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ABSTRACT

In Drosophila, the dADA2b-containing dSAGA
complex is involved in histone H3 lysine 9 and 14
acetylation. Curiously, although the lysine 9- and
14-acetylated histone H3 levels are drastically
reduced in dAda2b mutants, these animals survive
until a late developmental stage. To study the
molecular consequences of the loss of histone H3
lysine 9 and 14 acetylation, we compared the
total messenger ribonucleic acid (mRNA) profiles
of wild type and dAda2b mutant animals at two
developmental stages. Global gene expression
profiling indicates that the loss of dSAGA-specific
H3 lysine 9 and 14 acetylation results in the expres-
sion change (up- or down-regulation) of a rather
small subset of genes and does not cause a
general transcription de-regulation. Among the
genes up-regulated in dAda2b mutants, particularly
high numbers are those which play roles in
antimicrobial defense mechanisms. Results of
chromatin immunoprecipitation experiments indi-
cate that in dAda2b mutants, the lysine 9-acetylated
histone H3 levels are decreased both at dSAGA
up- and down-regulated genes. In contrast to
that, in the promoters of dSAGA-independent
ribosomal protein genes a high level of histone
H3K9ac is maintained in dAda2b mutants. Our data
suggest that by acetylating H3 at lysine 9, dSAGA
modifies Pol II accessibility to specific promoters
differently.

INTRODUCTION

Histone acetyltransferase (HAT) complexes play a role in
chromatin structure modifications which might lead to
changes in the gene expression (1). The GCN5 (general
control nonderepressed 5) protein is the catalytic compo-
nent of several multiprotein HAT complexes, which
modifies chromatin structure by acetylating specific
lysine residues at the N-terminal tails of histone H3 and
H4. Many of the GCN5-containing HAT complexes also
contain ADA-type adaptor proteins, which play roles
in modulating HAT activity and specificity (2,3). In
Saccharomyces cerevisiae for example, Ada2p is present
in the Spt-Ada-Gcn5-acetyltransferase (SAGA), SAGA-
like (SLIK), alteration/deficiency in activation (ADA),
and HAT-A2 GCN5-HAT complexes (4–6). These
complexes are involved in transcription activation, and
in accord with that, Ada2p was originally discovered as
it was necessary for transcription activation by acidic
activators such as Gcn4 and VP16 (7,8). For some of
these complexes, however, further roles in additional pro-
cesses have been recognized recently (9).
In Drosophila, two related ADA2-type factors

(dADA2a and b) have been identified (10,11). Several
lines of evidence indicate that the two dADA2 proteins
are specific components of different GCN5 HAT
complexes. dADA2a is present in the 0.6 MDa ATAC
(Ada2a-containing) complex, which acetylates histone
H4 at lysine K5 and K12 (12,13). dADA2b is present in
the 1.8 MDa dSAGA complex. dSAGA is involved in the
post-translational modification of nucleosomal histone
H3 at K9 and K14 (14,15). Recently, we and others
demonstrated that dAda2bmutations result in a significant
decrease in the level of K14 and K9 acetylated histone H3
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(14,15). A decrease in histone H3K9ac and H3K14ac
levels in dAda2b mutants is detectable all along with the
polytene chromosomes including highly compacted bands,
suggesting that global histone H3 acetylation is dependent
on dADA2b (14,15). Interestingly, despite the dramatic
decrease in the levels of H3K9ac and H3K14ac by the
later developmental stages, dAda2b null animals reach
almost full development and die only as pupae. The
ability of flies to nearly complete development in the
absence of dADA2b is surprising as H3K9 and H3K14
acetylation generally correlates with transcription activa-
tion; in yeast, genome-wide mappings indicated the
presence of Gcn5p, and high levels of H3K9ac and
H3K14ac at promoters of actively transcribed genes
(16,17). Gcn5p, however, is present in several yeast
HAT complexes which have overlapping patterns of
acetylation with complexes containing the Sas3p
acetyltransferase (18).
In S. cerevisiae, deletion of Ada2 inhibits the global

transcriptional response to glucose (19). This might be
interpreted as indication of a role for SAGA in the
coordinated expression of functionally-related genes. In
accord with this, acetylation clusters were proposed to
define groups of genes with related expression patterns
(20). In mammalian cells, high levels of histone H3K9ac
and H3K14ac together with H3K4me were found to
define chromatin regions permissive for transgene expres-
sion. In contrast with that, reduced H3K9ac, H3K14ac
and H3K4me levels were accompanied by the progressive
silencing of transgenes (21). Thus, the role of histone
H3K9/K14 acetylation in transcription regulation is
demonstrated; however, the question, whether the
SAGA-deposited histone marks affect primarily global
or promoter specific transcription in a multicellular
eukaryote remains to be elucidated.
Here we report the effects of the loss of dADA2b-

dependent histone H3 acetylation in a multicellular
organism. We took advantage of dADA2b being a
specific component of dSAGA and performed whole
genome ribonucleic acid (RNA) profiling of dAda2b null
mutants to reveal the function of dSAGA in the late stages
of Drosophila development. Our aims were to uncover
whether the altered expression of specific genes in the
absence of dSAGA is in correlation with the (i) localiza-
tion; (ii) expression level and/or; (iii) biological function
of the affected genes.

MATERIALS AND METHODS

Drosophila melanogaster strains

Fly stocks were raised at 25�C on standard Drosophila
medium. The null allele dAda2bd842 used in this work
has been described (14). As a control, in some of these
experiments we used w1118, which is an isogenized strain
constructed in the DROSDEL project (22). The mutant
chromosomes were kept over TM6c, Tb, Sb balancer. For
the construction of dAda2bL-enhanced green fluorescent
protein (EGFP) transgene (for short hereafter referred
as Ada2bEGFP), the 50 half of the dAda2b gene was
amplified using primers Ada2bRI and Ada2bBHI

(Table 1 for primer sequences), and were inserted into
pBluescriptKS (pKS) (Fermentas). The 30 part of the
gene was amplified without translational stop codons
using primers Ada2bL30BamHI and Ada2bNco, and the
obtained fragment was combined with the 50 region in
pKS using NcoI and BamHI. A fragment encoding the
EGFP tag was isolated from pEGFPN3 (Clontech) and
joined to the 30-end of dAda2b gene by BamHI and NotI
restriction endonucleases. The dAda2b promoter was
amplified using primers Ada2bgene and Ada2bgeneL,
and assembled with the coding region in pKS using
BglII and SalI. Finally, the fragment corresponding to
the dAda2b cDNA with its regulatory region (up to
�400) with an EGFP coding region attached to the
30-end was inserted into pUASP. With this plasmid
transgenic lines were established using the standard
embryo injection protocol. For rescue the following
genotypes were used: w/w; +/+; P{Ada2bEGFP}
dAda2bd842/dAda2bd842 and w/w; +/+; P{Ada2bEGFP}
dAda2bd842/P{Ada2bEGFP} dAda2bd842.

The attacin A and defensin promoter fused GFP-
containing att-GFP and def-GFP transgene carrier
stocks were kindly provided by Dr J.L. Imler and
Dr B. Lemaitre (23). For the detection of GFP expression
under the control of att and def promoters, the transgenes
were transferred to the desired genetic background as
indicated in the Figure 5 by genetic crosses, and GFP
expression in the resulting offspring was examined
with an OLYMPUS SZX-12 microscope using GFP
band-pass filter. Photos were taken with an OLYMPUS
C7070WZ camera using identical settings for mutants and
controls.

