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Abstract

A number of viral proteases are able to cleave translation initiation factors leading to the inhibition of cellular translation.
This is the case of human immunodeficiency virus type 1 protease (HIV-1 PR), which hydrolyzes eIF4GI and poly(A)-binding
protein (PABP). Here, the effect of HIV-1 PR on cellular and viral protein synthesis has been examined using cell-free systems.
HIV-1 PR strongly hampers translation of pre-existing capped luc mRNAs, particularly when these mRNAs contain a poly(A)
tail. In fact, HIV-1 PR efficiently blocks cap- and poly(A)-dependent translation initiation in HeLa extracts. Addition of
exogenous PABP to HIV-1 PR treated extracts partially restores the translation of polyadenylated luc mRNAs, suggesting that
PABP cleavage is directly involved in the inhibition of poly(A)-dependent translation. In contrast to these data, PABP
cleavage induced by HIV-1 PR has little impact on the translation of polyadenylated encephalomyocarditis virus internal
ribosome entry site (IRES)-containing mRNAs. In this case, the loss of poly(A)-dependent translation is compensated by the
IRES transactivation provided by eIF4G cleavage. Finally, translation of capped and polyadenylated HIV-1 genomic mRNA
takes place in HeLa extracts when eIF4GI and PABP have been cleaved by HIV-1 PR. Together these results suggest that
proteolytic cleavage of eIF4GI and PABP by HIV-1 PR blocks cap- and poly(A)-dependent initiation of translation, leading to
the inhibition of cellular protein synthesis. However, HIV-1 genomic mRNA can be translated under these conditions, giving
rise to the production of Gag polyprotein.
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Introduction

Viruses rely on cellular machinery to synthesize their proteins

since this complex process requires numerous components that

cannot all be encoded by viral genomes. Thus, viral mRNAs have to

compete with host mRNAs for ribosomes and other components of

the translation machinery [1]. To achieve this goal, viruses have

evolved sophisticated mechanisms to maximize the translation of

their mRNAs. Since the initiation of translation is important in the

regulation of gene expression in eukaryotic cells, cytolytic viruses

usually target this step to ensure the synthesis of viral proteins [2]. A

number of viral proteases are involved in the proteolysis of

translation initiation factors, such as eIF4G and PABP [2,3]. Under

these conditions the association of host mRNAs with ribosomes is

severely impaired, whereas viral mRNAs can efficiently interact

with the translation machinery [1,2].

eIF4G mediates the formation of the translation initiation

complex by acting as a scaffold protein that physically links the

40S ribosomal subunit with the mRNA [2,4]. In the canonical

initiation process of translation, the cap structure and the poly(A) tail

of mRNAs are recognized and joined by eIF4E and PABP,

respectively [5,6]. In turn, both proteins interact with the N-terminal

portion of eIF4G, which recruits the small ribosomal subunit to the

proximity of the mRNA by the interaction of its C-terminal domain

with eIF3 [2,7]. In addition, eIF4G contains binding sites for other

proteins implicated in translation such as eIF4A and the protein

kinase Mnk1 [2]. A number of viruses such as certain picornaviruses,

retroviruses and caliciviruses, encode proteases which hydrolyze

eIF4G, and separate the domain implicated in mRNA recognition

(N-terminal domain) from the portion involved in the recruitment of

40S ribosomal subunit (C-terminal domain) [1,2,3,8,9]. For

example, the association of host mRNAs and ribosomes is impaired

in poliovirus (PV) infected cells by eIF4G cleavage, while viral

mRNA can interact with the translation machinery by means an

internal ribosome entry site (IRES) placed in its 59 untranslated

region (59 UTR) [10,11]. We previously described that eIF4GI is

cleaved in HIV-1-infected cells, with HIV-1 PR being responsible

for this event [9]. In fact, IRES elements have been identified within

HIV-1, HIV-2, simian immunodeficiency virus and feline immu-

nodeficiency virus genomic mRNAs [12,13,14,15]. However, little is

known about the regulation of retroviral IRES-driven translation by

cellular and viral factors.

Cleavage of PABP by viral proteases has been described

recently [16,17,18,19,20,21]. PABP binds to the poly(A) tail
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present at the 39 end of mRNAs [7]. This protein directly

participates in the initiation of translation by linking the poly(A)

tail of mRNAs to eIF4G [5]. The N-terminal domain of PABP

(NTD) contains four RNA recognition motifs (RRM) and the

eIF4G-binding site, while the C-terminal domain (CTD) interacts

with eIF4B and eukaryotic release factor 3 (eRF3) [22,23,24,25]

and regulatory proteins such as PABP-interacting protein 1 and 2

(Paip 1 and 2) [26,27,28], and mediates the oligomerization of

PABP on the poly(A) tail [7]. PV 3Cpro and, to a lesser extent,

2Apro, cleave PABP separating NTD and CTD [18]. Proteolysis of

PABP by 3Cpro impairs poly(A)-dependent initiation of translation

[19]. Proteases from both human immunodeficiency virus (HIV)-1

and 2 also cleave PABP at two distant positions; one located at the

NTD and CTD junction and another within RRM3 [16]. A

previous work has investigated the effect of PABP cleavage by PV

proteases on protein synthesis [19], but the action of HIV-1 PR on

poly(A)-dependent translation remains unexplored.

The cap structure and poly(A) tail synergistically enhance

translation [2,7]. In this regard, eIF4E and PABP interaction with

eIF4G induces a circular mRNA conformation, which might

enhance ribosome recycling [29]. On the other hand, the

interaction between eIF4G and PABP could induce conforma-

tional changes in the initiation complex in turn increasing the

affinity of eIF4E for the cap structure [30]. Thus, the hydrolysis of

eIF4G or PABP could inhibit the synergism provided by the cap

and poly(A) tail. In this work we analyze the contribution of the

cleavage of eIF4GI and PABP by HIV-1 PR to the inhibition of

translation directed by cap and poly(A) tail of mRNAs in cell-free

systems and their impact on picornavirus IRES-driven translation.

