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Abstract

Two main approaches in exploring causal relationships in biological systems using time-series data are the application of
Dynamic Causal model (DCM) and Granger Causal model (GCM). These have been extensively applied to brain imaging data
and are also readily applicable to a wide range of temporal changes involving genes, proteins or metabolic pathways.
However, these two approaches have always been considered to be radically different from each other and therefore used
independently. Here we present a novel approach which is an extension of Granger Causal model and also shares the
features of the bilinear approximation of Dynamic Causal model. We have first tested the efficacy of the extended GCM by
applying it extensively in toy models in both time and frequency domains and then applied it to local field potential
recording data collected from in vivo multi-electrode array experiments. We demonstrate face discrimination learning-
induced changes in inter- and intra-hemispheric connectivity and in the hemispheric predominance of theta and gamma
frequency oscillations in sheep inferotemporal cortex. The results provide the first evidence for connectivity changes
between and within left and right inferotemporal cortexes as a result of face recognition learning.
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Introduction

In order to exploit the full potential of high-throughput data in

biology we have to be able to convert them into the most

appropriate framework for contributing to knowledge about how

the biological system generating them is functioning. This process

is best conceptualized as first building a nodal network derived

from empirically derived knowledge of the biological structures

and molecules involved (nodes) and then secondly to use

computational-based steps to discover the nature, dynamics and

directionality of connections (directed edges) between them.

Causality analysis based upon experimental data has become one

of the most powerful and valuable tools in discovering connections

between different elements in complex biological systems [1–6].

However, despite some encouraging successes in various areas in

systems or computational biology its development and application

have been impeded by a number of issues about the meaning of

causality. For example, in clinical science, the current emphasis on

how to apply causality approaches mainly resides in resolving the

problem of how clearly to define causality itself [7]. A typical

problem cited is the so called ‘‘Simpson paradox’’ in which the

successes of groups seem reversed when the groups are combined.

This demonstrates the ambiguity that can result in determining

causal relationships based only on frequency data. However, this

issue disappears if we incorporate time into the definition of

causality as Granger has done in the field of Economics [8].

Nevertheless there is still no accepted unified way to tackle this issue.

Taking altered gene expression data using microarray analysis as an

instance, there are three approaches one can use to deal with the

time-series data obtained: the simple dynamical system approach,

the dynamical Bayesian network approach and the Granger

causality approach which is a generalization of the dynamical

system one. In [9], we have discussed in detail the pros and cons of

applying the latter two approaches and shown potential advantages

in using Granger when sufficient repeated measurements are

available. With brain activity data from functional magnetic

resonance imaging (fMRI) experiments, two prominent techniques

have been introduced to address temporal dependencies and

directed causal influences: Dynamic Causal (DCM) and Granger

Causal (GCM) models. These two models have always been

considered to differ radically from each other [10,11]. DCM

establishes state variables in the observed data and is believed to be a

causal model in a true sense. On the other hand, GCM is a

phenomenological model which just tests statistical dependencies

among the observations to determine how the data may be caused

[10–12]. The importance of the two approaches in interpreting

fMRI data is demonstrated in [10] and in 2008 there were around

450 papers published devoted to both approaches and excluding

those relating to other types of biological data.

The key question we want to address in the current paper is

whether we can develop an extended and biophysical constraint

approach to share the features of the various approaches mentioned

above, and in particular of the two causal models: DCM and GCM?

The significance of such an approach is obvious and we would
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expect that its application could represent a powerful new tool in

systems and computational biology, particularly in association with

increasingly powerful genomic, proteomic and metabolic method-

ologies allowing time-series measurements of large numbers of

putatively interacting molecules.

In this paper, we will show that GCM can be extended to a more

biophysical constraint model by incorporating some features of

the bilinear approximation of DCM. By setting up a conventional

VAR model with additional deterministic inputs and observation

variables, we can create a more general model: Extended Granger

Causal Model (EGCM) which offers a new way to establish

connectivity.

The EGCM is first tested in two toy models. With both state

and observation variables, the interactions between nodes are

successfully recovered using an extended Kalman filter approach

and partial Granger to establish causality in both time (DCM) and

frequency (GCM) domains respectively. The GCM approach itself

is not tailored particularly well for biological experiments where

we are often faced with the case of the data being recorded with

and without a stimulus present. The time gap between two

adjacent stimuli is very short and we would expect the network

structure to remain unchanged during the whole experiment

although the form and the intensity of the input may be unknown.

This scenario is also the case for the gene network data considered

in [1,2], where the authors have treated the two situations

separately, although there should be a common and true structure

for both. We have therefore also used EGCM in toy models to

establish its efficacy in revealing the true network structure when

there is an intermittent input to affect state variables.

To exemplify the direct application of EGCM to establishing

causality in a specific biological system, we have applied it to local

field potential (LFP) data recorded in the sheep inferotemporal

cortex (IT) of both left and right hemispheres before and after they

learn a visual face discrimination task [13]. There is electrophys-

iological, molecular neuroanatomical and behavioral evidence for

asymmetrical processing of faces in the sheep brain similar to

humans [14–16] although cells in both the left and right IT

respond selectively to faces [15]. Learning also alters both local

and population based encoding in sheep IT as well as theta-nested

gamma frequency oscillations in both hemispheres and there is

greater synchronization of theta across electrodes in the right IT

than there is in the left IT [13]. There is considerable interest in

establishing functional differences between the ways the left and

right brain hemispheres interact and process information [17–19].

It has recently been hypothesized that the left hemisphere

specializes in controlling routine and tends to focus on local

aspects of the stimulus while the right hemisphere specializes in

responding to unexpected stimuli and tends to deal with the global

environment [18,19]. Establishing altered causal connections and

frequency dependency within and between the two hemispheres

during face recognition learning will help test this hypothesis.

Methods

Ethics Statement
All animal experiments were performed in strict accordance with

the UK 1986 Animals Scientific Procedures Act (including approval

by the Babraham Institute Animal Welfare and Ethics Committee)

and during them the animals were housed inside in individual pens

and able to see and communicate with each other. Food and water

were available ad libitum. Post-surgery all animals received both

post-operative analgesia treatment to minimize discomfort and

antibiotic treatment to prevent any possibility of infection.