Western blot

For protein analysis by immunoblot total protein samples
of dAda2b and w1118 control animals at developmental
stages as indicated in figure legends were separated on
SDS–PAGE and transferred by electroblotting to
nitrocellulose membrane. The membranes were blocked
for 1 h in 5% nonfat dry milk in TBST (20mM Tris–
HCl, pH 7.4, 150mM NaCl, 0.05% Tween 20) and
incubated overnight with primary antibody diluted in
2% BSA (Sigma) TBST. For the detection of dADA2b,
polyclonal antibodies raised in rabbits against a dADA2b-
specific peptide (10), and for the detection of histone
H3K9ac (Abcam) and H3K14ac (Upstate), commercially
available polyclonal antibodies were used as recom-
mended by the supplier. Membranes were washed,
incubated with horseradish peroxidase-conjugated anti-
rabbit secondary antibodies (DACO), washed again
extensively, and developed using the ECL (Millipore) kit
following the manufacturer’s recommendations.

Immunostaining

Polytene chromosome spreads obtained from the salivary
glands of wandering dAda2b and w1118 larvae were fixed in
3.7% formaldehyde dissolved in phosphate-buffered saline
(PBS) followed by incubation in 45% acetic acid. Slides
were blocked in PBS supplemented with 5% fetal calf
serum and 0.1% Tween-20 for 1 h at 25�C and incubated
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overnight at 4�C in a mixture of anti-modified histone H3
polyclonal and anti-RNA polymerase II monoclonal
antibodies. H3K9ac-specific antibody was from Abcam
(dilution 1 : 200), H3K14ac-specific antibody was from
Upstate (07-353, dilution 1 : 200), Pol II specific antibodies
were 7G5 (24) or H14 (Covance Research Products)
(dilution 1 : 500) as indicated. Samples were washed
in PBST and incubated with a mixture of secondary
antibodies (Alexa Fluor 555-conjugated anti-rabbit-, and
Alexa Fluor 488-conjugated anti-mouse IgGs, Molecular
Probes) for 1 h at 25�C. The slides were washed again and
covered with VectaShield mounting medium containing
40-6-diamidino-2-phenylindole (DAPI). For immuno-
staining of larval tissue samples, animals were dissected

in PBS and fixed in 4% formaldehyde solution.
Treatment with anti-H3K9ac primary antibody (1 : 200,
Abcam) at 4�C was followed by Alexa Fluor 555-
conjugated anti-rabbit secondary antibody (Molecular
Probes). Stained samples were examined with a NIKON
eclipse 80i microscope and photos were taken with a
Retiga 4000R camera using identical settings for mutant
and control samples.

Microarray analysis and quantitative RT-PCR

Total RNA was isolated from groups of 10 larvae or
pupae using RNeasy Mini Kit (Qiagen). RNA labeling,
hybridization to Affymetrix DrosGenome1 (pupae) and
Drosophila 2 (larvae) GeneChips and scanning were per-
formed at the IGBMC DNA CHIP Facility following the
recommended standard Affymetrix protocols. Three bio-
logical replicates for each genotype (w1118 and dAda2b) at
both time-points were obtained, permitting nine pair-wise
comparisons of w1118 and mutant expression patterns.
Only those genes which were indicated as ‘‘present’’ in at
least two out of three samples of a given type/time-point
were included in data analysis.
For the quantitative determination of larval cuticle

protein (Lcp) and Eig71E mRNAs, total RNAs were
isolated from w1118 and dAda2b larvae and pupae at the
indicated developmental stages with RNeasy Mini Kit
(Qiagen) according to the manufacturer’s instructions.
First-strand cDNA was synthesized from 1 mg RNA
using TaqMan Reverse Transcription Reagent (ABI).
Quantitative real-time polymerase chain reaction (Q-RT-
PCR) was performed (ABI, 7500 RT-PCR System) using
primers specific for the respective cDNAs and 18S rRNA
as internal control, following the incorporation of
SYBRGreen. CT values were set against a calibration
curve. The ��CT method was used for the calculation
of the relative abundances (25). The sequence of primers
is given in Table 1.

Chromatin immunoprecipitation

Chromatin samples were prepared from L3 larvae with
everted anterior spiracles based on the protocol described
(26) with modifications. All steps were done in the
presence of a protease inhibitor cocktail (Calbiochem).
Samples (1 g L3 ea.) were ground in liquid nitrogen in a
mortar and resuspended in 7ml Buffer A (60mM KCl,
0.5906 in NaCl, 15mM Hepes–KOH pH 7.6, 13mM
EDTA, 0.1mM EGTA, 10mM Na-butyrate, 0.15mM
spermine, 0.5mM spermidine, 0.5% NP-40, 0.5mM
DTT). The suspension was homogenized in a dounce
homogenizer with pestle B and filtered through two
layers of Miracloth (Calbiochem) filter. Homogenate
was transferred over 2ml Buffer AS (60mM KCl,
15mM NaCl, 15mM Hepes–KOH pH 7.6, 1mM
EDTA, 0.1mM EGTA, 10mM Na-butyrate, 0.15mM
spermine, 0.5mM spermidine, 0.5mM DTT and 10%
sucrose) and nuclei were pelleted with centrifugation
(3000 r.p.m., 5min, 4�C). The pellet was resuspended
in 3ml Buffer A, further homogenized in a dounce
homogenizer, transferred over 1ml Buffer AS and nuclei
collected by centrifugation. The nuclear pellet was