In addition, the effects of HIV-1 PR on the translation of HIV-1

genomic mRNA have been also examined.

Materials and Methods

Plasmid Construction and In Vitro Synthesis of mRNAs
pKS-luc, pTM1-luc and pT59NCP-luc were used as a template

to synthesize luciferase (luc) mRNAs, EMCV and PV IRES-

containing luc mRNA, respectively. These plasmids were described

in previous reports [31,32,33,34]. Human globin 59UTR-contain-

ing luc mRNAs were obtained by in vitro transcription using pKS-

GL-FL as a template. This plasmid was kindly provided by Drs. M.

Hentze and F. Moretti (EMBL, Heidelberg, Germany). The in vitro

transcription was carried out with T7 polymerase (Promega)

according to the indications of the manufacturer and using GpppG

or GpppA (New England Biolabs). In vitro polyadenylation was

performed with poly(A) polymerase (New England Biolabs) and

tested by agarose gel electrophoresis. The mRNA was purified using

the Chroma spin columns kit (BD Biosciences). The amount of mRNA

was analyzed with the NanoDrop ND-1000 spectrophotometer.

The plasmid pGEX-2T-PABP1 containing the sequence encoding

the human PABP1, lacking the first nine amino acids and fused to

the GST (glutathione S-transferase) gene, was obtained as described

previously [35] and was kindly provided by A. Nieto (Centro

Nacional de Biotecnologı́a, CSIC, Madrid, Spain). pKS-HIV-1 was

obtained by digestion of pBH10 and pKS plasmid with Sac I,

followed by a treatment with T4 ligase.

In Vitro Translation
The HeLa S3 extracts and the translation reaction mix were

obtained as previously described [36,37,38]. Krebs-2 extracts and

the respective reaction mix were obtained as previously described

[39,40,41]. Nuclease-treated RRL (Promega) was used according to

the manufacturer’s instructions. 20 ng (1.3 ng/ml) of HIV-1 PR or

1 mg (66 ng/ml) of maltose binding protein (MBP)-2Apro were added

to translation mix as indicated in the figure legends. Protein synthesis

was analyzed by metabolic labelling with 50 mCi of [35S]Met-

[35S]Cys/ml (Promix; Amersham Biosciences), followed by SDS-

PAGE, fluorography and autoradiography. The samples used to

measure luciferase (Luc) activity were recovered in luciferase lysis

buffer (see below), whereas sample buffer was added to the replicates

to be analyzed by SDS-PAGE followed by Western blotting.

Real-Time RT-PCR
The levels of luc mRNAs in cellular lysates were determined by

real-time quantitative RT-PCR. Total RNA was extracted from in

vitro translation at the times indicated in each figure using the

RNeasy commercial kit (Qiagen), according to the manufacturer’s

recommendations. The primers luc-forward (59 -GAACGAG-

GACGGAGATGTCATCG-39) and luc-reverse (59- GCTCCT-

CTTCTGGTATTCTTGGCG - 39) were used to quantify luc

RNAs with Master SYBR Green I Kit (Roche Diagnostics),

following the protocol previously described [42]. To validate the

results using these primers, real-time RT-PCR using a Taqman

probe designed by Applied Biosystems was carried out as

previously indicated [43]. As a control, 18 S rRNA was measured

using the Hs 99999901-m1 assay (Applied Biosystems). The

amount of the different luc mRNAs was determined by taking into

consideration the 18 S rRNA levels [43]. Data analysis was carried

out with the SDS-7000 software (Version 1.1).

Measurement of Luciferase Activity
Extracts were recovered in a buffer containing 25 mM

glycylglycine (pH 7.8), 0.5% Triton X-100 and 1 mM dithiothre-

itol. Luc activity was determined using luciferase assay system

(Promega) and Mononlight 2010 apparatus (Analytical Lumines-

cence Laboratory) as described previously [8,9].

Immunoblotting
Western blot analysis was carried out using a rabbit antibodies

mix against the N-terminal and C-terminal portion of the

initiation factors eIF4GI [44] and eIF4GII (a generous gift from

N. Sonenberg, McHill University, Montreal, Canada) at 1:1000

dilution. PABP was detected using a monoclonal antibody

(Abcam) at 1:300 dilution or a rabbit polyclonal antibody raised

against GST-PABP at 1:3000 dilution.

Purification of Recombinant Proteins
HIV-1 PR was provided by I. Pichova (Centralized Facility for

AIDS Reagents). The chimeric MBP (maltose-binding protein) and

MBP–2Apro were purified by affinity chromatography, as described

previously [45]. The pGEX-2T and pGEX- 2T-PABP1 plasmid

was used to purify the GST and GST–PABP1 protein, respectively,

by affinity chromatography, using a glutathione–agarose 4B resin

(Amersham Biosciences) as described previously [35].

Statistical Analysis
Luc activity data and luc RNA levels are presented as mean

values6SD. Differences were tested for significance by means of

the Student t-test. In each experiment, protease treated extracts

were compared with respect to the control. A probability level

P,0.05 was considered significant.

Results

Effect of HIV-1 PR on the Translation of Pre-Existing
Exogenous mRNAs in HeLa Extracts

The cleavage of eIF4GI and PABP by HIV-1 PR has been

recently described [9,16]. Since a circular mRNA conformation,

Translation Blockage by HIV-PR
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induced by the interaction between eIF4G and PABP, might

enhance ribosome recycling after the termination of translation,

we analyzed the effects of HIV-1 PR on pre-existent capped/non-

polyadenylated (+/2) or capped/polyadenylated (+/+) luc

mRNAs (Figure 1A). As a control, the recombinant protein

MBP tagged to PV 2Apro (MBP-2A) was also used [45,46]. HeLa

extracts were chosen to carry out this experiment since they

support a strong cap-poly(A) synergism [19]. Tanking into account

the translatability of (+/+), (+/2), uncapped (2/2) and uncapped

polyadenylated (2/+) luc mRNAs (Figure 1A and Figure S1A), we

calculated that the cap-poly(A) synergism supported by our

extracts was of about 5-fold.