EGCM Model
The traditional and widely used Granger Causal Model takes

the form [20]:

~xx(t)~A1~xx(t{1)z � � �zAp ~xx(t{p)z~ee(t) ð1Þ

where ~xx(t)[RN , Ai~

ai
11 � � � ai

1N

..

.
P

..

.

ai
N1 � � � ai

NN

2
64

3
75, i~1, � � � , p are coeffi-

cient matrices, ~ee(t) is the noise, and the model has a vector

autoregressive representation with an order up to p.

In spite of its successful application, GCM requires the direct

observation of the state variables and does not include designed

experimental effects in the model which form some of its

limitations. Here we extend GCM to a more reasonable and

biophysical constraint model by incorporating additional deter-

ministic inputs and observation variables, closely following

equations which are the features in the Dynamical Causal Model

and its bilinear approximation form [10]. The extended Granger

Causal Model takes the form:

~xx(t) ~ ½A1zu(t{1)B1�~xx(t{1)z � � �

z½Apzu(t{p)Bp�~xx(t{p)zv(t{1)~ccz~ee(t)

~yy(t) ~ ~gg(~xx(t))z~ee�(t)

8>><
>>: ð2Þ

where u(t) and v(t) are deterministic inputs, ~yy(t) are the

observation variables which are the function ~gg of the state

variables, Bi,i~1, � � � ,p are the coefficients that allow the inputs to

modulate the coupling of the state variables, ~ee(t) and ~ee�(t) are

intrinsic and observation noise and are mutually independent.

Now, if we can recover the state variables ~xx(t) from the noise

observation variables ~yy(t), all the problems can be considered in

the framework of the traditional Granger causality. It’s clear that

Author Summary

The right temporal cortex has previously been shown to
play a greater role in the discrimination of faces in both
sheep and humans. In the frequency domain, analysis of
the relative causal contributions of low (theta 4–8Hz) and
high (gamma 30–70Hz) frequency oscillations reveals that
prior to learning, theta activity is more predominant in
right than in left hemisphere processing, and that learning
reduces this so that high frequency oscillations gain more
control. We have been able to demonstrate that the
frequency of connections increases in the right hemi-
sphere and decreases between the left and right
hemispheres after learning. The results are obtained based
upon a way to combine aspects of both the Granger and
Dynamic Causal Models, which can be used to establish
significant causal relations in both time and frequency
domains and applied to local field potential recordings
from multiple (64 channel) electrodes implanted in the
inferotemporal cortex of both sides of the brain in sheep in
order to establish changes in causal connections within
and between the two hemispheres as a result of learning
to discriminate visually between pairs of faces. It is
anticipated that this new approach to the measurement
of causality will not only help reveal how the two brain
hemispheres interact, but will also be applicable to many
different types of biological data where variations in both
frequency and temporal domains can be measured.

Brain Asymmetry and Causality Analysis
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the formal difference between EGCM and GCM is that we have

included observation variables and deterministic inputs which are

assumed to be known and will affect the connection of the state

variables as well as the state variables directly. However, EGCM

also has a strong connection with Dynamical Causal Model. We

refer the readers to Discussion section for a detailed discussion on

the importance of this extension, in particular the relationship

between Eq. (2) and the Volterra type series expansion [10].

EGCM Algorithm
For the extended Granger Causal model Eq. (2), we now

introduce an algorithm to estimate the state variables as well as all

its parameters which will give us the first inspiration of the

connection of the state variables.

Let ~XX (t)~

~xx(t)

..

.

~xx(t{pz1)

2
64

3
75, ~YY (t)~

~yy(t)

..

.

~yy(t{pz1)

2
64

3
75, ~UU(t)~

u(t)

..

.

u(t{pz1)

2
64

3
75.

Then, the VAR(p) model can be reduced to a VAR(1) model

which takes the form:

~XX (tz1)~

A1zu(t)B1 A2zu(t{1)B2 . . . Apzu(t{pz1)Bp

I 0 . . . 0

..

.
P P

..

.

0 . . . I 0

2
666664

3
777775~XX (t)

zv(t)

~cc

0

..

.

0

2
666664

3
777775z~ww(t)

¼D A(~hh,~UU(t))~XX (t)zC(~hh)v(t)z~ww(t) ¼D ~ff (~XX (t),~UU(t),v(t),~hh)z~ww(t),

~YY (t)~~hh(~XX (t))z~ss(t)

where~hh is the parameter vector to be estimated. ~ww(t) and~ss(t) are

both zero-mean uncorrelated Gaussian noise with covariance

matrix Q(t) and R(t) respectively.

In order to apply the model to real data, we have to estimate

both the states and parameters of the model from input variables

and noise observations. A widely used method for this dual

estimation is extended Kalman filter (EKF) [21,22]. Here we

recursively approximate the nonlinear system by a linear model

and use the traditional Kalman filter for the linearized model.

Let ~jj~ ~XX T ,~hhT
h iT

then

~jj(tz1) ~
~XX (tz1)

~hh(tz1)

" #
~

~ff (~XX (t),~UU(t),v(t),~hh)

~hh(t)

" #
z

~ww(t)

~gg(t)

" #

~
A(~hh,~UU(t))~XX (t)zC(~hh)v(t)

~hh(t)

" #
z~ff(t)

¼D ~gg(~jj(t),~UU(t),v(t))z~ff(t)

where ~gg(t) is uncorrelated Gaussian noise with covariance matrix

Z(t). Define

ĵjtjt ~ E½j(t)j~YY (t),~UU(t),v(t)�

ĵjtz1jt ~ E½j(tz1)j~YY (t),~UU(t),v(t)�

Vtjt ~ E½(j(t){ĵjtjt)(j(t){ĵjtjt)
T j~YY (t),~UU(t),v(t)�

Vtz1jt ~ E½(j(tz1){ĵjtz1jt)(j(tz1){ĵjtz1jt)
T j~YY (t),~UU(t),v(t)�

where ĵj tjt~
X̂X tjt
ĥhtjt

" #
, ĵj tz1jt~

X̂X tz1jt
ĥhtz1jt

" #
. Then, the EKF algorithm

for dual estimation consists of two steps: prediction and updating.