Table 1. Oligonucleotides used as PCR primers for plasmid

constructions, for the determination of RNA levels by RT-PCR, and in

ChIP experiments. The numbers in parenthesis at the names of primers

used in ChIP experiments indicate the position of the primer relative to

the transcription start site of the gene

Primer Sequence 50–30

18S fwd GCCAGCTAGCAATTGGGTGTA
18S rev CCGGAGCCCAAAAAGCTT
Lcp1 fwd TTTCCCAATCCGATGATGTT
Lcp1 rev GGCTGGTATCCGTTCTCATT
Lcp4 fwd TCAAGATCCTGCTTGTCTGC
Lcp4 rev CACTCGAAAACTCCGTCGAT
Eig71Ec fwd CTCGGTGCGAATTGTCTCTG
Eig71Ec rev ACGGGTAGTTGGGGTCCTAC
Eig71Ed fwd ATGTGAACGCTGTGTGGAAA
Eig71Ed rev GCCAGCGAGTTCAGCAATA
Eig71Eg fwd TGGCTTTCTGCTGCATATTG
Eig71Eg rev CCAGCTCACAACGGGTTAAT
Eig71Eh fwd TGACTGTCTGCTTCCTGGTG
Eig71Eh rev CCTGGAGTTTGGAGTCAC
Ada2bRI GCATGAATTCATGACCACAATCGCGGATTT
Ada2bBHI CGATGGATCCCCGACAGCTATCCAA
Ada2bNco CCATATGGCCATGGCAAG
Ada2bgene TTTAATCCTGACCACCGCT
Ada2bgeneL CAGGGTGGGTCGATTATGTTG
Ada2bL30BamHI GGA TCC GTG GCT CAG CCA GCC GCA
sug prom fwd (�34) CGCATATTACCCGAACCTCT
sug prom rev (+66) GTTGTCTGTGGTGGGTGCT
sug 30 fwd (+1525) CTCGCTAAAACCCAAACAGG
sug 30 rev (+1638) GGTGACTCCACGTCCATCTT
Fst prom fwd (�59) GGCAGTGAATGGAAGTGGTT
Fst prom rev (+62) CCAAGGCAGTGAAGAGGATAA
Fst 30 fwd (+864) ACTATCGATTCTTCAGCGGTCTA
Fst 30 rev (+964) GTTACTCGGAAACGCCAAAT
cnc prom fwd (�80) AACCGCAAAAGCACAAAACT
cnc prom rev (+116) GTGGTGAGCTTGAAAACGTG
cnc 30 fwd (+33 437) TGGAATCAGTGAGCCAGGA
cnc 30 rev (+33 545) TGTATAGTCGCCGGAAAAGG
CycB prom fwd (�39) TGCGGCTTAAAAGGGAACTA
CycB prom rev (+101) TGATCGAGTTTTTGCACACG
RpS23 prom fwd (�8) GCGGTCACACTGAAAACATC
RpS23 prom rev (+140) TTCGCTTAATTCGCACAAAA
RpL32 prom fwd (�19) TTTCACACCACCAGCTTTTTC
RpL32 prom rev (+120) CACGGACTAACGCAGTTCAA
Hus1-like prom fwd (�62) TCGTTATCGGTTTTCGATGTC
Hus1-like prom rev (+96) GCAGCAGTCGCACTTACCTT
Hus1-like 30 fwd (+3527) GGCCTTCTTTGGAGCACTT
Hus1-like 30 rev (+3628) CCACATCCTGTCGTACATCG
AttD prom fwd (�62) AGTTGCGTACTTTTGCGACA
AttD prom rev (+130) TCATCACCGACCCTTACTCC
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resuspended in wash buffer (60mM KCl, 15mM NaCl,
15mM Hepes–KOH pH 7.6, 1mM EDTA, 0.1mM
EGTA, 10mM Na-butyrate, 0.1% NP-40), and cross-
linked with 1% formaldehyde for 10min at room temper-
ature. Crosslinking was stopped by the addition of 300 ml
1M glycine. The nuclei were pelleted and washed two
times with 10ml wash buffer. After washing, nuclei
were resuspended in 1.5ml nuclei lysis buffer (50mM
Tris–HCl pH 8.0, 1% SDS, 10mM EDTA, 10mM
Na-butyrate) and sonicated for 4 � 20 s on high setting
in a Diogenode Bioruptor. Debris was removed by
centrifugation at 14 000 r.p.m. for 10min at 4�C, and
the concentration of chromatin was determined by
spectrophotometer.
Immunoprecipitations were performed as described in

(27) using 25 mg chromatin samples with the following
antibodies: a-H3 (1 mg, Abcam ab1791), a-H3K9ac (4 mg,
Abcam ab4441), a-H3K14ac (4 mg, Upstate 07-353),
a-dADA2b (5ml, (10), a-Pol. II (2.5 mg, clone 7G5, (24).
The specificity of modified histone-specific antibodies used
here has been tested and verified by their suppliers, the
specificity of the dADA2b Ab has been shown earlier
(10) and here as well, though this Ab has not been used
for chromatin immunoprecipitation (ChIP) experiments
previously. The Pol II-specific anti-C-terminal domain
7G5 Ab has been used in ChIP experiments and its
specificity has been demonstrated (28). Chromatin was
pre-cleared using BSA and salmon sperm DNA blocked
Protein A—Sepharose CL-4B beads (Sigma). Pre-cleared
chromatin lysates were incubated with antibodies at 4�C
overnight, then chromatin-antibody complexes were col-
lected with blocked Protein A—Sepharose beads at 4�C
for 4 h. The supernatant of the mock control was used
as total input chromatin (TIC) control. After several
washing steps with RIPA, LiCl (0.25M LiCl, 0.5%
NP-40, 0.5% Na-deoxycholate, 1mM EDTA, 10mM
Tris–HCl pH 8.0) and TE buffers, the beads were
resuspended in 100ml TE buffer, the cross-links were
reversed and the precipitated DNA was extracted with
phenol/chloroform. The amount of precipitated DNA
was determined with quantitative RT PCR using Power
SYBR Green PCR master mix (Applied Biosystems) in an
ABI 7500 Real-Time PCR system. In quantitative PCR
analysis, reactions were done in duplicates next to a TIC
standard curve, and the quantity of DNA bound by
specific antibodies was calculated by deducting the
amount of DNA bound by the mock controls. Primers
used for PCR are given in Table 1. The primers for the
eu- and hetero-chromatic intergenic regions were as
described (29).

RESULTS

dAda2b mutation results in a drastic decrease in histone
H3K9ac and H3K14ac levels

Recently, we reported the isolation of a dAda2b null allele
(dAda2bd842) and showed that the loss of dAda2b function
results in lethality in later developmental stages, and a
decrease of histone H3K9ac and H3K14ac levels on
polytene chromosomes (14). Similar data were reported

using independently-isolated dAda2b alleles (15). In
dAda2b mutant flies, neither of the two dADA2b protein
isoforms (14) are detectable by immunoblot in L3 or later
stages of development (Figure 1A), and a decreased level
of H3K9ac is observed by immunoblots developed with
H3K9ac-specific antibodies (Figure 1B). In agreement,
decreased levels of H3K9ac and H3K14ac are observed
by staining of either larval tissues or polytene chromo-
somes of Ada2b null mutants (Figure 1C and data not
shown). Interestingly, despite the severely reduced H3K9
and K14 acetylation, homozygous dAda2b animals follow
a seemingly normal development until P5 stage, except
that they complete the larval and the first stages of
pupal development slightly slower than their heterozygous
siblings (Figure 2A). dAda2b mutants do not show mor-
phological abnormalities until P5, at this stage the reduced
development of the legs and head becomes obvious and
85% of the animals die. A small fraction of mutants even
develop further, occasionally reaching pharate adult stage.
The normal development until pupa stage in the absence
of dADA2b wondered us whether H3K9/K14 acetylation
is required for transcription activation and whether the
pattern of gene expression is changed in the lack of
H3K9/K14 acetylation. To answer these questions, first
we heat stressed third instar w1118 and dAda2b larvae to
activate heat shock genes, and stained polytene chromo-
some squashes with antibodies raised against the Ser5-
phosphorylated C-terminal domain of the largest subunit
of RNA polymerase II, and acetylated H3K9. This exper-
iment revealed that Pol II recruited the puffs containing
heat shock genes; while the H3K9ac signal in the same
regions remained low (Figure 1D). Based on these
observations we concluded that a significant change in
H3K9 acetylation is not prerequisite for the strong tran-
scription activation, and decided to study the effects of the
loss of dSAGA-specific acetylation on the total RNA
profile of dAda2b mutants.

dAda2b mutation affects the expression of only a small
subset of genes and results in both down- and
up-regulation of gene expression