Many host mRNAs are engaged in protein synthesis machinery

prior to virus infection. Therefore, these mRNAs must be stripped

from ribosomes to ensure high levels of viral protein synthesis. To

induce similar conditions in HeLa extracts, (+/2) and (+/+) luc

mRNAs were added 8 min before viral proteases (estimated time

for the synthesis of a Luc molecule [19]) and luciferase activity was

Figure 1. Translation reinitiation of luc mRNAs in HIV-1 PR treated HeLa extracts. A) Schematic representation of (+/2), (+/+), (2/+) and
(2/2) luc mRNAs. B) HeLa extracts were programmed with 50 ng of (+/2) or (+/+) luc mRNAs. To ensure that exogenous mRNAs are engaged in
protein synthesis machinery, viral proteases (20 ng of HIV-1 PR or 1 mg of MBP-2Apro) were added to the lysates 8 min later. Luciferase activity was
then analyzed 1 and 3 h after the initiation of the reaction. C) eIF4GI, eIF4GII and PABP were detected by western blot. D) Luc activity was measured
at each time point. Error bars indicate standard deviations (SD) obtained from three measurements of each sample. E) Representation of the
percentage of Luc activity obtained from HeLa extracts programmed with (+/2) or (+/+) mRNAs in presence of HIV-1 PR or MBP-2Apro with respect to
control extracts after 1 h of incubation. SDs were obtained from three independent experiments. F) In parallel, RNAs were isolated after 1 h and
quantified by real-time RT-PCR. Relative luc RNA levels are represented. KDa, molecular weights markers. N-t, N-terminal proteolysis fragments of
eIF4GI or eIF4GII; C-t, C-terminal fragments of eIF4GI or eIF4GII; RLU, relative light units. +, HIV-1 PR-modified eIF4GII. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0007997.g001

Translation Blockage by HIV-PR
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measured after 1 and 3 h (See scheme in Figure 1B). MBP-2Apro

efficiently cleaved eIF4GI and eIF4GII 1 h after addition, while

PABP remained largely intact (Figure 1C). In contrast, HIV-1 PR

proteolyzed both eIF4GI and PABP at this time. As previously

observed [16], cleavage products from PABP proteolysis were not

detected in these extracts with the monoclonal antibody (Abcam)

(Figure 1C). This result suggests that these cleavage products are

unstable in lysates [16,19]. In extracts incubated with HIV-1 PR,

the electrophoretic mobility of eIF4GII was slightly increased,

probably due to cleavage at the N-terminal end of the protein

(Figure 1C). In fact, double treatment of HeLa extracts with 2Apro

and HIV-1 PR renders an eIF4GII C-terminal polypeptide similar

to that found with 2Apro alone, whereas the N-terminal fragment

increased its electrophoretic mobility (data not shown). This

proteolysis might not be very relevant for translation since the

functional domains in the N-terminus of eIF4GII should remain

intact [47].

After 10 min of (+/+) luc mRNA addition, a significant value of

luciferase activity was detected (Figure S1C), which is coherent

with the time predicted for the synthesis of one Luc molecule [19].

Moreover, this result suggests that luc mRNAs were engaged in

protein synthesis machinery before protease addition. Translation

of (+/2) and (+/+) luc mRNAs was severely impaired in the

extracts treated with MBP-2Apro or HIV-1 PR, although the

substrates cleaved by each protease differ (Figure 1D). Consistent

with this, MBP protein did not inhibit translation of luc mRNAs

(data not shown). Addition of 2.5 mM saquinavir (SQ), a potent

inhibitor of HIV-1 PR, blocked the action of retroviral protease on

initiation factors, as well as on translation (Figure 1C and D).

Notably, the inhibition of Luc synthesis from (+/+) mRNA was

higher than from its (+/2) counterpart (Figure 1E). In fact, the

amount of Luc activity detected from protease treated extracts

programmed with either (+/2) or (+/+) mRNAs was similar,

irrespective of the protease employed (Figure 1D). These data

indicate that HIV-1 PR, as occurs with MBP-2Apro, can inhibit

cap- and poly(A)-dependent translation, reducing Luc activity to a

basal level. To test the state of luc mRNAs in HeLa extracts, these

mRNAs were quantified by real-time RT-PCR with specific

primers designed against luc sequence. The amount of both (+/2)

and (+/+) luc mRNAs was similar in each case after 1 h of

incubation, irrespective of protease addition (Figure 1F). The

results obtained using a Taqman probe designed against other

regions of luc gene sequence were similar (data not shown). Thus,

mRNA stability was not responsible for those effects. In addition,

translation of pre-existing exogenous as well as endogenous

mRNAs was strongly inhibited by HIV-1 PR in other cap-poly(A)

synergistic extracts such as non nuclease-treated Krebs-2 lysates

(Figure S2). In particular, translation of (+/+) luc mRNA was more

susceptible to protease treatment than that observed for (+/2) luc

mRNA (Figure S2A and B). Rabbit reticulocyte lysates (RRL)

treated with nuclease do not exhibit cap-poly(A) synergism

[19,48]. In contrast to the results observed in cap-poly(A)

synergistic extracts, MBP-2Apro and HIV-1 PR blocked translation

of (+/+) and (+/2) luc mRNAs in RRL to a similar extent (data

not shown). Taking together the results obtained in the three

different cell-free systems (HeLa, Krebs-2 and RRL), we can

hypothesize that HIV-1 PR inhibits efficiently ongoing translation

of luc mRNAs by means of the specific inhibition of cap- and

poly(A)-dependent translation.