Prediction. Given the estimated state ĵj tjt, the observation
~YY (t) and inputs ~UU(t) and v(t), we predict the state variables and the

covariance matrix of prediction error of the system at time tz1.

ĵjtz1jt ~ E½j(tz1)j~YY (t),~UU(t),v(t)�~E½~gg(j(t),~UU(t),v(t))z~ff(t)j~YY (t),~UU(t),v(t)�

& E½(~gg(ĵjtjt,~UU(t),v(t))z
L~gg
LjT

(j(t){ĵjtjt)j~YY (t),~UU(t),v(t)�

~ ~gg(ĵjtjt,~UU(t),v(t))~
A(ĥhtjt,~UU(t)) 0

0 I

" #
ĵjtjtz

C(ĥhtjt)

0

" #
v(t)

Vtz1jt ~ E½(j(tz1){ĵjtz1jt)(j(tz1){ĵjtz1jt)
T j~YY (t),~UU(t),v(t)�

~ E½(~gg(j(t),~UU(t),v(t))z~ff(t){ĵjtz1jt)(~gg(j(t),~UU(t),v(t))

z~ff(t){ĵjtz1jt)
T j~YY (t),~UU(t),v(t)�

& E½( L~gg
LjT

(j(t){ĵjtjt)z~ff(t))(
L~gg
LjT

(j(t){ĵjtjt)z~ff(t))T j~YY (t),~UU(t),v(t)�

~ FtVtjtF
T
t zY(t)

where Y(t)~
Q(t) 0

0 Z(t)

� �
and

Ft~

Lf

LX T

Lf

LhT

0 I

2
4

3
5~ A(~hh,~UU(t))

L
LhT
½A(~hh,~UU(t))~XXzC(~hh)v(t)�

0 I

2
4

3
5

h~ĥhtjt ,X~X̂X tjt

Updating. We use the new observation ~YY (tz1) at time tz1
to update the state of the system.

ĵjtz1jtz1 ~ ĵjtz1jtzG(tz1)½~YY (tz1){~hh(X̂X tz1jt)�

Vtz1jtz1 ~ ½I{G(tz1)H(tz1)�Vtz1jt

where

G(tz1) ~ Vtz1jtH
T (tz1)½H(tz1)Vtz1jtH

T (tz1)zR(tz1)�{1

H(tz1) ~
Lh

LX T
0

� �
X̂X tz1jt

EGCM Definition of Causality
After recovering the state variables using the EGCM algorithm

above, we can define the causality with the idea proposed by

Granger. The only difference is that, in our EGCM model, two

deterministic inputs u(t) and v(t) are added to the normal

autoregressive representation. Here, we provide the formulation of

EGCM causality in both time domain and frequency domains.

Causality in the Time Domain
For simplicity of notation, here we only formulate EGCM for

two time series Xt and Yt. To generalize them to more general

Brain Asymmetry and Causality Analysis
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case of multi time series, we refer the readers to [23,24]. Assume

that Xt and Yt in our EGCM have the following representation:

Xt ~
Pp
j~1

½a1jzu(t{j)b1j �Xt{jzC1xv(t{1)ze1t

Yt ~
Pp
j~1

½d1jzu(t{j)e1j �Yt{jzC1yv(t{1)ze2t

ð3Þ

A joint representation in our EGCM that includes the past

information of both processes Xt and Yt can be written as:

Xt ~
Xp

j~1

½a2jzu(t{j)b2j �Xt{jz
Xp

j~1

½d2jzu(t{j)e2j �Yt{jzC2xv(t{1)ze3t

Yt ~
Xp

j~1

½f2jzu(t{j)g2j �Xt{jz
Xp

j~1

½h2jzu(t{j)k2j �Yt{jzC2yv(t{1)ze4t

ð4Þ

where p is the maximum number of lagged observations included

in the model. eit(t), i~1,2,3,4 are prediction errors with variance

Si and are uncorrelated over time. Then, according to the

causality definition of Granger, if the prediction of one process can

be improved by incorporating the past information of the second

process, then the second process causes the first process. So, in the

extended model here, we define that if the variance of prediction

error for the process Xt is reduced by the inclusion of the past

information of the process Yt, then, a causal relation from Yt to Xt

exists. This can be quantified as

FY?X ~ ln
S1

S3
ð5Þ

If FY?X ~0, there is no causal influence from Yt to Xt and if

FY?X w0, there is. Similarly, we can define the causal influence

from Xt to Yt as

FX?Y ~ ln
S2

S4
ð6Þ

Causality in the Frequency Domain
Our EGCM also allows a frequency domain decomposition to

detect the intrinsic causal influence which provides valuable

information.

We define the lag operator L to be LXt~Xt{1 and assume here

that the input u(t) is a constant, i.e. u(t):u to avoid the

appearance of nonlinearity. Then, the joint representation of both

processes Xt and Yt in equation (4) can be expressed as:

Xt ~
Xp

j~1

½a2jzub2j �Xt{jz
Xp

j~1

½d2jzue2j �Yt{jzC2xv(t{1)ze3t

~
Xp

j~1

~aa2jXt{jz
Xp

j~1

~bb2jYt{jzC2xv(t{1)ze3t

Yt ~
Xp

j~1

½f2jzug2j �Xt{jz
Xp

j~1

½h2jzuk2j �Yt{jzC2yv(t{1)ze4t

~
Xp

j~1

~cc2jXt{jz
Xp

j~1

~dd2jYt{jzC2yv(t{1)ze4t

ð7Þ

Rewrite equation (7) in terms of lag operator, we have:

~aa2(L) ~bb2(L)

~cc2(L) ~dd2(L)

" #
Xt

Yt

� �
~

e3t

e4t

� �
zv(t{1)

C2x

C2y

� �
ð8Þ

where ~aa2(0)~1, ~bb2(0)~0, ~cc2(0)~0, ~dd2(0)~1.