To determine the effect of dAda2b on gene expression,
we compared the total mRNA profiles of w1118 and
dAda2b null mutants at two stages: in late L3 and in P4
(Figure 2A). The narrow time windows of spiracle
eversion and white pupa stages provided a convenient
means of collecting synchronized samples for the compar-
ison of the RNA content of mutant and control animals.
We prepared poly(A)+ RNA samples from w1118 and
dAda2b mutant animals, labeled them with fluorescent
dye, and hybridized to Drosophila whole genome cDNA
microarrays (Affymetrix). For the validation of hybridiza-
tion data we compared the level of selected mRNAs by
Q-RT-PCR. For this, RNA samples were obtained from
animals in developmental stages identical to those used for
hybridization sample preparation, and as well as from
additional two time points corresponding to mid L3
(12–16 h before puparium formation) and white pupa
stage (1 h after puparium formation) (Figure 2A). As
expected, no dAda2b specific message was detected in
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dAda2b mutants in any of the stages tested. A comparison
of the mRNA profiles of dAda2b mutant and control
(w1118) animals revealed a relatively small number of
mRNAs present at a significantly lower or higher level
in the mutants than in the corresponding control
samples at both time points analyzed. (We considered
only those mRNAs which gave a ‘present’ score in at
least two out of three hybridizations at each time point).
In dAda2b mutants, the level of 239 and 437 mRNAs were
less than 50% of that detected in w1118 samples in larva
and pupa stages, respectively (Figure 2B). For approxi-
mately one-third of these, the difference between the
mRNA levels in the mutant and control were more than
three-fold. Surprisingly, a higher number of mRNAs, 334
in larvae and 466 in pupae, were detected to be present at
more than 2-fold increased levels in the mutants compared
to w1118 samples (Figure 2B). Again, for �35% of these,
the levels in mutants were more than three-fold higher as
the levels detected in the control samples. By comparing
the RNA profiles corresponding to larva and pupa stages,
we observed a relatively small overlap between the two
stages in both mutant and w1118 samples. Only �10% of
the mRNAs affected by dAda2b mutation in larva stage
was also affected in pupae. We believe this reflects the shift
that takes place in the expression profile of the Drosophila
genome at the time of larva to pupa transition. These data
together indicate that: (i) dAda2b affects the expression
level of a relatively small fraction of genes in both stages
tested; (ii) a direct or indirect involvement of dAda2b both
in down- and up-regulation of gene expression can be
assumed since in dAda2b mutants some mRNAs can be
detected at lower, while others at higher levels than in
w1118 samples, and finally; (iii) the significant shift in the
gene expression profile required for transition from larva
to pupa can take place in the absence of dADA2b.
Although the microarray comparisons described above

indicated a rather small number of genes affected by
dAda2b mutation, even this number might be an overesti-
mate, since—in order to facilitate further comparisons
with other dSAGA and ATAC mutations—in these
experiments we compared the RNA profiles of w1118 and
dAda2b animals. This might show gene expression
alterations resulting from genetic differences unrelated to

Figure 1. (A) Western blot of total protein samples of Ada2bd842

mutant, w1118 control, and Ada2bEGFP transgene carrier Ada2bd842

animals. The labels are P: pupa, L: larvae Ada2bresc: Ada2bEGFP
transgene carrier Ada2bd842 and as indicated. The Mw of the two

dADA2b isoforms are indicated. Note that in Ada2bresc the EGFP
tag attached to the C-terminus of the larger dADA2b isoform increases
its size. At the bottom on the left panel the same filter developed with
alpha-tubulin-specific Ab as loading control is shown. (B) Western
blot of total protein samples of Ada2bd842 mutants, w1118 control
and Ada2bEGFP transgene carrier Ada2bd842 animals developed with
histone H3K9ac-specific antibody. Labels, genotypes and develop-
mental stages are as indicate, and as in (A). On the bottom: the
same filters developed with anti-histone H3 antibody. (C)
Immunostaining of salivary glands (top) and of polytene chromosomes
(bottom) of late third instar Ada2bd842, control (w1118) and
Ada2bEGFP transgene carrier Ada2bd842 larvae with H3K9ac- and
H3K14ac-specific Abs. Pol II-specific staining (Ab: 7G5) of the same
polytene chromosomes is shown as staining controls. (D) Accumulation
of H3K9ac is not detectable in wild type (w1118) heat-shock puff (top).
Puff is formed in the absence of H3K9ac in Ada2bd842 mutant (bottom).
Puffs formed at the 93D cytological region are indicated by arrow as an
example. Red: H3K9ac-specific, green: Pol II-specific Ab (H14)
staining.
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the dAda2b status as well. Therefore, to obtain a further
control, we performed additional sets of microarray in
which we compared the total RNA profiles of dAda2b
null mutants with that of an Ada2bEGFP transgene
carrier dAda2b null. The expression of the Ada2bEGFP
transgene, used for this, can be regulated by either the
cognate dAda2b, or by a GAL4-inducible promoter.
When expressed under the control of the dAda2b
promoter, the expression level of dADA2b proteins in
the transgene carriers is comparable to wild type
controls (Figure 1A) and the transgene results in an
80% phenotypic rescue of dAda2b null mutants, with a
detectable restoration of H3K9ac and H3K14ac levels

(Figure 1B and C). With the help of a strong GAL4
driver, such as Act5C-GAL4, even a higher level of
dADA2b expression can be achieved from the
Ada2bEGFP transgene, however, this does not result in
a more effective rescue. We assume, therefore, that the
incomplete rescue is not due to a limiting level of
dADA2b proteins; rather the EGFP tag at the
C-terminus might interfere with dADA2b function. In
Ada2bEGFP carrier Ada2bd842 larvae, the mRNA levels
of 186 (56%) and 123 (52%) out of those genes which
are activated or repressed in w1118 versus dAda2b null
mutants are partially restored. The distribution of these
genes among the different gene ontology categories

Figure 2. (A) Time scale showing the development of wild type (w1118) and dAda2b animals. The lethal phase of dAda2b null mutants and the time
points at which samples were collected for microarray (filled arrows) and Q-RT-PCR analysis (filled and open arrows) are indicated. (B) VENN-
diagrams showing the numbers of up- and down-regulated genes in dAda2b larvae and pupae. The numbers of affected defense-related genes are
shown in parentheses. (C) The distribution of genes represented with a more than two-fold altered RNA level in dAda2b mutants according to gene
ontology categories. In the Larva columns the fractions of the genes in each category which were rescued (black), rescued to some extent (grey), and
not rescued (white), by the Ada2bEGFP transgene in dAda2bd842 homozygotes are shown.
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follows that of those genes identified in the dAda2b versus
w1118 comparison (Figure 2C). We believe therefore that
the two estimates i.e. dAda2b versus Ada2bEGFP carrier,
and dAda2b versus w1118 represent a low and a high
approximation of the number of genes affected by
dAda2b mutation.