HIV-1 PR Blocks Cap- and Poly(A)-Dependent Translation
Initiation

Our next goal was aimed to determine whether PABP and

eIF4GI cleavage hamper the participation of cap and poly(A) tail

in the initiation of translation. To this end, we used a new set of luc

mRNAs that resemble the behaviour of cellular mRNAs since they

contain the 59 UTR of human globin mRNA placed before luc

ORF. These mRNAs were capped with normal cap structure

(GpppG), with a cap analog that is not able to contribute in

initiation of translation (GpppA) or were not capped. In addition,

the in vitro transcription of the template plasmid lead to the

production of a reporter with a poly(A) tail of 65A or lacking this

structure [ See Scheme of (+/G/2), (+/G/+), (A/G/2), (A/G/+),

(2/G/2) and (2/G/+) in Figure 2A].

HeLa extracts were pre-treated for 30 min with 20 ng of HIV-1

PR and replicates were recovered at this point to analyze the

integrity of initiation factors. As expected, eIF4GI and PABP were

substantially proteolyzed by HIV-1 PR at this time point (data not

shown). SQ was then added to inhibit HIV-1 PR activity while

control extracts were incubated for the entire time course with this

compound. Next, extracts were programmed with 20 ng of each

mRNAs and, finally, luciferase activity was analyzed 1 h later.

Cap (GpppG) and poly(A) structures [(+/G/2), (A/G/+) and (2/

G/+)] enhanced translation of these reporters by about 7- and 6-

to 2-fold respectively (Figure 2B, C, D and E), whereas GpppA (A/

G/2) did not contribute to initiation of translation (Figure 2C and

E). In addition, simultaneous presence of cap and poly(A) (+/G/+)

increase translatability of luc mRNAs by about 114-fold (Figure 2B

and E), leading to a translational synergism between both

structures of about 12-fold (Figure S1B). HIV-1 PR strongly

inhibited the translation of (+/G/2) luc mRNA leading to a

similar value of luciferase activity to that obtained from (A/G/2)

and (2/G/2) luc mRNAs (,6-fold inhibition) (Figure 2B and E).

In fact, translation of both (A/G/2) and (2/G/2) luc mRNAs

was not significantly affected by HIV-1 PR (Figure 2C, D and E).

Taking together, these results indicate that HIV-1 PR specifically

blocks cap-dependent initiation of translation. Similarly, transla-

tion of (A/G/+) and (2/G/+) luc mRNAs was significantly

inhibited by HIV-1 PR (,5-fold inhibition), exhibiting the same

translatability as their unpolyadenylated counterparts [(A/G/2)

and (2/G/2)] under such conditions (Figure 2C, D and E). Thus,

HIV-1 PR also blocks specifically poly(A)-dependent initiation of

translation. Finally, (+/G/+) luc mRNA exhibited the highest

translatability due to the cap-poly(A) tail synergism supported by

HeLa extracts (Figure 2B and Figure S1B). HIV-1 PR deeply

inhibited the translation of this mRNA, suggesting that this

protease is able to disrupt the cap-poly(A) synergism (Figure 2B).

To further reinforce the idea that poly(A)-dependent translation

is specifically blocked by HIV-1 PR, we compared the translat-

ability of (2/2) and (2/+) luc mRNAs (see scheme in Figure 1A)

in HeLa and Kreb-2 extracts with RRL, because nuclease-treated

RRL do not exhibit poly(A)-dependent stimulation of translation

[19,48]. Translation of luc mRNAs was enhanced 4- to 5-fold by

the presence of the poly(A) tail in HeLa and Kreb-2 extracts

(Figure 3A and B). By contrast, poly(A) tail did not contribute

substantially to initiation of translation in RRL (Figure 3C). HIV-1

PR strongly blocked translation of (2/+) luc mRNA without

affecting (2/2) translatability in HeLa and Krebs-2 extracts

(Figure 3A and B). However, HIV-1 PR was not able to hamper

translation of (2/+) luc mRNA in RRL (Figure 3C). To rule out

the possibility that mRNA stability could be the cause of the

differences between both types of cell free system, luc mRNA levels

were determined by real-time RT-PCR after 1 h of incubation in

HeLa extracts. Amounts of luc mRNAs were similar irrespective of

the presence of poly(A)-tail or HIV-1 PR addition (Figure 3D),

suggesting that their stability was the same under the different

conditions. These data support the concept that HIV-1 PR

specifically blocks poly(A)-dependent initiation of translation.

Translation Blockage by HIV-PR

PLoS ONE | www.plosone.org 4 November 2009 | Volume 4 | Issue 11 | e7997



Restoration of Poly(A)-Dependent Translation Initiation
by Addition of Exogenous PABP

To determine whether the cleavage of PABP is sufficient to

inhibit poly(A)-dependent translation in HIV-1 PR-treated

extracts, we examined the effects of addition of exogenous PABP.

HeLa extracts were incubated with 10 ng HIV-1 PR for 30 min,

because this treatment induces the total cleavage of PABP while

eIF4GI is only partially proteolyzed (Figure 4A). The polyclonal

antibody against PABP detected weak PABP-derived cleavage

products of about 50 and 40 KDa, which are coherent with

previous findings [16]. SQ was then added to block protease

activity and extracts were programmed with 20 ng of (2/G/+),

(+/2), (+/+), (2/+) or (2/2)luc mRNAs (Figure 1A and 2A).