Since what we really care about is the causal relationship caused

by the intrinsic connection of the state variables rather than the

outside driving force, i.e. the input v(t), after fitting the model (7)

and getting the covariance matrix of the prediction error, we just

go on with the following model:

~aa2(L) ~bb2(L)

~cc2(L) ~dd2(L)

" #
Xt

Yt

� �
~

e3t

e4t

� �
ð9Þ

which means that after fitting the EGCM with input v(t) to

eliminate outside influence, we just focus on the intrinsic causal

influence in the frequency domain.

After normalizing equation (9) using the transformation proposed

by Geweke [25,26] to eliminate the cross term in the spectra, we

assume that we have the normalized equation in the form:

�aa2(L) �bb2(L)

�cc2(L) �dd2(L)

" #
Xt

Yt

� �
~

�ee3t

�ee4t

� �
ð10Þ

Fourier transforming both sides of equation (10) leads to

�aa2(v) �bb2(v)

�cc2(v) �dd2(v)

" #
X (v)

Y (v)

� �
~

{
Ex(v)
{
Ey(v)

" #
ð11Þ

Recasting equation (11) into the transfer function format we obtain

X (v)

Y (v)

� �
~

Hxx(v) Hxy(v)

Hyx(v) Hyy(v)

� � {
Ex(v)
{
Ey(v)

" #
ð12Þ

After proper ensemble averaging we have the spectral matrix

S(v)~H(v)SH�(v)~
Sxx Sxy

Syx Syy

� �
ð13Þ

where * denotes the complex conjugate and matrix transpose and

S~
Sxx Sxy

Syx Syy

� �
is the covariance matrix of the prediction errors

in equation (11). Hence, we can define the causal influence from Yt

to Xt at frequency v as

fY?X (v)~ ln
Sxx(v)

Hxx(v)SxxH�xx(v)
ð14Þ

Similarly, we can define the causal influence from Xt to Yt at

frequency v as well.

Note that although here we just provide the definition of pairwise

Granger causality for EGCM, it’s obvious that similar methods

can be easily applied to the definition of conditional, partial or

complex Granger causality in both time and frequency domains

[9,23,24,27–30]. Since the explicit meaning of the parameters in the

EGCM (i.e. the intrinsic coupling among state variables, the

strength of the inputs to modulate the coupling and the influence of

the inputs on the state variables directly), we can also get an idea of

the connection of the state variables and how the inputs affect them

from the fitted model before we translate it into a single number.

Brain Asymmetry and Causality Analysis
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Methods for LFP Recording Experiment
Animals and visual discrimination training. Three female

sheep were used (Ovis aries, one Clun Forest and two Dorsets). All

experiments were performed in strict accordance with the UK 1986

Animals Scientific Procedures Act. During the experiments the animals

were housed inside in individual pens. They were trained initially over

several months to perform operant-based face (sheep) or non-face

(objects) discrimination tasks with the animals making a choice between

two simultaneously presented pictures, one of which was associated with

a food reward. During stimulus presentations, animals stood in a

holding trolley and indicated their choice of picture by pressing one of

two touch panels located in the front of the trolley with their nose. The

food reward was delivered automatically to a hopper between the two

panels. The life-sized pictures were back projected onto a screen 0:5m in

front of the animal using a computer data projector. A white fixation

spot on a black background was presented constantly in between trials to

maintain attention and experimenters waited until the animals viewed

this spot before triggering presentation of the image pairs. The stimulus

images remained in view until the animal made an operant response

(generally around 1{3s). In each case, successful learning of a face or

object pair required that a performance criterion of w75% correct

choices over 40 trials (i.e. 40 pairs) was achieved consistently. By the end

of training, animals were normally able to reach the w75% correct

criterion after 40–80 trials and maintain this performance. For the

current analysis extensive recordings taken during and after learning of

novel face pairs were used (2 pairs for Sheep A; 2 pairs

for Sheep B – only one of which was successfully learned – and 1 pair

for Sheep C). In all cases recordings were made over 20–80 trials during

learning and then during 46–170 trials after the w75% correct criterion

was reached. Post learning trials ranged from within 5–10 minutes of

the end of a learning trial session to 2 months after learning. For the face

pairs, Sheep A and B were discriminating between the faces of different

unfamiliar sheep faces (face identity discrimination) whereas for Sheep

C, discrimination was between calm and stressed face expressions in the

same animal (face emotion discrimination). With this latter animal, the

calm face was the rewarded stimulus.

Electrophysiological recordings and analysis. Following

initial behavioral training sheep were implanted under general

anesthesia (fluothane) and full aseptic conditions with unilateral

(Sheep A-right IT) or bilateral (Sheep B and C) planar 64-electrode

arrays (epoxylite coated, etched, tungsten wires with 250mm
spacing - total array area around 2mm|2mm tip diameter

v1 m, electrode impedence 200{300kV) aimed at the IT. Holes

(0:5cm diameter) were trephined in the skull and the dura beneath

cut and reflected. The electrode bundles were introduced to a depth

of 20{22mm from the brain surface using a stereotaxic

micromanipulator and fixed in place with dental acrylic and

stainless-steel screws attached to the skull. Two of these screws

acted as reference electrodes, one for each array. Electrode depths

and placements were calculated with reference to X-rays, as

previously described. Electrodes were connected to 34 pin female

plugs (2 per array) which were cemented in place on top of the skull

(using dental acrylic). Starting 3 weeks later, the electrodes were

connected via male plugs and ribbon cables to a 128 channel

electrophysiological recording system (Cerebus 128 Data Acquisition

System - Cyberkinetics Neurotechnology Systems, USA) and

recordings made during performance of the different face and

non-face pair operant discrimination tasks. This system allowed

simultaneous recordings of both neuronal spike and local event-

related (LFP) activity from each electrode. Typically, individual

recording sessions lasted around 30 min and for 80–200 individual

trials. There was at least a week between individual recording

sessions in each animal. The LFPs were sampled at 2kHz and

digitized for storage from around 3 seconds prior to the stimulus

onset to around 3 seconds after the stimulus onset (stimulus

durations were generally 1{3s).