No linkage among dADA2b-regulated genes
can be observed based on their topology or
expression levels

Since dADA2b is a component of the dSAGA HAT
complex, which might have both global and locus
specific effects on transcription, we next analyzed the
gene expression profiling data asking whether mRNAs
detected at either increased or decreased levels in
dAda2b mutant represent genes localized in close proxim-
ity in the genome (i.e. are there islands of activated/
inactivated genes). The other question we asked was
whether genes expressed at a high level in wild type
animals are regulated by dADA2b. Our data analysis
revealed that the answers to both questions were
negative. Genes represented in mutants by either higher
or lower mRNA levels than in w1118 samples were
distributed evenly among the four chromosomes. In
a few instances groups of adjacent three to five genes
each up- or down-regulated at a particular stage can be
identified, the number of these co-localizations, however,
is not significant. Similarly, no pattern among the affected

genes based on the level of their expression can be
recognized. Among the most highly expressed genes at
both larva and pupa stages are those coding for ribosomal
proteins, ecdysone-induced genes, genes encoding proteins
involved in cuticle synthesis and immune functions. Out
of these, the level of none of the ribosomal protein
messages change significantly in dAda2b mutants
compared to w1118 control in either larva or pupa stage.
In summary, based on these observations we concluded
that a coordinated regulation of topologically linked or
highly expressed housekeeping genes by dADA2b does
not exist. It is worth to note that despite the small
overlap between genes affected in larvae and pupae a func-
tional grouping of the genes with altered mRNA levels in
either larva or pupa stage revealed similar distribution of
both the up- and down-regulated genes (Figure 2C).
Next, we considered the change of expression of

mRNAs corresponding to functionally-related genes. In
dAda2b mutants, we detected marked changes in the
levels of several, but not all, ecdysone-induced mRNAs,
in a number of immune function-related mRNAs, and
some cuticle protein genes. In order to validate the hybrid-
ization data, we quantified the expression changes of two
Lcp genes by Q-RT-PCR, at four time points (Figure 2A).
Lcp1 and Lcp4 are the proximal and distal genes of an Lcp
gene group at 44C6-D1. In w1118 animals, the levels of
both mRNAs decrease dramatically during the transition
from L3 to pupa stage (Figure 3). In dAda2b mutants, the

Figure 3. RNA levels of larval cuticle protein (Lcp) genes at the 44C-D cytological region as determined by Q-RT-PCR in dAda2b mutants at four
time points in L3 and pupa stages (spir ev: spiracle eversion, wp: white pupa, 10 h pupa: 10 h after pupariation). The RNA levels of Lcp1 (A and C),
and Lcp4 (B and D) at the indicated stages are shown in comparison with the level observed in the L3 stage of the particular genotype (A and B),
and in comparison with the levels observed in the control samples (w1118) in the given time point (C and D).
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change of Lcp1 and Lcp4 expression follows a slightly
different pattern in that both the Lcp1 and the Lcp4
mRNA level drops during an extended time period.
Thus, the sharp down-regulation, characteristic for both
Lcp1 and Lcp4 expression from L3 to spiracle eversion is
observable in the absence of dADA2b, but the kinetics of
the expression change is altered.
We also observed alterations in the expression levels

of ecdysone-regulated genes in dAda2b mutants. A
cluster of late responding ecdysone-induced genes is
located at the 71E cytological region (30). The cluster
extends to an approximately 13 Kb region, and consists
of five pairs of head-to-head oriented genes, each
encoding a short cysteine-rich peptide. These genes are

believed to be functionally related, and originated from
duplication of a single copy gene. Therefore, we found
interesting to compare their expression in dAda2b
mutants and w1118 controls. Members of the Eig71E
gene family are expressed at a low level in L3 stage,
but some of them are among the most highly expressed
genes in pupae. In dAda2b mutants they show a similar
change, with small differences in expression kinetics
(Figure 4). Significantly, despite their similar structure,
some genes of the cluster show very high, while others
only moderate activation in pupae both in w1118 and
mutant animals (Figure 4, compare Eig71Ec and
Eig71Eh). At specific stages the relative expression of
different members of the cluster is modified similarly

Figure 4. The change of RNA levels of ecdysone-induced genes (Eig71E) located at the 71E5 cytological region. The organization of the Eig71E gene
cluster is shown in the center, with the direction of transcription indicated by arrows. The graphs show the relative level of Eig71Ec, d, g and h in
control (w1118) and dAda2b mutants compared to the levels of RNAs found in L3 stage. Note that the scales of the graphs are different, in order to
show the dramatically different changes in expression among the four genes studied. Abbreviations are as in Figure 3.
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Table 2. Expression changes of selected defense-related genes in dAda2b mutants

The average hybridization signal determined on three microarrays in control (w1118), dAda2bd842 (dAda2b), and dAda2bd842 Ada2bEGFP transgene
carrier larvae (Ada2bresc) and pupae, and the relative changes in mutants as compared to the control samples are shown. Colors indicate: red: larger
than 100% increase, orange: 50–100% increase, dark blue: larger than 100% decrease, light blue 50–100% decrease in signal intensity compared to
the control. P-values are calculated by using Student’s t-test (one tailed distribution, two sample equal variance, homoscedastic, calculation methods).
Shaded boxes in the Ada2bresc column indicate genes for which rescue was detected. Immune-related genes are grouped (31).
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in dAda2b mutants and controls. These data thus
indicate that a robust induction of transcription by
the metamorphic regulatory hormone ecdysone can
take place in the absence of dADA2b. Furthermore,
although these related genes are within a short region
in a cluster, during the transition from L to P stage,
individual members of the cluster are up-regulated at
very different extent. In w1118 and dAda2b mutants
these expression changes are similar, both in quantita-
tive and qualitative term.
A third group of functionally-related genes, which

shows dramatic changes in expression levels in dAda2b
mutants involved in defense mechanisms. In fact, among
the genes displaying altered expression in dAda2bmutants,
genes induced by microbial infection are represented
in the highest number. These include genes encoding
peptidoglycan recognition proteins, lysozymes and serine
proteases, genes encoding antimicrobial peptides and
other small peptides identified by other studies as
immune-induced factors. Several other genes as well,
with unknown functions belong to this group based on
that they have been found to be induced by immune
challenges (Table 2) (31). Most of the RNAs correspond-
ing to genes in this group are present in dramatically
increased levels in dAda2b mutant samples, some of
them displaying a 20-40-fold induction. The presence of
a large number of immune function related mRNAs in
increased levels in dAda2b mutants is particularly
striking in the dAda2b versus w1118 comparison at pupa
stage. A smaller, still significant number of immune
function related genes are up-regulated in dAda2b
mutants in larva stage. In Ada2bEGFP-containing
dAda2b null samples, the levels of many of the mRNAs
corresponding to these genes are changed towards the
values seen in the w1118 control sample, suggesting that
the expression of these genes indeed depends on the
function of dAda2b (Table 2).
Particularly, striking is the high induction level of genes

encoding antimicrobial peptides (AMP). These include all
the known seven classes of AMPs that play roles in
defense against gram-negative and gram-positive bacteria
and fungi. In order to obtain an independent verification
that the expression of these genes is indeed up-regulated
in dAda2b mutants, we compared the expression of
AMP-promoter-GFP transgenes in wild type and
dAda2b mutant animals. As it is shown in Figure 5, both
the attacin (att) and defensin (def) promoter–driven GFP
transgenes were expressed in higher levels in dAda2b null
animals than in wild type, or in heterozygous siblings
pupariated in the same vials.
While RNAs corresponding to AMPs are present

exclusively at higher levels in dAda2b mutants than in
w1118 samples, very few other components of the
immune response show either an increased or decreased
RNA level. Surprisingly, the RNA levels of members of
the Toll and Imd pathways, the two major branches of
signaling pathways involved in Drosophila innate immune
responses, are only moderately, if at all, affected by
dAda2b mutations, and only a few genes belonging to
these pathways show significantly altered RNA levels in
dAda2b mutants (Table 2).

