the focusing gain G = 10. The waveforms of the same amplitude are shown
in the small figure (for linear focused beam - in the geometrical focus, for 1D spherical
convergent wave - at the distance z = 1/G prefocally).
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FIG. 2.
Dependences of correction factors to the focusing gains in nonlinear beam on nonlinear
parameter N for the peak positive p+

F (a) and peak negative p−F (b) pressures, and intensity
IF (c). Correction factors are defined as KP+ = p+

F/p0G, KP− = p−F/p0G, and KĨ = IF/I0G2,
where G is the linear focusing gain of the source (G = 10, 20, 40, 60).

Bessonova et al. Page 13

Acoust Phys. Author manuscript; available in PMC 2010 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 3.
Saturation curves at the focus for dimensionless peak pressures (NKP± ~ p±

F, a, b) and intensity
Ĩ (N2KĨ~ IF, c). The value of parameter N is proportional to the source pressure output p0, the
curves are presented for various values of G = 10, 20, 40, 60. Shown on the right are the
approximate saturation values given by the analytic solution, Eq. 5.
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FIG. 4.
Distribution of the dimensionless intensity Ĩ along the beam axis under conditions of well
developed shocks (G = 10, N = 4).
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FIG. 5.
Distributions of the dimensionless peak pressures P+ and P− along beam axis (G = 10) for
various values of nonlinear parameter N = 0.25 (a), 0.33 (b), and 1.17 (c). Solid lines correspond
to the peak pressure in one-dimensional spherically convergent wave (P+ = P−); dashed lines
– to the peak negative P− and dash-dotted line – to the peak positive P+ pressure in nonlinear
beam. Shown in small frames are waveforms calculated in the geometrical focus for a beam
and at the distance 1/G from the focus towards the source for one-dimensional spherically
convergent wave.
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FIG. 6.
Spatial distributions in (z, R) coordinates of the peak positive P+ and negative P− pressures,
intensity Ĩ, and heat deposition H for linear (N = 0, a-b) and nonlinear (N = 0.25, c-e) beams
(G = 40).
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FIG. 7.
Comparison of measured data (solid lines) with the results of numerical modeling (dashed
lines) for the pressure waveform at the focus: (a) - the measured signal; (b) - two periods in
the wave profile between vertical lines on the graph of the measured signal, and (c) - the
corresponding spectrum. Here An is the amplitude of the n-th harmonic of an initial wave, A1
= p0 at z = 0. Source parameters are: 22.5 mm radius, 44.4 mm focal length, 2 MHz frequency,
and 0.4 MPa initial pressure, that correspond to the values of G = 48 and N = 0.25.
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