# The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes

Nóra Zsindely<sup>1</sup>, Tibor Pankotai<sup>1</sup>, Zsuzsanna Újfaludi<sup>1</sup>, Dániel Lakatos<sup>1</sup>, Orbán Komonyi<sup>1</sup>, László Bodai<sup>1</sup>, László Tora<sup>2</sup> and Imre M. Boros<sup>1,3,\*</sup>

<sup>1</sup>Chromatin Research Group of HAS, Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary, <sup>2</sup>Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, CNRS, ULP, INSERM U 596, Parc d'Innovation, 1, rue' Laurent Fries, BP 10142–67404 ILLKIRCH Cedex, CU de Strasbourg, France and <sup>3</sup>Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726 Szeged, Hungary

Received March 22, 2009; Revised July 23, 2009; Accepted August 16, 2009

#### **ABSTRACT**

In Drosophila, the dADA2b-containing dSAGA complex is involved in histone H3 lysine 9 and 14 acetylation. Curiously, although the lysine 9- and 14-acetylated histone H3 levels are drastically reduced in dAda2b mutants, these animals survive until a late developmental stage. To study the molecular consequences of the loss of histone H3 lysine 9 and 14 acetylation, we compared the total messenger ribonucleic acid (mRNA) profiles of wild type and dAda2b mutant animals at two developmental stages. Global gene expression profiling indicates that the loss of dSAGA-specific H3 lysine 9 and 14 acetylation results in the expression change (up- or down-regulation) of a rather small subset of genes and does not cause a general transcription de-regulation. Among the genes up-regulated in dAda2b mutants, particularly high numbers are those which play roles in antimicrobial defense mechanisms. Results of chromatin immunoprecipitation experiments indicate that in dAda2b mutants, the lysine 9-acetylated histone H3 levels are decreased both at dSAGA up- and down-regulated genes. In contrast to that, in the promoters of dSAGA-independent ribosomal protein genes a high level of histone H3K9ac is maintained in dAda2b mutants. Our data suggest that by acetylating H3 at lysine 9, dSAGA modifies Pol II accessibility to specific promoters differently.

#### INTRODUCTION

Histone acetyltransferase (HAT) complexes play a role in chromatin structure modifications which might lead to changes in the gene expression (1). The GCN5 (general control nonderepressed 5) protein is the catalytic component of several multiprotein HAT complexes, which modifies chromatin structure by acetylating specific lysine residues at the N-terminal tails of histone H3 and H4. Many of the GCN5-containing HAT complexes also contain ADA-type adaptor proteins, which play roles in modulating HAT activity and specificity (2,3). In Saccharomyces cerevisiae for example, Ada2p is present in the Spt-Ada-Gcn5-acetyltransferase (SAGA), SAGAlike (SLIK), alteration/deficiency in activation (ADA), and HAT-A2 GCN5-HAT complexes (4-6). These complexes are involved in transcription activation, and in accord with that, Ada2p was originally discovered as it was necessary for transcription activation by acidic activators such as Gcn4 and VP16 (7,8). For some of these complexes, however, further roles in additional processes have been recognized recently (9).

In *Drosophila*, two related ADA2-type factors (dADA2a and b) have been identified (10,11). Several lines of evidence indicate that the two dADA2 proteins are specific components of different GCN5 HAT complexes. dADA2a is present in the 0.6 MDa ATAC (Ada2a-containing) complex, which acetylates histone H4 at lysine K5 and K12 (12,13). *dADA2b* is present in the 1.8 MDa dSAGA complex. dSAGA is involved in the post-translational modification of nucleosomal histone H3 at K9 and K14 (14,15). Recently, we and others demonstrated that *dAda2b* mutations result in a significant decrease in the level of K14 and K9 acetylated histone H3

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

<sup>\*</sup>To whom correspondence should be addressed. Tel: +36 62 544686; Fax: +36 62 544651; Email: borosi@bio.u-szeged.hu

<sup>©</sup> The Author(s) 2009. Published by Oxford University Press.