For data analysis of the stored signals LFP data contaminated

with noise such as from animal chewing food were excluded as were

LFPs with unexpectedly high power. For LFPs, offline filtering was

applied in the range of 1{200Hz and trend was removed before

spectral analysis. Any trial having more than 5 points outside the

mean +5 standard deviation range were discarded before analysis.

At the end of the experiments, animals were euthanized with an

intravenous injection of sodium pentobarbitone and the brains

removed for subsequent histological confirmation of X-rays that

array placements were within the IT cortex region.

Results

In order to evaluate the performance of EGCM for the

estimation of the state variables as well as the prediction of the

parameters, we first applied the method to two toy models.

Toy Models
Toy Model 1. The first toy model we used comes from a

traditional VAR model which has been extensively applied in tests of

Granger causality [31]. We modified the model by adding two

deterministic inputs u(t) and v(t). u(t) was assumed to be a constant

stimulation, i.e. u(t):0:1 while v(t) was assumed to a harmonic

oscillator and had the form of a sinusoidal function since biological

rhythms are a common phenomenon. Observation variables were also

included in the toy model and assumed to be nonlinear functions of

the state variables since it’s a real challenge to uncover state variables

with nonlinear mapping from states to measurements [32,33]. We

generated the time series according to the following equations:

x1(t) ~ 0:95
ffiffiffi
2
p

x1(t{1){0:9025x1(t{2)z0:1x1(t{1)

z0:1 cos½2p

50
(t{1)�ze1(t)

x2(t) ~ {0:5x1(t{1)z0:5x3(t{2){0:8|0:1x2(t{1)ze2(t)

x3(t) ~ {0:5x2(t{1)z0:5x3(t{1)z1:2|0:1x3(t{1)

{0:1 cos½2p

50
(t{1)�ze3(t)

where ei(t), i~1,2,3 were zero mean uncorrelated Gaussian noise

with variance 0.5, 0.8 and 0.6 respectively. Hence, according to the

general form of EGCM, in this toy model we have:

A1 ~
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2
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2
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u(t) : 0:1, v(t)~0:1 cos½2p

50
(t{1)�:
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Inspection of the above equations reveals that x1(t) is a direct source

to x2(t), x2(t) and x3(t) share a feedback loop. There is no direct

connection between the remaining pairs of the state variables.

Fig. 1A is an example of the 2000 time-steps of the data and

Fig. 1B shows the network structure.

The observation variables were

y1(t) ~ x1(t)ze4(t)

y2(t) ~ x2(t)zx3(t)ze5(t)

y3(t) ~ x1(t):x3(t)ze6(t)

where ei(t), i~4,5,6 were zero mean uncorrelated Gaussian noise

with variance 0.1 and also uncorrelated with ei(t), i~1,2,3.

Now, we can apply the method to this toy model, i.e., to

estimate all the parameters ~AA1,A2,~cc and state variables xi(t) from

the deterministic input u(t), v(t) and noise observations.

Simulations were performed for 2 seconds (2000 equally spaced

time points). Fig. 1C shows that the parameters converged to their

true values with only small fluctuations after several hundred data

points, even though no prior knowledge was included and the

initial values of the parameters were assigned to zeros. It has

Figure 1. Results on Toy Model 1. A. Traces of the time series. B. The causal relationships considered in Toy Model 1 between the three state
variables. C. The estimated parameters ~aa1

11, a2
22, and c3 for the simulated data in Toy Model 1. The initial values of the three parameters are all set to 0. The

covariance matrix Z(t) is first set to decay slowly to achieve faster convergence and then set to decay faster after two hundred time points to ensure a
better accuracy. D. Frequency decomposition of all kinds of relationships between the state variables. Significant causal influences are marked by red.
doi:10.1371/journal.pcbi.1000570.g001
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already been pointed out that the covariance matrix Z(t) (see

Methods section) of the noise in the parameter equation will affect

the convergence rate and tracking performance [34]. In the

situation here, a steep decay of the covariance matrix will lead to a

better accuracy but the convergence is then slow. On the other

hand, a slow decay will lead to a faster convergence but a larger

fluctuation is observed. Hence, Z(t) was carefully controlled to

reduce to zero as the t increased (see Fig. 1C).

After the state variables being recovered, we computed the

partial Granger causality in both time and frequency domains (see

Fig. 1D) and used the bootstrap approach to construct confidence

intervals. Specifically, we simulated the fitted model to generate a

data set of 1000 realizations of 2000 time points and use 3s as the

confidence interval. In this result, a causal connection was

illustrated as part of the network if, and only if, the lower bound

of the 95% confidence interval of the causality was greater than

zero. The results show that our extended model can detect the

causal relationship correctly in both time and frequency domains.

Toy Model 2. When dealing with real data it is quite

common that we need to detect the causal influence between time

series from several variables affected by some stimulus. The

stimulus may be very complicated, or hard to measure, and it may

be impossible to formulate its form explicitly. However, if we

ignore the influence of these inputs and use a traditional VAR

model to detect the causality it is quite probable that we will get a

misleading structure even if we use a high-order VAR model.

We used the following toy model which has exactly the same

connection coefficients between the three state variables considered

in Toy model 1 with an additional simple constant input function p:

x1(t) ~ 0:95
ffiffiffi
2
p

x1(t{1){0:9025x1(t{2)zpze1(t)

x2(t) ~ {0:5x1(t{1)z0:5x3(t{2)zpze2(t)

x3(t) ~ {0:5x2(t{1)z0:5x3(t{1){pze3(t)

ð15Þ

where ei(t), i~1,2,3 were zero mean uncorrelated Gaussian noise

with variance 0.5, 0.8 and 0.6 respectively.

Here, we assumed that p:0:5 and the observation variables

yi(t), i~1,2,3 were identical to the state variables with observation

noise. The variance of the noise was 0.1. It is obvious that the

network structure is the same one as shown in Fig. 1B. However, if

we ignore the constant input and just use a VAR model to detect

this structure, we obtain the structure shown in Fig. 2A and Fig. 2B

with confidence intervals where two additional causal relationships

(i.e. 1?3 and 3?1) are presented showing that the real causal

influence can no longer be correctly detected. Furthermore, when

the input is not taken into consideration, the coefficients of the

connection matrix will be meaningless and no longer provide us

with the correct estimation of the strength of connection strengths

between the state variables. This illustrates why we consider it

necessary to incorporate the stimulus into our model although

sometimes we don’t know its form or intensity.