Simultaneously, extracts were supplemented or not with 25 ng of

GST-PABP1 or GST alone as a control and luciferase activity was

measured 1 h later. Luciferase activity decreased strongly (80–

90%) in extracts treated with HIV-1 PR programmed with either

type of mRNAs (Figure 4B, C, D and E, third bar), but not in the

case of (2/2) luc mRNA. These data indicate that cap- as well as

poly(A)-dependent translation was inhibited by the retroviral

protease as observed in Figure 2. GST addition did not

substantially affect the translatability of luc mRNAs in HIV-1-

treated extracts (Figure 4B, C, D and E, sixth bar). Addition of

GST-PABP1 did not prevent the effect of HIV-1 PR on (+/2) luc

mRNA translation, pointing to the idea that PABP does not

counteract the inhibition of translation of capped mRNAs without

poly(A) tail induced by the retroviral protease (Figure 4C, fourth

bar). Notably, 25 ng GST-PABP1 moderately but significantly

restored Luc synthesis from (2/G/+) and (2/+) luc mRNA in

HIV-1 PR treated extracts (Figure 4B and E, fourth bar). These

results further support the idea that PABP cleavage inhibits

poly(A)-dependent translation. Finally, GST-PABP addition

slightly but significantly recovered translation of (+/+) luc mRNA

(Figure 4D, fourth bar). This result is coherent with the idea that

eIF4GI cleavage also blocks cap-dependent translation, most

probably disrupting the synergism between cap and poly(A) tail.

SQ prevented all the effects induced by HIV-1 PR when added at

the beginning of this reaction (Figure 4B, C, D and E second bar).

Therefore, exogenous PABP specifically re-establishes poly(A)-

dependent translation to some extent in lysates incubated with

HIV-1 PR. Therefore, our data indicate that exogenous PABP is

able to partially rescue the translation driven by poly(A) tail when

endogenous PABP is cleaved by HIV-1 PR.

Effects of HIV-1 PR on Translation of mRNAs Containing
IRES and Poly(A) Tail

Translation of picornavirus mRNAs is stimulated by poly(A) tail

to a similar extent to that observed with capped host mRNAs

[43,49,50]. Nevertheless, hydrolysis of eIF4G by PV 2Apro

stimulates encephalomyocarditis virus (EMCV) IRES-driven trans-

lation despite the impairment of poly(A)-dependent translation

[43,49,50]. Although the contribution of eIF4G cleavage by PV

2Apro to translation of picornavirus mRNAs has been extensively

studied, the repercussion of PABP hydrolysis on protein synthesis

directed by IRES remains unexplored. To this end, HeLa extracts

were pre-treated with HIV-1 PR or MBP-2Apro as a control. After

30 min, extracts were programmed with unpolyadenylated EMCV

IRES-containing luc mRNA (E/2) or its polyadenylated counter-

part (E/+) (Figure 5A). The poly(A) tail increased Luc expression

from EMCV-containing mRNAs by about 4–5 fold in HeLa

extracts (Figure 5B), whereas almost no stimulation appeared in

RRL (data not shown). Translation of (E/2) luc mRNAs increased

after HIV-1 PR treatment as compared to control extracts

Figure 2. Analysis of cap- and poly(A)-dependent translation of
luc mRNAs in HIV-1 PR treated HeLa extracts. HeLa extracts were
treated with 20 ng HIV-1 PR. After 30 min, SQ 2.5 mM was added to the
lysate. Simultaneously, extracts were programmed with 20 ng (+/G2),
(+/G/+), (A/G/2), (A/G/+), (2/G/2) or (2/G/+) luc mRNAs, which are
schematized in panel (A). As a control, a replicate was incubated with
2.5 mM SQ from the beginning of the reaction (grey bars). B, C and D)
Luc activity was analyzed 30 min later and the data obtained from
translation of each mRNA were plotted. E) Relative Luc activity obtained
from each mRNA in presence and absence of HIV-1 PR was represented.
S.D. were obtained from three independent experiments. *P,0.05;
**P,0.01.
doi:10.1371/journal.pone.0007997.g002

Translation Blockage by HIV-PR
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(Figure 5B), indicating that PABP cleavage does not abolish EMCV

IRES-driven translation, at least when eIF4GI is also proteolyzed

(Figure 5C). Notably, translatability of (E/+) luc mRNA was similar

in presence or absence of HIV-1 PR. This result suggests that

enhancement of EMCV IRES-driven translation by HIV-1 PR is

sufficient to replace poly(A)-dependent translation. A similar result

was observed using another mRNA bearing PV IRES (data not

shown). Thus, stimulation of IRES-driven Luc synthesis promoted

by eIF4GI cleavage counteracts the inhibition of poly(A)-dependent

translation induced by PABP proteolysis. Addition of MBP-2Apro to

HeLa extracts provoked substantial hydrolysis of both forms of

eIF4G, while PABP remained intact (Figure 5C). In MBP-2Apro-

treated extracts, translation of (E/2) or (E/+) luc mRNAs was

strongly stimulated (Figure 5B, grey bars). Nevertheless, the

translational enhancement induced by PV 2Apro was lower with

(E/+) than with (E/2) luc mRNAs (5-fold versus 18-fold,

respectively). Luc activity from MBP-2Apro treated extracts was

similar in both cases regardless of whether a poly(A) tail was present

(Figure 5B, grey bars). Translation stimulation conferred by poly(A)

tail is probably abrogated in MBP-2Apro treated lysates by cleavage

of eIF4GI and eIF4GII and compensated by the increase of IRES-

driven translation. To determine the amount of IRES-containing

luc mRNAs in these extracts, real-time RT-PCR with specific

primers against luc sequence was carried out. Of interest, levels of

luc mRNA were similar in each case after incubating for 1 h in

HeLa extracts (Figure 5D). These results reflect that the differential

enhancement on IRES-driven translation observed in extracts

treated with HIV-1 PR or MBP-2Apro was not due to changes in the

stability of luc mRNAs.