(14.15). A decrease in histone H3K9ac and H3K14ac levels in dAda2b mutants is detectable all along with the polytene chromosomes including highly compacted bands, suggesting that global histone H3 acetylation is dependent on dADA2b (14,15). Interestingly, despite the dramatic decrease in the levels of H3K9ac and H3K14ac by the later developmental stages, dAda2b null animals reach almost full development and die only as pupae. The ability of flies to nearly complete development in the absence of dADA2b is surprising as H3K9 and H3K14 acetylation generally correlates with transcription activation; in yeast, genome-wide mappings indicated the presence of Gcn5p, and high levels of H3K9ac and H3K14ac at promoters of actively transcribed genes (16,17). Gcn5p, however, is present in several yeast HAT complexes which have overlapping patterns of acetylation with complexes containing the Sas3p acetyltransferase (18).

In S. cerevisiae, deletion of Ada2 inhibits the global transcriptional response to glucose (19). This might be interpreted as indication of a role for SAGA in the coordinated expression of functionally-related genes. In accord with this, acetylation clusters were proposed to define groups of genes with related expression patterns (20). In mammalian cells, high levels of histone H3K9ac and H3K14ac together with H3K4me were found to define chromatin regions permissive for transgene expression. In contrast with that, reduced H3K9ac, H3K14ac and H3K4me levels were accompanied by the progressive silencing of transgenes (21). Thus, the role of histone H3K9/K14 acetylation in transcription regulation is demonstrated; however, the question, whether the SAGA-deposited histone marks affect primarily global or promoter specific transcription in a multicellular eukaryote remains to be elucidated.

Here we report the effects of the loss of dADA2bdependent histone H3 acetylation in a multicellular organism. We took advantage of dADA2b being a specific component of dSAGA and performed whole genome ribonucleic acid (RNA) profiling of dAda2b null mutants to reveal the function of dSAGA in the late stages of Drosophila development. Our aims were to uncover whether the altered expression of specific genes in the absence of dSAGA is in correlation with the (i) localization; (ii) expression level and/or; (iii) biological function of the affected genes.

#### MATERIALS AND METHODS

#### Drosophila melanogaster strains

Fly stocks were raised at 25°C on standard Drosophila medium. The null allele  $dAda2b^{d842}$  used in this work has been described (14). As a control, in some of these experiments we used  $w^{III8}$ , which is an isogenized strain constructed in the DROSDEL project (22). The mutant chromosomes were kept over TM6c, Tb, Sb balancer. For the construction of dAda2bL-enhanced green fluorescent protein (EGFP) transgene (for short hereafter referred as Ada2bEGFP), the 5' half of the dAda2b gene was amplified using primers Ada2bRI and Ada2bBHI

(Table 1 for primer sequences), and were inserted into pBluescriptKS (pKS) (Fermentas). The 3' part of the gene was amplified without translational stop codons using primers Ada2bL3'BamHI and Ada2bNco, and the obtained fragment was combined with the 5' region in pKS using NcoI and BamHI. A fragment encoding the EGFP tag was isolated from pEGFPN3 (Clontech) and joined to the 3'-end of dAda2b gene by BamHI and NotI restriction endonucleases. The dAda2b promoter was amplified using primers Ada2bgene and Ada2bgeneL, and assembled with the coding region in pKS using BgIII and Sall. Finally, the fragment corresponding to the dAda2b cDNA with its regulatory region (up to -400) with an EGFP coding region attached to the 3'-end was inserted into pUASP. With this plasmid transgenic lines were established using the standard embryo injection protocol. For rescue the following genotypes were used: w/w; +/+;  $P\{Ada2bEGFP\}$   $dAda2b^{d842}/dAda2b^{d842}$  and w/w; +/+;  $P\{Ada2bEGFP\}$   $dAda2b^{d842}/P\{Ada2bEGFP\}$   $dAda2b^{d842}$ .

The attacin A and defensin promoter fused GFPcontaining att-GFP and def-GFP transgene carrier stocks were kindly provided by Dr J.L. Imler and Dr B. Lemaitre (23). For the detection of GFP expression under the control of att and def promoters, the transgenes were transferred to the desired genetic background as indicated in the Figure 5 by genetic crosses, and GFP expression in the resulting offspring was examined with an OLYMPUS SZX-12 microscope using GFP band-pass filter. Photos were taken with an OLYMPUS C7070WZ camera using identical settings for mutants and controls.