Figure 2. Results on Toy Model 2. Network structures with and without stimulus. A. Confidence intervals of all links between units. The data is
generated with Eq. (15), but we use p~0 (without input) in our algorithms and a traditional VAR(10) model to detect the causal influence. B. The
network structure of the state variables corresponding to A. Two additional causal relationships are marked by the dashed line. C. Confidence
intervals of all links between units. The data is generated with Eq. (16) where p and ci , i~1,2,3 are generated with normal distribution (with input). D.
The network structure of the state variables corresponding to C.
doi:10.1371/journal.pcbi.1000570.g002
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With our extended model we can, to some extent, solve the

above issue and detect the causal influence correctly amongst those

state variables affected by some unknown stimulus intermittently,

although our model is originally set up for deterministic inputs.

We next generated a time series of 10000 time points which was

composed of 10 segments with equal length, a.e., 1{1000,
1001{2000, � � � , 9001{10000. Each segment took the form:

x1(t)

x2(t)

x3(t)

2
64

3
75~A1

x1(t{1)

x2(t{1)

x3(t{1)

2
64

3
75zA2

x1(t{2)

x2(t{2)

x3(t{2)

2
64

3
75zp

c1

c2

c3

2
64

3
75z

e1(t)

e2(t)

e3(t)

2
64

3
75ð16Þ

where A1~
0:95

ffiffiffi
2
p

0 0
{0:5 0 0

0 {0:5 0:5

2
4

3
5, A2~

{0:9025 0 0

0 0 0:5
0 0 0

2
4

3
5

and ei(t), i~1,2,3 were zero mean uncorrelated Gaussian noise

with variance 0.5, 0.8 and 0.6 respectively.

The five segments 1{1000, 2001{3000, � � � , 8001{9000 were

generated according to the above toy model without input, i.e.,

p:0, while the remaining five segments were assumed to include

input of random intensity which would also affect the state variables

randomly. Specifically, within each segment, p was assigned a

random value which was generated with the normal distribution

p*N(0,1), and the same was the case with ci: ci*N(0,1), i~1,2,3.

Observation variables were still assumed to be identical to the state

variables with the variation of observation as 0.1.

Hence, the network structure of the three state variables is still

the same as shown in Fig. 1B while each state variable is affected

by some input that we don’t know the intensity of. Fig. 2C and

Fig. 2D show the predicted network structure with confidence

intervals using our extended model. The results show that we can

still detect the causal influence correctly in this situation.

LFP from Left and Right Hemisphere
Local field potential data were obtained from 64-channel

multielectrode arrays implanted in the right and left inferior

temporal cortices of three sheep (one sheep only had electrodes in

the right hemisphere) as previously described [13]. Recordings

were made while the animals were presented with pairs of faces

which they were required to discriminate between using an

operant response in order to obtain a food reward. In between face

pair presentations the animals were presented with a visual

fixation stimulus (a white spot on a black screen). Recordings were

made during sessions of 20–40 trials where they were either still

learning the discrimination or had successfully achieved the

learning criterion (w75% correct choice of rewarded face). In both

the left and right IT the main oscillatory frequencies recorded are

in the theta (4{8Hz) and gamma (30{70Hz) ranges and these

two frequencies are coupled (theta phase and gamma amplitude)

[13]. We have previously shown that learning increases theta

amplitude, the ratio of theta to gamma, theta/gamma coherence

and the tightness of theta phase [13].

With these experimental data, we can directly use our EGCM

to detect the global network for all electrodes in both brain

hemispheres. However, due to the size of the network, there are at

least a few thousand free parameters to fit. To avoid this issue, we

adopt another approach here. For each session we randomly select

3 time series from each region respectively and apply our model to

detect the network structure for the six electrodes. This procedure

is repeated for 100 times for each session (see Fig. 3 for such an

example). The visual stimulus to the IT (including feedforward and

feedback signals) is impossible to know in the experiment.

However, as we have shown above, we are able to make the

assumption that the effect of the stimulus can be regarded as a

constant input to each electrode. The inclusion of the stimulus

signal will certainly make the model more reasonable.

A further problem here is that if we intend to reconstruct the

connections for each six electrodes (left and right) before and after

the stimulus respectively, we could end up with two different

structures for the time series (not shown). This is certainly not the

case since the duration of the stimuli is quite short (1–3 seconds)

and the connections will not change in such a short time. To

recover a reasonable structure of the connection in these areas in

the brain, we therefore assume here that the connections in each

trial don’t change and the time series before and after the stimulus

are generated from a unified structure. With the application of our

EGCM approach, we can include the intermittent stimulus and

obtain a comparatively reliable structure. Fig. 3 (top-panel) shows

such an example where three electrodes in the left and three in the

right are randomly selected and that inter- and intra-hemisphere

interactions are detected. Fig. 3 (bottom-panel) is the correspond-

ing frequency decomposition of the top panel.

In Fig. 4 we show the mean connections within and between the

left and right IT calculated using EGCM and as a function of

learning. The results clearly demonstrate an asymmetry between

the hemispheres. The top-panel is an illustration of the bottom

panel which summarizes the results of all experimental data for the

two sheep. The most noticeable change is a decrease in the

number of connections from the left to the right and an increase in

connections within the right but not in the left IT. Indeed there

was a strong negative correlation between the number of left to

right connections and the number within the right IT for both

animals (Sheep B, r~{0:7739 (p~0:0114); Sheep C, r~{0:965
(p~0:0346)). These changes occurred as soon as the learning

criterion was successfully achieved in successive blocks of trials (i.e.

in as little as 5–10 minutes in the case sheep B where learning was

successfully achieved within a specific recording session) and were

maintained after 1 month or more post-learning. They were not

simply the results of stimulus repetition because in Sheep B where

recordings were made in repeated sessions of up to 120 trials but

where the learning criterion was not achieved for one of the face

pairs there were no connectivity changes observed.