Localization of dADA2b, SAGA-specific histone
mark and Pol II at promoters affected differently
by dAda2b mutations

The gene expression changes observed in dAda2b mutants
wondered us whether a direct role of the dADA2b-
containing HAT complex can be demonstrated in the tran-
scription of genes, which are affected either positively or
negatively in mutants. Searching for an answer to this
question, we performed ChIPs to detect the presence of
SAGA-specific histone H3 acetylation marks (H3K9ac
and H3K14ac) and also dADA2b and Pol II localization
in the promoter regions of selected genes. In the ChIP
analysis we included genes which were found to be
up- [Frost (Fst), Hus1-like (Hus1), Attacin-D (AttD)] or

Figure 5. AMP promoter-GFP reporter gene expression in dAda2b
mutant pupae. The expression of GFP from defensin promoter- (def-
GFP) and attacin promoter-GFP (att-GFP) transgenes in different
dAda2b background are shown. An Act5C-GFP transgene carrier is
shown (GFP) for comparison. The different AMP promoter-GFP
transgene carrier animals are siblings obtained from the same crosses
and cultured in the same vials.
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down-regulated [sugarbabe (sug), cap and collar (cnc),
cyclin B (CycB)] in dAda2b mutants, and as well two
genes [(ribosomal protein L32 (RpL32), ribosomal
protein S23 (RpS23)], which were unaffected by dAda2b
mutations (Figure 6A). For further control intergenic
regions of the genome (29) were included in some of the
ChIP analysis. Some of the genes chosen for the analysis
have been shown to play roles in processes believed to be
regulated by SAGA in Drosophila or another organism:
Frost (up-regulated in dAda2b mutants), for example,
encodes a protein involved in cold hardening response
in Arabidopsis, and is up-regulated during recovery after
cold shock in Drosophila (32,33). On the other hand, the
gene of the zinc finger transcription factor, sugarbabe
(sug), down-regulated in dAda2b mutants, is the highest
and earliest activated gene upon sugar ingestion in
Drosophila (34). We performed ChIP experiments on
samples obtained from wild type control and dAda2b
mutant larvae. First we used dADA2b-specific antibodies
to test the association of dADA2b with the selected genes.
Fragments corresponding to promoter and 30 regions of
the selected genes were detected in immunoprecipitated
samples by Q-PCR, using specific primers (Table 1).
ChIPs performed with dADA2b-specific Abs resulted in
weak signals both from promoter and 30 regions. We
obtained similarly weak signals irrespective whether the
specific sequence amplified from a precipitated sample
corresponded to promoter or 30 region of an up- or
down-regulated or dSAGA-independent gene (Figure 6D
and Table 3). dAda2b mutant chromatin samples resulted
even weaker signals corresponding to 50% or less of that
obtained from wild type samples, and again no differences
between different genes or regions were observable. On the
transcriptionally silent intergenic regions, we detected
dADA2b localization neither in wild-type nor in mutant
samples. ChIPs performed with H3K9ac-specific Abs gave
different results revealing differences in H3K9ac levels
between dSAGA-affected and unaffected genes in wild
type and dAda2b samples (Figure 6B and C).
Specifically, in dSAGA-regulated genes the H3K9ac
levels were decreased in dAda2b mutants compared to
wild type samples. On the other hand, in the two
ribosomal protein genes, which were not affected by
dSAGA, the amount of H3K9ac-specific Abs precipitated
chromatin were equally high in both wild type and dAda2b
samples (Figure 6C and Table 3). In contrast with these,
on the intergenic regions we detected very low levels of
K9-acetylated H3 (Figure 6C and Table 3). We detected
H3K14ac, the other dSAGA-specific histone modification,
in much lower level than H3K9ac in each gene we tested.
Therefore, on this form of dSAGA-modified histone we
can conclude only that no strong differences in its levels
can be observed in these genes, despite that they are
affected differently by dAda2b mutations. The small
differences in the H3K9ac levels in the promoters of the
RpL32 and RpS23 genes in wild type versus dAda2b
mutants might result from low nucleosome occupancy of
these regions. To assess this possibility, we performed
ChIP experiments using H3-specific Abs. The amounts
of amplified probes did not indicate that the levels of H3
at the ribosomal gene promoter were significantly different

from that at the other promoters, studied: H3 specific Abs
precipitated similar fractions, �3% of input chromatin
from both the dSAGA-independent ribosomal protein
and the dSAGA-dependent other genes. Finally, we
performed ChIPs using Pol II large subunit-specific
antibodies. Comparisons of the Pol II occupancy in
regions of SAGA-independent and dSAGA-dependent
genes in wild type and dAda2b mutants are shown in
Figure 6E. The amounts of chromatin immunopre-
cipitated with Pol II-specific Abs from wild type and
dAda2b samples indicate very little differences in the Pol
II levels on the dSAGA-independent RpL and RpS
promoters. On the promoter regions of genes up-regulated
in dAda2b mutants (Fst, Hus1), Pol II is present in higher
level in dAda2b samples, while on the promoters of genes
down-regulated in dAda2b mutants (sug, cnc), Pol II is
present at a lower level in the mutant samples than in
wild type ones.

DISCUSSION

dADA2b is a complex specific constituent of the dSAGA
histone modifying complex. Since dGCN5, the HAT com-
ponent of dSAGA plays a role in at least one other histone
modifying complex, ATAC, dGcn5 mutants cannot be
used to study dSAGA-regulated genes. However, as
recent data have indicated that the loss of dAda2b
function interferes with dSAGA histone modifying
activity (14,15), we reasoned that by employing dAda2b
mutants we will uncover dSAGA-specific functions.
Therefore, we used the dAda2b mutants to learn new
information on the function of the dSAGA complex.
Recently, dSAGA has shown to play a role in histone
H2A and H2B deubiquitination as well (35,36). This
function of dSAGA is believed to be associated with a
module which is not or only partly affected by dAda2b
mutations. Our data, thus, are related mainly to the
dGCN5 HAT function of the dSAGA complex.
We assessed the effect of the loss of dAda2b zygotic

function. Results of earlier studies showed that dAda2b
is essential in the germ line (14,15). During early
embryogenesis dAda2b might play specific roles, the
effect of which are not observed in these experiments.
We assume that at the developmental stages we studied,
very small fraction, if any, of the maternal dADA2b is
remaining. Nonetheless, we cannot exclude a long lasting
maternal effect. Neither can we exclude the possibility
that, although dAda2b mutations hamper the H3K9 and
H3K14 specific HAT activity of dSAGA, they do not
eliminate it completely. Thus, despite that we studied
dAda2b null mutants; an activity remaining in H3
acetyltransferase of dSAGA in these animals might play
a role.
In order to tackle questions concerning the role of

dADA2b (and dSAGA) in determining gene expression
changes during the late course of fly development, we
choose stages for mutant and control sample comparisons
in which a significant decrease in the levels of H3K9ac and
H3K14ac in dAda2b null mutants is unquestionable.
Thus, if dADA2b plays a role in transcription regulation,
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Figure 6. (A) Changes in the levels of specific mRNAs in dAda2bd842 mutants compared to wild type (w1118) samples. Average changes in mRNA
levels determined by microarray hybridizations in three biological samples are shown. (B–E) Q-PCR detection of specific fragments of selected genes
in chromatin immunoprecipitated samples. The primers used for Q-PCR are listed in Table 1. H3K9ac-specific (B and C), dADAb- (D) and Pol II-
specific (E) antibody-precipitated chromatin from wild type (w1118) and dAda2b samples obtained from sycronised third instar larvae. Ct and dCt
values of representative experiments of those shown here are given in Table 3. Note that ChIP experiments to detect H3K9ac in the intergenic regions
(C right) were done in separate experiments from those shown on B left.