Impact of HIV-1 PR on the Translation of HIV-1 Genomic
mRNA

HIV-1 genomic mRNA bears an IRES that comprises its 59

UTR and part of the coding sequence [12,13]. However, the

exact mechanism by which this mRNA is translated in infected

cells is poorly understood. There are at least three viral factors

that could influence the translatability of HIV-1 mRNAs: HIV-1

PR, Gag polyprotein and Rev [9,47,51,52,53]. To determine

whether translation of HIV-1 genomic (HIV-1g) mRNA (scheme

in Figure 6A) takes place when PABP and eIF4GI have been

cleaved by HIV-1 PR, HeLa extracts were treated with this

protease for 30 min. SQ was then added to the reaction mixture

to inhibit the retroviral protease. Pre-treated extracts were

programmed with different amounts of HIV-1g mRNA tran-

scribed, capped and polyadenylated in vitro. As a control,

translation of (+/+) and (E/+) luc mRNAs was also assayed. After

incubating for 1 h, labelled proteins were analyzed by SDS-

PAGE, followed by autoradiography. Treatment with 20 ng

HIV-1 PR leads to cleavage of eIF4GI and PABP (Figure 6B). As

expected, Luc synthesis from (+/+) mRNA was potently inhibited

by HIV-1 PR pre-treatment, whereas translation of (E/+) luc

mRNA was not affected under these conditions (Figure 6C) as

observed above in Figure 5B. Synthesis of Gag (p55) was detected

in extracts programmed with 50 ng HIV-1 mRNA, but optimal

translation was achieved with 100 ng (Figure 6D). Synthesis of

Gag-Pol was not detected, probably because this polyprotein is

synthesized by an inefficient mechanism involving ribosomal

frameshifting [54] (data not shown). Pre-treatment with 20 ng of

HIV-1 PR did not affect Gag production irrespective of the dose

Figure 3. Analysis of poly(A)-dependent translation of luc mRNAs in HIV-1 PR treated HeLa extracts. HeLa (A), Krebs-2 (B) extracts or RRL
(C) were treated with 20 ng HIV-1 PR for 30 min. Next, SQ 2.5 mM was added to the translation reaction to inhibit the protease activity. At this time
point, extracts were programmed with 200 ng (2/2) or (2/+) mRNAs. As a control, a replicate reaction was incubated with 2.5 mM SQ from the
beginning of incubation (grey bars). Luc activity was analyzed 30 min later and relative Luc activity from two independent experiments was
represented. D) In parallel, RNAs were isolated from HeLa extracts and the amount of luc mRNA was determined by real-time RT-PCR. Relative luc
mRNA levels were then represented. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0007997.g003
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of HIV-1g mRNA used (Figure 6D). These results indicate that

HIV-1g mRNA can be translated when eIF4GI and PABP are

cleaved by HIV-1 PR.

To further reinforce this observation HeLa extracts were treated

with increasing amounts of HIV-1 PR. After 30 min of pre-

incubation, 50 or 100 ng HIV-1g mRNA were added to the

translation mixture and protein synthesis was analyzed by

autoradiography 1h later (Figure 6E). Translation of (+/+) luc

mRNA was partially inhibited after incubation with 5 ng HIV-1

PR, and was almost completely blocked with 20 and 50 ng of the

retroviral protease (Figure 6E and F). Notably, Gag polyprotein

was synthesized from HIV-1g after pre-incubation with 5 or 20 ng

HIV-1 PR in a similar amount than control samples, although an

inhibition was observed (about 50%) when 50 ng of this protease

was used (Figure 6E and F). The behaviour of HIV-1g mRNA in

presence of HIV-1 PR was the same irrespective of the dose of

mRNA used (Figure 6E). These results suggest that HIV-1g

mRNA translation is more resistant to HIV-1 activity than cellular

capped and polyadenylated mRNAs.

Discussion

Host mRNAs are capped and polyadenylated by the cellular

machinery. These structures are essential for mRNAs to be

recognized by the protein synthesis machinery. Cleavage of

translation initiation factors is a mechanism employed by a

number of animal viruses to modulate host and viral protein

synthesis [3]. In this regard, different viruses such as retroviruses,

picornaviruses and caliciviruses have evolved similar strategies to

interfere with cap and poly(A)-tail recognition by initiation factors,

thereby maximizing the competitiveness of their own mRNAs for

the translational machinery [2,3]. eIF4GI, eIF4GII and PABP are

targets for viral proteases in mammalian cells infected with some

virus species, impairing the canonical initiation of translation

[3,9,10,17,18,55,56,57,58]. Our present findings indicate that

HIV-1 PR strongly inhibits translation of cellular mRNAs engaged

with protein synthesis machinery. Furthermore, this protease

blocks translation of polyadenylated mRNAs to a greater extent

than their unpolyadenylated counterparts. These results have been

Figure 4. Restoration of poly(A)-dependent translation by addition of recombinant GST-PABP1 in HeLa extracts treated with HIV-1
PR. HeLa lysates were incubated with or without 10 ng HIV-1 PR. The integrity of eIF4GI and PABP was determined by western blotting (A). After
30 min, 20 ng (2/G/+) (B), (+/2) (C), (+/+) (D), (2/+) (E) or (2/2) (F) luc mRNAs and 2.5 mM SQ was added to the extract. In a control reaction, SQ was
present throughout the time course (bar 2). The extracts indicated were then supplemented with 25 ng GST-PABP1 or GST. Luc activity was measured
1 h later. The relative Luc activity obtained from (2/G/+) (B), (+/2) (C), (+/+) (D), (2/+) (E) or (2/2) (F) luc mRNAs was represented. *P,0.05;
**P,0.01; ns, non-significant; C.p., putative cleavage product.
doi:10.1371/journal.pone.0007997.g004
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observed in cap-poly(A) synergistic extracts (HeLa and Krebs-2

lysates), revealing that these proteases are able to abrogate

synergism between the cap and poly(A) tail. In particular,

translation of a capped and polyadenylated luc mRNA in HIV-1

PR-treated extracts decreased to the translational level of an

uncapped and unpolyadenylated luc mRNA, suggesting that the

cap and poly(A) tail do not contribute to translation when the

protein synthesis machinery is modified by this viral protease.