One of the advantages of the extended approach is that we have

a frequency domain decomposition. Brain rhythms, not surpris-

ingly, have also been intensively investigated in the literature [35].

Here we concentrate on the two main frequency bands: theta band

(4{8Hz) and gamma band (30{70Hz) present in our IT

recording data and which have been extensively linked to

mechanisms of learning and memory [13,35]. Using the frequency

decomposition of our extended model discussed in Methods

section, we looked at the following two quantities:

mean ratio ~ mean interaction in the theta band =

mean interaction in the gamma band

max ratio ~ max interaction in the theta band =

max interaction in the gamma band

Fig. 5A shows the mean and maximum ratio integrating the data

from all the three sheep in the experiment and at different stages of

learning. From this it can be seen that both the mean and

maximum ratios in the right hemisphere IT are about double

those in the left hemisphere. This clearly indicates that for the

right hemisphere, the theta band interaction is more dominant,

i.e., the right hemisphere deals more with signals of lower

frequency.
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In order to provide a deeper insight into this frequency story, we

compute the ratios at different stages of learning. Fig. 5B shows the

mean and maximum ratio in two sheep before learning, after

learning and a month after learning. An additional set of data is

one week after learning for sheep C only. The most noticeable

change is the reduction in the interactions in the theta band (low

frequencies) in the right IT which occurs after learning and is

maintained subsequently. Combining Fig. 4C (right) with Fig. 5C,

we see that learning in general changes the connections in the right

hemisphere (increasing), however, the increasing interactions are

mainly due to the enhancement of the interaction at the high

frequency domain.

Discussion

Comparing EGCM, GCM and DCM. EGCM has a strong

connection with DCM as well as GCM. We consider the

Dynamical Causal model:

d~xx(t) ~ f (~xx,u,h)dtzsdBt

~yy(t) ~ ~gg(~xx(t))z~ee(t)

(
ð17Þ

where ~xx(t)~(x1, � � � ,xN )T are state variables and (:)T is the

transpose of a vector, u(t) is a known deterministic input

Figure 3. An example of the application of EGCM. The network detected by EGCM (top-panel) and the corresponding frequency
decomposition (bottom-panel) for six randomly selected electrodes. In the frequency decomposition, significant causal influences are marked by
red.
doi:10.1371/journal.pcbi.1000570.g003
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corresponding to designed experimental effects, h is the set of

parameters to estimate, s is the diffusion matrix (could depend on

time) and Bt is the Brownian motion (or in general, it could be a

martingale). The state variables ~xx(t) enter a specific model to

produce the outputs ~yy(t) with the observation noise~ee(t).

Here we focus on the bilinear approximation of the Dynam-

ical Causal model which is the most parsimonious but useful

form [10]:

d~xx(t) ~ Azu(t)B½ �~xx(t)dtzu(t)~ccdtzsdBt

~yy(t) ~ ~gg(~xx(t))z~ee(t)

(
ð18Þ

where
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Figure 4. Asymmetry between left and right hemisphere in the time domain. A. A summary of the results in B, but locations in inferotemporal
cortex are not precise, only for illustrative purposes. B. The mean connections from left hemisphere to right hemisphere, right hemisphere to left
hemisphere and within both regions with the three bars corresponding to the results before learning (blue bar), after learning (green bar), and one
month after learning (purple bar) in Sheep B. Significant changes after t-test are marked by arrows (right to left, all pairs are not significant, as indicated
by ‘‘none’’; within the right hemisphere, all pairs are significant, marked by ‘‘all’’) . For Sheep C, an additional bar (one week after learning) is added (the
third bar). Only significant changes from left to right and within the right hemisphere are indicated by arrows. C. Statistic summaries of results in B.
doi:10.1371/journal.pcbi.1000570.g004
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are parameters that mediate the intrinsic coupling among states,

allow the inputs to modulate the coupling, and elicit the influence

of extrinsic inputs on the states respectively. Here, for simplicity,

we have expanded the state equation around ~xx~0 and assumed

that f (0)~0.

The bilinear approximation of DCM is represented in terms of

nonlinear differential equations while the GCM (see Eq. (1)) is

formulated in discrete time and the dependencies among state

variables are approximated by a linear mapping over time-lags

which seems to be quite different. However, we can find the

difference is that the bilinear form includes deterministic inputs and

observation variables and equations which are not considered in

GCM. The formulation (18) comes from the Volterra series and is

certainly a more accurate and biophysical constraint representation

of a biological system. On the other hand, the GCM with

autoregressive representation always takes the past information

into consideration while the bilinear approximation of DCM has no

time-lags included in the differential equations although the general

form of DCM may have [36]. So, if we alter the DCM to the form:

~dxdx tð Þ~dt

ðt

0

Azu t{tð ÞB½ �~xx t{tð Þzu t{tð Þ~ccf gk tð ÞdtzsdBt

~yy tð Þ~~gg ~xx tð Þð Þz~ee tð Þ
ð19Þ

where k(:) is a kernel function, then the DCM shares the feature of

the GCM. On the other hand, our EGCM includes both

deterministic inputs and observation variables thus takes the

advantages of both DCM and GCM. In the general form of

EGCM (Eq. (2)), we can find that when p~1, this is the discrete

form of the bilinear form of DCM, and when g(x)~x, it is the

GCM with additional inputs.