## Western blot

For protein analysis by immunoblot total protein samples of dAda2b and  $w^{1118}$  control animals at developmental stages as indicated in figure legends were separated on SDS-PAGE and transferred by electroblotting to nitrocellulose membrane. The membranes were blocked for 1 h in 5% nonfat dry milk in TBST (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.05% Tween 20) and incubated overnight with primary antibody diluted in 2% BSA (Sigma) TBST. For the detection of dADA2b, polyclonal antibodies raised in rabbits against a dADA2bspecific peptide (10), and for the detection of histone H3K9ac (Abcam) and H3K14ac (Upstate), commercially available polyclonal antibodies were used as recommended by the supplier. Membranes were washed, incubated with horseradish peroxidase-conjugated antirabbit secondary antibodies (DACO), washed again extensively, and developed using the ECL (Millipore) kit following the manufacturer's recommendations.

## **Immunostaining**

Polytene chromosome spreads obtained from the salivary glands of wandering dAda2b and  $w^{1118}$  larvae were fixed in 3.7% formaldehyde dissolved in phosphate-buffered saline (PBS) followed by incubation in 45% acetic acid. Slides were blocked in PBS supplemented with 5% fetal calf serum and 0.1% Tween-20 for 1 h at 25°C and incubated

Table 1. Oligonucleotides used as PCR primers for plasmid constructions, for the determination of RNA levels by RT-PCR, and in ChIP experiments. The numbers in parenthesis at the names of primers used in ChIP experiments indicate the position of the primer relative to the transcription start site of the gene

| Primer                     | Sequence 5′–3′                  |
|----------------------------|---------------------------------|
| 18S fwd                    | GCCAGCTAGCAATTGGGTGTA           |
| 18S rev                    | CCGGAGCCCAAAAAGCTT              |
| Lcp1 fwd                   | TTTCCCAATCCGATGATGTT            |
| Lcp1 rev                   | GGCTGGTATCCGTTCTCATT            |
| Lcp4 fwd                   | TCAAGATCCTGCTTGTCTGC            |
| Lcp4 rev                   | CACTCGAAAACTCCGTCGAT            |
| Eig71Ec fwd                | CTCGGTGCGAATTGTCTCTG            |
| Eig71Ec rev                | ACGGGTAGTTGGGGTCCTAC            |
| Eig71Ed fwd                | ATGTGAACGCTGTGTGGAAA            |
| Eig71Ed rev                | GCCAGCGAGTTCAGCAATA             |
| Eig71Eg fwd                | TGGCTTTCTGCTGCATATTG            |
| Eig71Eg rev                | CCAGCTCACAACGGGTTAAT            |
| Eig71Eh fwd                | TGACTGTCTGCTTCCTGGTG            |
| Eig71Eh rev                | CCTGGAGTTTGGAGTCAC              |
| Ada2bRI                    | GCATGAATTCATGACCACAATCGCGGATTT  |
| Ada2bBHI                   | CGATGGATCCCCGACAGCTATCCAA       |
| Ada2bNco                   | CCATATGGCCATGGCAAG              |
| Ada2bgene                  | TTTAATCCTGACCACCGCT             |
| Ada2bgeneL                 | CAGGGTGGGTCGATTATGTTG           |
| Ada2bL3′BamHI              | GGA TCC GTG GCT CAG CCA GCC GCA |
| sug prom fwd (-34)         | CGCATATTACCCGAACCTCT            |
| sug prom rev (+66)         | GTTGTCTGTGGTGGTGCT              |
| sug 3' fwd (+1525)         | CTCGCTAAAACCCAAACAGG            |
| sug 3' rev (+1638)         | GGTGACTCCACGTCCATCTT            |
| Fst prom fwd (-59)         | GGCAGTGAATGGAAGTGGTT            |
| Fst prom rev (+62)         | CCAAGGCAGTGAAGAGGATAA           |
| Fst 3' fwd (+864)          | ACTATCGATTCTTCAGCGGTCTA         |
| Fst 3' rev (+964)          | GTTACTCGGAAACGCCAAAT            |
| cnc prom fwd (-80)         | AACCGCAAAAGCACAAAACT            |
| cnc prom rev (+116)        | GTGGTGAGCTTGAAAACGTG            |
| cnc 3' fwd (+33 437)       | TGGAATCAGTGAGCCAGGA             |
| cnc 3' rev (+33 545)       | TGTATAGTCGCCGGAAAAGG            |
| CycB prom fwd $(-39)$      | TGCGGCTTAAAAGGGAACTA            |
| CycB prom rev (+101)       | TGATCGAGTTTTTGCACACG            |
| RpS23 prom fwd (-8)        | GCGGTCACACTGAAAACATC            |
| RpS23 prom rev (+140)      | TTCGCTTAATTCGCACAAAA            |
| RpL32 prom fwd (−19)       | TTTCACACCACCAGCTTTTTC           |
| RpL32 prom rev (+120)      | CACGGACTAACGCAGTTCAA            |
| Hus1-like prom fwd $(-62)$ | TCGTTATCGGTTTTCGATGTC           |
| Hus1-like prom rev (+96)   | GCAGCAGTCGCACTTACCTT            |
| Hus1-like 3' fwd (+3527)   | GGCCTTCTTTGGAGCACTT             |
| Hus1-like 3' rev (+3628)   | CCACATCCTGTCGTACATCG            |
| AttD prom fwd (-62)        | AGTTGCGTACTTTTGCGACA            |
| AttD prom rev (+130)       | TCATCACCGACCCTTACTCC            |