Cleavage of both eIF4GI and eIF4GII is required for PV 2Apro to

inhibit completely the initiation of translation in HeLa cells [43].

Indeed, eIF4GI proteolysis alone is insufficient to block endogenous

protein synthesis [43,59]. These previous reports point to the idea

that, apart from eIF4GI, HIV-1 PR may cleave an additional

translation factor to abolish protein synthesis. We recently described

that HIV-1 PR efficiently bisects PABP [16], as occurs with PV

3Cpro [18]. Both proteases separate NTD and CTD domains of

PABP, but the retroviral protease carries out an additional cleavage

within RRM3 [16]. As occurs in the case of 3Cpro [19], HIV-1 PR

efficiently inhibits ongoing cellular translation, perhaps due to

eIF4GI and PABP cleavage since both factor are essential to

circularize mRNAs [30]. In addition, HIV-1 PR specifically blocks

poly(A)-dependent initiation of translation. Thus, luciferase synthe-

sis from an uncapped and polyadenylated mRNA is impaired in

HIV-1 PR treated HeLa and Krebs-2 extracts, whereas a weak

effect was observed on translation of an uncapped and unpolyade-

nylated luc mRNA. Moreover, HIV-1 PR has no apparent effect on

Luc synthesis from both types of uncapped mRNAs in RRL, that

does not exhibit poly(A)-dependent stimulation of translation. In

addition, incubation with exogenous GST-PABP1 partially restores

poly(A)-dependent translation in HIV-1 PR treated HeLa extracts.

Probably, translation of polyadenylated mRNAs is not completely

restored under our experimental conditions because eIF4GI is

partially proteolyzed, and this proteolysis impedes the interaction

between eIF4GI and PABP. Thus, simultaneous cleavage of eIF4GI

and PABP might cooperate to block efficiently poly(A)-dependent

translation underlying a double-target mechanism to inhibit host

translation.

Kahvejian et al. reported that a recombinant PABP containing

only the NTD portion is sufficient to significantly restore poly(A)-

dependent translation in PABP depleted Krebs-2 extracts, since

NTD contains the domains required to circularize the mRNA:

RRMs and eIF4G interacting site [30]. Nevertheless, under their

experimental conditions CTD was not present. CTD, separated by

HIV-1 PR, could reduce the availability of translation factors such

as eIF4B, Paip-1 or eRF3. Alternatively, lack of CTD could inhibit

the oligomerization of PABP on poly(A) tail [3,20]. HIV-1 PR also

cleaves PABP within RRM3, rendering a product containing

RRM1-2 [16]. A recombinant PABP protein that only contains

RRM1-2 has little capacity to restore poly(A)-dependent transla-

tion in PABP-depleted Krebs-2 extracts [30]. In addition, cleavage

products derived from PABP proteolysis by HIV-1 PR seem to be

unstable in cultured cells or in cell extracts [16]. Therefore, HIV-1

Figure 5. Effects of HIV-1 PR on translation of polyadenylated EMCV-IRES containing mRNAs in HeLa extracts. HeLa extracts were
treated with 20 ng of HIV-1 PR or 1 mg of MBP-2Apro for 30 min. HeLa extracts were then programmed with 50 ng of (E/2) or (E/+) luc mRNAs. The
samples were analyzed 1 h after the addition of luc mRNAs. A) Schematic representation of (E/2) and (E/+) luc mRNAs. B) Relative amounts of Luc
activity. SDs were determined from three measurements of two independent experiments. *P,0.05; **P,0.01; ns, non-significant. C) eIF4GI, eIF4GII
and PABP were analyzed by western blot. D) In parallel, after 1 h of translation reaction, total RNA was isolated from each sample and quantified by
real-time RT-PCR. The relative levels of luciferase mRNAs were plotted.
doi:10.1371/journal.pone.0007997.g005
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PR strongly inactivates PABP for translation. In conclusion, we

suggest that proteolysis of eIF4GI and PABP by HIV-1 PR blocks

host protein synthesis, as occurs when eIF4GI and eIF4GII are

cleaved by PV-2Apro. In this regard, PV-3Cpro provoked a potent

inhibition of ongoing protein synthesis by PABP hydrolysis. This

translational blockade increases when PV 3Cpro is combined with

PV 2Apro, leading to both PABP and eIF4G inactivation [19].

Therefore, HIV-1 PR possesses some 2Apro and 3Cpro activities,

targeting both eIF4G and PABP [9,16].

According to a recent report, PABP cleavage by 3Cpro inhibits

PV IRES-driven translation [60]. It has been proposed that PABP

cleavage, together with hydrolysis of other RNA-binding proteins,

such as polypyrimidine tract-binding protein (PTB) and other

PABP-associated proteins, are implicated in viral RNA switching

from translation to replication [58,60,61,62]. Translation of

picornavirus IRES-containing mRNAs are stimulated by poly(A)

tail, as occurs with host mRNAs. However, hydrolysis of both

eIF4G and PABP takes place in PV-infected cells, suggesting that

cap- and poly(A)-dependent translation should be impaired for

both viral and host mRNAs. Cleavage of eIF4GI by HIV-1 PR did

not enhance EMCV and PV IRES-driven translation to a level

comparable to that found after 2Apro incubation, although it was

sufficient to replace IRES poly(A) tail synergism in HeLa extracts.

In agreement with this data, 2Apro partially restores PV IRES-

driven translation in HeLa extracts treated with 3Cpro [60].

Therefore, HIV-1 PR resembles to some extent the action of 2Apro

and 3Cpro on picornavirus IRES-driven translation, perhaps due

to simultaneous cleavage of eIF4GI and PABP.