6676 Nucleic Acids Research, 2009, Vol. 37, No. 20



then comparisons of the total RNA profiles of mutant
and w1118 flies at these stages are expected to unravel
this role. Surprisingly, the number of genes displaying
an altered expression in dAda2b mutant compared to
control is rather small. The dAda2b versus w1118 and
dAda2b versus dAda2b Ada2bEGFP comparisons we
made gave most likely a low and a high estimate of the
number of genes affected by dAda2b function. The main
reason that these numbers differ considerably might be
that the Ada2bEGFP transgene does not provide a
complete dAda2b function. Differences in the genetic
background of the w1118 and the dAda2bd842 mutant we
used can also contribute to this, although as rescue of
dAda2bd842 homozygotes by a genomic transgene results
in fertile adults (14), we do not think that this can be a
major factor. The similar gene ontology distribution
of affected genes of the two samples does not indicate a
significant effect arising from different genetic back-
grounds either.

Out of those genes affected by dAda2b mutation, more
show increased than decreased transcript levels in mutants
relative to w1118 control either in larva or in pupa stage.
This might seem surprising as subunits of dSAGA were
originally identified based on their role in transcription
activation. Indeed, in gcn5 mutant yeast cells, most of
the affected genes show decreased expression relative to
wild type cells, as expected for a coactivator protein
(19). Gene expression profile analysis of Arabidopsis (At)
Ada2b and Gcn5 mutants, however, provided opposing

results, in that in both AtAda2b and AtGcn5 mutants,
most of the affected genes had increased transcript
levels, similarly to our observations in Drosophila (37).
Based on these data, we assume that the dSAGA
complex plays dual roles, acting both in repression and
activation of target genes. The number of genes that we
found to be affected by dAda2b mutations is very close to
the numbers reported by Weake et al. recently (35).
Noteworthy, they also found that the number of those
genes which are represented by an elevated mRNA level
in dAda2b mutants (186) is slightly larger than that of
those which have a reduced RNA level (158). Since the
comparisons in the Workman’s lab and in our laboratory
were performed in animals at different developmental
stages, we did not attempt a systematical comparison of
the two datasets.
Our data did not indicate that the absence of dAda2b

had a synchronous effect on physically linked clusters of
genes, or that dADA2b was essential for the transcription
of highly expressed housekeeping genes. Genome-wide
profiling of yeast gene expression also suggested a
housekeeping role more to TFIID- than SAGA-
dominated genes (38). During the time period we tested,
the expression changes of ecdysteroid-regulated genes play
a crucial role in larva-pupa transition. The lack of dAda2b
does not abolish ecdysone-mediated gene regulation, thus
it seems that activation of transcription by Drosophila
nuclear receptors can take place in the absence of
dADA2b. This observation is somewhat unexpected

Table 3. Ct and dCt values of Q-PCR experiments performed to detect K9-acetylated histone H3 levels and the presence of dADA2b at specific gene

and intergenic regions in chromatin samples obtained from syncronized wild-type and dAda2b mutant third instar larvae

w1118 dAda2b

Ct

dCt (CtNAC-
CtH3K9ac)

dCt (CtNAC-
CtADA2b)

Ct

dCt (CtNAC-
CtH3K9ac)

dCt (CtNAC-
CtADA2b)NAC H3K9ac ADA2b NAC H3K9ac ADA2b

sug prom 28.8 24.8 27.5 3.9 1.2 29.4 25.9 28.8 3.4 0.5
sug 30 31.9 27.5 30.1 4.4 1.9 30.3 29.2 29.9 1.1 0.5
cnc prom 31.1 24.9 29.3 6.2 1.7 31.2 26.9 30.3 4.2 0.9
cnc 30 28.8 24.5 27.7 4.3 1.1 29.3 26.0 28.7 3.2 0.6
CycB prom 32.1 26.5 30.8 5.6 1.3 33.0 29.1 31.8 3.8 1.1
RpS23 prom 33.3 24.6 32.0 8.6 1.3 34.5 25.1 33.9 9.4 0.6
RpL32 prom 28.7 20.7 28.1 8.0 0.7 29.7 21.0 29.7 8.7 0.1
Fst prom 32.2 26.8 30.0 5.4 2.2 30.2 28.0 29.3 2.2 0.9
Fst 30 30.2 25.4 28.8 4.8 1.5 28.9 27.3 28.1 1.6 0.8
Hus1-like prom 29.1 22.6 28.1 6.5 1.0 33.3 28.3 33.8 5.0 �0.4
Hus1-like 30 28.6 25.4 27.9 3.2 0.7 29.4 26.3 28.9 3.1 0.5
AttD prom 28.3 25.1 28.0 3.2 0.2 28.8 26.4 28.7 2.4 0.1

Intergenic region1 29.4 28.3 1.1 28.1 27.5 0.4
Intergenic region2 30.0 29.2 0.8 27.3 27.2 0.1
Intergenic region3 32.0 31.6 0.4 28.6 28.5 0.1
Intergenic region4 29.6 28.8 0.9 27.1 27.0 0.3

Preimm ADA2b dCt (CtPreimm-
CtADA2b)

Preimm ADA2b dCt (CtPreimm-
CtADA2b)

Intergenic region1 26.3 26.6 �0.3 27.0 26.6 0.4
Intergenic region2 27.3 27.5 �0.2 26.0 26.1 �0.1
Intergenic region3 28.5 28.8 �0.4 26.6 26.3 0.2
Intergenic region4 27.0 27.0 �0.1 24.8 25.1 �0.1

For the detection of dADA2b binding to chromatin, preimmune serum control (Preimm) was used instead of no antibody control (NAC).
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because several studies documented that SAGA and
TFTC/STAGA-type complexes function as cofactors in
the activation process of nuclear receptors (36,39,40).
We must assume that in dAda2b mutant flies, either redun-
dant activities are present at these stages of Drosophila
development, or partial dSAGA complexes can form
and function as co-activators.
We also observed that down-regulation of gene expres-

sion also takes place without a significant defect in dAda2b
mutants. An example for this is the sharp drop in the
expression of some Lcp genes in dAda2b mutants at the
larva-pupa transition. The minor alterations in the timing
of the expression change of the Lcp genes might indicate a
role for dAda2b in modulating the kinetics of the
transcriptional response. A similar contribution was
suggested for yeast ADA2 in the transcription response
to glucose (19). This result is thus consistent with the
idea that HATs and/or HAT-containing complexes can
contribute to chromatin restructuring and by this modify
transcriptional activation. The response of dAda2b
mutants to heat stress is also in accord with this view: in
dAda2b mutants we observed a slower development of
heat shock puffs as compared to controls.
The genes affected by dADA2b depletion most dramat-

ically and in the highest number belong to the group
of genes involved in Drosophila immune response and spe-
cifically those that play a role in defense against
microorganisms. The increased level of some of the
immune-function related messages is particularly striking
in pupa comparisons. While our hybridization data show
very high induction of some of the immune effector genes
involved in defense against pathogens, we also noted a
high level of fluctuation in the level of expression of
some of these genes as compared among the triplicates.
Nonetheless, we detected the induction of immune-related
genes repeatedly in RNA samples obtained independently
over a time period more than a year. Since the expression
of many of the affected immune function related genes is
readjusted at least partially in transgene carrier dAda2b
null mutants (Table 2), a causal link between these gene
expression changes and the loss of dAda2b function is
highly probable. The activation of AMP-promoter
linked GFP reporter genes in dAda2b mutants gives a
further support this conclusion.
In contrast to the large number of AMP genes affected,

only a limited number belonging to the Toll and Imd
pathways are misregulated in dAda2b mutants. This
might indicate that the lack of dAda2b affects mainly the
downstream part of the immune response. Our data do
not indicate whether the role of dADA2b in immune-
related gene induction is direct or indirect. We did not
observe that sensitivity towards experimental infections
by bacteria was higher in dAda2b mutants than in their
controls. We favor the idea that in the absence of
dADA2b, a functional defect induces immune response
genes. Among numerous possibilities, this defect could
be in cuticle formation, or activation of an autoimmune
mechanism. We believe a direct role of dADA2b in stress
response, including immune response gene regulation can
be assumed. In this respect the induction of Frost expres-
sion in dAda2b mutants is noteworthy as AtAda2b has

also been found to be involved in cold response (37).
Moreover, Fst also has been found among immune-
induced genes in Drosophila (31).