Advantage of extended approach. In contrast to all

previous methods in estimating Granger causality in the

literature where essentially a regression method is employed, in

EGCM we incorporate noise observation variables and apply the

extended Kalman filter to recover the state variables. Additional

inputs are also included in EGCM on the basis of an

autoregressive model. The advantage of such an approach over

the previous methods is obvious. The EGCM is more reasonable

when we are faced with experimental data affected by a particular

stimulus and applicable to cases where we cannot track the state

variables respectively but just a function of them, or where the

observation noise is considerable. Comparing to the traditional

VAR models, all the coefficients in EGCM correspond to intrinsic

or latent dynamic coupling and changes induced by each input

which endow the model with interpretability power. Furthermore,

all the previous methods in estimating Granger causality are batch

learning: they require collection of all data before an estimation

Figure 5. Asymmetry in the frequency domain interactions. A. Mean and maximum ratio using all the three sheep before and after learning.
B. Upper panel: Mean and maximum ratio of sheep B (see Experiment subsection in Methods section) before learning, after learning and one month
after learning (see Fig. 4). Bottom panel: Mean and maximum ratio of sheep C before learning (the first bar), immediately after learning (the second
bar), one week after learning and one month after learning (the third and the fourth bar). C. Summaries of results in B.
doi:10.1371/journal.pcbi.1000570.g005
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can be made. The extended Kalman filter, on the other hand, is

an online learning: we can now update Granger causality

instantaneously. One may argue that this is a common feature

of online learning vs. batch learning. However, it is novel in the

context of Granger causality. When we are faced with biological

data, this feature becomes particularly significant. As we know,

adaptation, or learning in animals, is very important but this

makes it difficult to analyze since adaptation introduces dynamic

change into the system. The classical way of estimating Granger

causality can cope with this difficulty by introducing sliding

windows in analyzing data. Of course, to select an optimal window

size is always an issue in such an approach. However, in Kalman

filtering, we can have the advantage of the connection of the state

variables from the connection matrix and such an issue is

automatically resolved.

In comparison with the bilinear approximation of DCM, the

advantages of EGCM are the following: First, it allows time delay

in the model more naturally and easier to deal with. Time delay is

ubiquitous in a biological system, no matter whether we are

considering gene, protein, metabolic and neuronal networks.

Secondly, using Granger causality we are able to summarize the

causal effect into a single number which is more transparent and

easy to understand, particularly in a system with a time delay.

Thirdly, it allows a frequency domain decomposition. We know

that when we are dealing with a dynamic system it is sometimes

much informative to view it in the frequency domain rather than

in the time domain, as we have partly demonstrated here. Of

course, since Eq. (19) is a continuous time version of Eq. (2), the

results in the frequency domain obtained for Eq. (2) is essentially

for the DCM model as well. We summarize our comparisons in

Table 1 (see [10]).

Other types of data. In the current paper, we have only

applied EGCM to LFP data although it is clearly applicable to many

other types of biological data. For example, in gene microarray

data, we can have a readout of transcriptional changes in several

thousand genes at different times over a period of many hours [37].

The same is the case with multiple protein measurements over time

in biological systems or in metabolic changes. In all these situations

estimation of altered causal connections in both time and frequency

domains will provide invaluable information about changes

occurring in the relationships between different components in

the systems being studied.

IT hemispheric differences and learning. The results of

the EGCM analysis of our IT LFP data provide the first evidence

for connectivity changes between and within left and right ITs as a

result of face recognition learning. It is clear that learning is a

dynamic and complex process [38,39]. In both sheep during

learning there were more causal connections from the left to the

right IT than vice-versa during learning trials. However,

immediately after learning had occurred the number of left to

right connections diminished to the same low level as seen from

right to left. Within the hemispheres connectivity increased

progressively over time in the right IT after learning but

remained the same or decreased in the left IT. There was a

strong negative correlation between the number of connections

from left to right and the number within the right IT. This suggests

that the left to right IT connections may exert some form of

inhibitory control over the number within the right IT and that

this therefore needs to be weakened for new face discriminations to

be learned. The EGCM frequency analysis using theta and

gamma oscillation data in the two hemispheres showed that during

learning of new face pairs there was significantly more information

being processed in the low frequency (theta) in the right IT than in

the left. After learning however this declined and it appeared that

the higher frequency information (gamma) became more

dominant in both hemispheres. Lower frequency oscillations are

more associated with global encoding over widespread areas of

brain whereas higher frequencies are more associated with more

localized encoding. This may suggest that during the course of

learning new faces the right IT uses a more global mode of

encoding to promote more rapid learning and that once learning

has successfully occurred the right IT shifts to a more localized

encoding strategy for maintaining learning. In the left IT on the

other hand this more local encoding strategy predominates both

during and after learning. This is in broad agreement with recent

proposals that the left hemisphere is more involved in local

encoding and the right in global encoding [18,19] although in the

case of face recognition it would appear that the right hemisphere

shifts from a global to local encoding strategy once faces have been

learned. Clearly more analyses of this kind are required before

these differences in left and right brain hemispheres processing and

interactions can be fully understood but combining multiple LFP

recordings and EGCM will be a powerful future approach.

Field-type model. In the current paper, we have not

explicitly introduced the spatio-correlation between each

variables (electrodes). In other words, we have ignored the

geometric relationship of electrodes in the array. This is

certainly an over-simplification of the real situation due to the

following reasons. First of all, despite the long history of multi-

electrode array recordings, in vivo recording in, for example, IT is

still very rare and difficult. Even we have a reliable recording

session, the obtained data set is hard to fully analyze: for example,

to reliably sort the spikes [40]. Secondly, assuming we could work

out the spatio-temporal model for one animal, it is almost no sense

to map the results about the detailed geometrical relationship

(electrodes) to another animal. Also, in our experiments, we often

face the situation that we have to discard the data from quite a few

electrodes. A spatio-temporal (random field) approach as

developed in fMRI [41] is not considered here. However, with

the improvement of experimental techniques and the introduction

of new techniques (see for example, functional multineuron

calcium imaging [42]), a spatio-temporal model (a random field

or a random point field) is cried for and is one of our future

Table 1. Comparing DCM, GCM and EGCM.

Commonalities DCM GCM EGCM

Multivariate analysis of time-series data Yes Yes Yes

Models directed coupling Yes Yes Yes

Inference on models Yes Yes Yes

Frequency decomposition Yes Yes Yes

Differences DCM GCM EGCM

Causality based on temporal precedence No Yes EGCM is more general

Causality based on control theory Yes No Yes

Requires known inputs Yes No In general yes, but see
example 2

Requires orthogonal innovations No Yes Not necessary

Requires stationary processes No Yes Could use sliding
window

Requires a specific biophysical model Yes No Yes

Models non-linear coupling Yes No Yes

Inference on model parameters Yes No Yes

doi:10.1371/journal.pcbi.1000570.t001
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research topics. The well developed approach: dynamic

expectation maximization [43], could play a vital role here.
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