Figure 6. Translation of HIV-1g mRNA in presence of HIV-1 PR. A) Schematic representation of HIV-1g mRNA, indicating the structures of the
leader sequence and the open reading frames encoded. B) HeLa extracts were programmed with different doses of HIV-1 PR (5, 20 and 50 ng). eIF4GI
and PABP were analyzed by western blot after 30 min of incubation. C) HeLa extracts supplemented with [35S]Met-[35S]Cys were pre-incubated with
20 ng HIV-1 PR for 30 min. Extracts were then incubated with 2.5 mM SQ and programmed with 100 ng (+/+) or (E/+) luc mRNAs. Translation reaction
was stopped after 1 h and protein synthesis was analyzed by SDS-PAGE followed by fluorography and autoradiography. D) HeLa extracts
supplemented with [35S]Met-[35S]Cys were pre-incubated with 20 ng HIV-1 PR for 30 min. Extracts were then incubated with 2.5 mM SQ and
subsequently programmed with 20, 50 100 or 200 ng HIV-1g mRNA or 100 ng (+/+) luc mRNA. Translation reaction was stopped after 1 h and protein
synthesis was analyzed by SDS-PAGE followed by fluorography and autoradiography. The data shown in this figure is a representative experiment of
a set of three independent experiments. E) HeLa extracts supplemented with [35S]Met-Cys were pre-incubated with 5, 20 or 50 ng HIV-1 PR for
30 min. 2.5 mM SQ was added to the reaction mixture and next, extracts were programmed with 50 or 100 ng HIV-1g mRNA or 100 ng (+/+) luc
mRNA. Translation reaction was stopped after 1 h and protein synthesis was analyzed by SDS-PAGE followed by fluorography and autoradiography.
The data shown is a representative experiment of a set of two independent experiments. F) Comparative representation of Gag or Luc synthesis after
pre-incubation with increasing amounts of HIV-1 PR (5, 20 and 50 ng). SD, were obtained from two independent experiments. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0007997.g006
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Early findings indicated that HIV-1 mRNAs are translated by a

cap-dependent mechanism as occurs with most cellular mRNAs

[63]. However, recent reports have proposed that HIV-1 mRNAs

as well as mRNAs from other lentiviruses could be translated by

internal initiation [12,13,14,15,47,64]. In addition, a dual

mechanism (cap-dependent and cap-independent) translation has

been proposed for HIV-1 mRNAs [65]. Leader sequences from

HIV-1 mRNAs are long and highly structured, rendering HIV-1

mRNAs a poor substrate for ribosome scanning and cap-

dependent translation. In addition, the leader sequence of HIV-

1 and HIV-2 contains encapsidation signals, which are recognized

by Gag polyprotein. Oligomerization of Gag polyprotein onto

HIV-1 and HIV-2 leader sequence may inhibit the scanning of the

initiation complex [51,64]. Thus, internal initiation could be a

plausible mechanism for direct recruitment of ribosomes to the

initiation AUG during HIV infection. Consistent with this idea,

our present findings reveal that Gag polyprotein is synthesized in

spite of eIF4GI and PABP cleavage by HIV-1 PR from an

authentic HIV-1g mRNA. These results indicate that HIV-1g

mRNA can be translated when cap- and poly(A)-dependent

translation is arrested, supporting the concept that translation

initiation of this mRNA proceeds by a non-canonical mechanism.

We previously described that the translation of an unpolyadeny-

lated luc reporter mRNA bearing the HIV-1 leader sequence (cap-

L59HIV-Luc mRNA) is inhibited by HIV-1 PR in HeLa extracts,

whereas Gag synthesis from an mRNA that also contains gag gene

(cap-L59GAG-PR mRNA) is stimulated under these conditions

[9,47]. In this regard, we analyze here the translatability of an

authentic polyadenylated HIV-1 genomic mRNA in presence of

the retroviral protease. The data presented here using HIV-1g

mRNA agree well with the experiment carried out with cap-

L59GAG-PR mRNA in HeLa extracts [9,47], supporting the idea

that both mRNAs are efficiently translated in presence of HIV-1

PR. Further efforts are necessary to determine the exact molecular

mechanism by which HIV-1 mRNAs are engaged in the protein

synthesis machinery in HIV-1 infected cells.

Supporting Information

Figure S1 Translation of reporter luc mRNAs in HeLa extracts.

A) HeLa extracts were programmed with 50 ng (+/2), (+/+), (2/2)

and (2/+) luc mRNAs. 1 h later luciferase activity was measured in

each case and relative luciferase activity from three independent

experiments was plotted. B) HeLa extracts were programmed with

50 ng (+/G/2), (+/G/+), (2/G/2) and (2/G/+) luc mRNAs. 1 h

later luciferase activity was measured in each case and relative

luciferase activity from three independent experiments was plotted.

C) HeLa extracts were programmed with 50 ng (+/+) mRNA and

luciferase activity was analyzed after 5, 10 and 15 min. Error bars

represent SD from two independent experiments.

Found at: doi:10.1371/journal.pone.0007997.s001 (0.20 MB

JPG)

Figure S2 Translation of exogenous and endogenous luc

mRNAs in HIV-1 PR treated Kreb-2 extracts. Non-nuclease-

treated Kreb-2 extracts supplemented with [35S]Met-[35S]Cys/

ml were programmed with 50 ng of (+/2) or (+/+) luc mRNAs.

After 8 min, 20 ng of HIV-1 PR were added to the lysates. The

samples were analyzed 1 and 3 h after the initiation of the

reaction. A) Luc activity at each time point was measured and

plotted. Error bars indicate standard deviations obtained from

three measurements of each sample. B) Relative quantification of

the Luc activity obtained from HeLa extracts programmed with

(+/2) or (+/+) mRNAs in presence of HIV-1 PR with respect to

control extracts after 1 h of incubation. SDs were obtained from

three independent experiments. C) eIF4GI, eIF4GII and PABP

were detected by western blot. D) Endogenous protein synthesis

was analyzed by SDS-PAGE followed by fluorography and

autoradiography.

Found at: doi:10.1371/journal.pone.0007997.s002 (0.24 MB

JPG)
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