Earlier, physical interaction has been demonstrated
between Dmp53 and dADA2b (11). We also reported
that dAda2b mutations interfered with Dmp53-mediated
functions, and that X-ray irradiation induced apoptosis in
a smaller number of cells in dAda2b mutants than in wild
type controls (14). In contrast with that, another group
found increased level of Dmp53-dependent apoptosis in
response to X-ray radiation in dAda2b mutants (15).
These authors concluded that dAda2b is acting upstream
of reaper induction in response to irradiation. A more
recent report has demonstrated that in mammalian
system, among others, the dADA2b subunit of STAGA
(the human homologue of dSAGA) makes contacts with
p53, and plays a role in p53-dependent gene activation
(41). These partially contradicting data on Dmp53 and
dAda2b functional interaction made us interested to see
whether the mRNA levels of pro- and anti-apoptotic
genes were affected in dAda2b mutants. We found
repeatedly a decreased number of cells in apoptosis
following X-ray irradiation in dAda2bd842 larvae (data
not shown). In the microarrays only a small number of
those genes implicated in apoptosis showed altered
mRNA levels in dAda2b mutants. Among them,
however, the level of reaper mRNA was decreased to
50% of the wild-type level, and importantly, in the
presence of the rescue transgene the normal level was
restored.

The results of ChIP experiments indicated dADA2b in
low levels at promoter and 30 regions of several genes we
tested. Despite that some of the genes we studied by ChIP
are up- or down-regulated in dAda2b mutants, while
others are unaffected, we found with none of them the
dADA2 protein associated in a significantly higher level
than with any other. At first this seems to be an unex-
pected finding which might result from technical
problems. On the other hand, it is in accord with the
observation that SAGA is involved in global histone
acetylation and in its absence a reduced level of histone
acetylation is seen along the polytene chromosomes. The
observation that the dSAGA-modified H3K9ac level is
lower in all genes we tested is also in accord with this
observation. The cause of failure in detecting specific
and selective dADA2b-chromatin interaction by ChIP
could be that dADA2b is in such a position within the
dSAGA complex that it is not accessible to the Abs or is
not crosslinked effectively. Alternatively, the contact
between dSAGA and the nucleosomes required to
deposit the modification could be a ‘‘hit-and-run’’ type
interaction, which is not detectable by the ChIPs we per-
formed. Interestingly, dAda2b mutation affects the
H3K9ac level by a different extent in dSAGA-dependent
and independent genes. In the promoters of the ribosomal
protein genes, which are expressed in a high level both in
dAda2b and wild type cells, we detected H3K9ac in only
10–20% lower levels in dAda2b mutant than in wild type
samples. In the promoters (and also in the 30 regions) of
SAGA-regulated genes the H3K9ac levels were much
lower in dAda2b mutant than wild type samples.
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Comparisons of the H3 and H3K9ac levels at the
promoters reveal a further interesting fact; in the
promoters of the highly expressed ribosomal genes the
level of K9 acetylated H3 is high even in dAda2b
mutants (Figure 6C). The ratio of total and K9 acetylated
H3 cannot be determined directly by these ChIP
experiments because of the different efficiency of
immunoprecipitations by the different Abs, nonetheless
under the same conditions a much higher fraction of H3
can be precipitated in K9 acetylated form with the RpL32
and RpS23 promoters than with the dSAGA-dependent
ones (Figure 6B). In other words, the promoters of
ribosomal protein genes are associated with high levels
of H3K9ac even in the absence of dSAGA. This observa-
tion might point to two important facts: first, that at dif-
ferent regions H3K9 can be acetylated by enzyme(s) other
than dSAGA, and second, that the H3K9ac marks might
have an important role in ensuring the high level expres-
sion of the RpL32 and RpS23 (and probably also other
highly expressed dSAGA-independent) genes. On the
other hand, the H3K9ac levels in dSAGA-regulated
genes depend more on dADA2b. On these genes the
activity of dSAGA plays a role in determining the tran-
scription intensity. On genes down-regulated in dAda2b
mutants the decreased acetylation is paralleled by a
decreased Pol II occupancy on the promoters. On the
up-regulated genes the situation is the opposite; a
decreased H3K9ac level is detectable together with an
increased Pol II occupancy.

The observation that dAda2b mutation results in a
drastic decrease in global histone H3 acetylation, yet in
dAda2b mutants the expression of only a relatively small
numbers of genes are affected, poses an interesting
question: does dSAGA play a role in global and gene-
specific transcription regulation by the same or different
mechanisms? In light of the data presented here we
propose that the two effects are only seemingly different.
We envision that in the landscape of modified histones
established in the genome by enzymes in various protein
complexes, the loss of dAda2b function (and by this the
loss of those acetyltransferase functions of dSAGA which
are affected by dAda2b) results in a global decrease in H3
acetylation. Depending on other type of histone
modifications and the availability and activity of
regulators this can lead to an increase or a decrease in
the transcription level of selected genes. In the case of
most of the genes, this is observable as a delay in the
change in expression in the lack of dADA2b. At other
regulatory regions, the combinations of histone
modifications which exist in wild type animals are per-
turbed by the loss of dSAGA-specific histone H3 acetyla-
tion more drastically. These genes respond to dAda2b
mutations as dSAGA-specific targets. It is worth to
point out here that genes are defined as dSAGA-specific
on an arbitrary criteria. The genome-wide response to
dAda2b mutation is a continuous spectrum of changes in
both directions. This interpretation is in accord with the
observation that H3 acetylation by dSAGA is deposited
all along the polytene chromosomes, and also with the
suggested global role of H3 acetylation on transcription
in other systems. The phenotype of dAda2b mutants i.e.

that they develop late and have an extended lethal phase,
is also in accord with this interpretation. We note,
however, that since we studied the effects of dAda2b
mutation using RNA samples from whole animals,
which were in the later stages of their development, and
cultured under normal conditions, a more direct
promoter-specific dAda2b-dependent regulation of
selected genes or under specific conditions cannot be
excluded.
This study shows that Drosophila dAda2b mutants can

serve as a valuable model for the dissection of metazoan
SAGA functions. We expect that further studies will
uncover details in dSAGA function, among others, will
give an answer whether the up-regulation of immune-
response related genes we observed in Drosophila
dAda2b mutants, is a new function of metazoan SAGA
which evolved from the general stress protection role
SAGA plays in yeast cells.
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