overnight at 4°C in a mixture of anti-modified histone H3 polyclonal and anti-RNA polymerase II monoclonal antibodies. H3K9ac-specific antibody was from Abcam (dilution 1:200), H3K14ac-specific antibody was from Upstate (07-353, dilution 1:200), Pol II specific antibodies were 7G5 (24) or H14 (Covance Research Products) (dilution 1:500) as indicated. Samples were washed in PBST and incubated with a mixture of secondary antibodies (Alexa Fluor 555-conjugated anti-rabbit-, and Alexa Fluor 488-conjugated anti-mouse IgGs, Molecular Probes) for 1 h at 25°C. The slides were washed again and covered with VectaShield mounting medium containing 4'-6-diamidino-2-phenylindole (DAPI). For immunostaining of larval tissue samples, animals were dissected

in PBS and fixed in 4% formaldehyde solution. Treatment with anti-H3K9ac primary antibody (1:200, Abcam) at 4°C was followed by Alexa Fluor 555conjugated anti-rabbit secondary antibody (Molecular Probes). Stained samples were examined with a NIKON eclipse 80i microscope and photos were taken with a Retiga 4000R camera using identical settings for mutant and control samples.

# Microarray analysis and quantitative RT-PCR

Total RNA was isolated from groups of 10 larvae or pupae using RNeasy Mini Kit (Qiagen). RNA labeling, hybridization to Affymetrix DrosGenome1 (pupae) and Drosophila 2 (larvae) GeneChips and scanning were performed at the IGBMC DNA CHIP Facility following the recommended standard Affymetrix protocols. Three biological replicates for each genotype ( $w^{1118}$  and dAda2b) at both time-points were obtained, permitting nine pair-wise comparisons of  $w^{III8}$  and mutant expression patterns. Only those genes which were indicated as "present" in at least two out of three samples of a given type/time-point were included in data analysis.

For the quantitative determination of larval cuticle protein (Lcp) and Eig71E mRNAs, total RNAs were isolated from  $w^{1118}$  and dAda2b larvae and pupae at the indicated developmental stages with RNeasy Mini Kit (Oiagen) according to the manufacturer's instructions. First-strand cDNA was synthesized from 1 µg RNA using TaqMan Reverse Transcription Reagent (ABI). Quantitative real-time polymerase chain reaction (Q-RT-PCR) was performed (ABI, 7500 RT-PCR System) using primers specific for the respective cDNAs and 18S rRNA as internal control, following the incorporation of SYBRGreen.  $C_T$  values were set against a calibration curve. The  $\Delta \Delta C_T$  method was used for the calculation of the relative abundances (25). The sequence of primers is given in Table 1.

#### **Chromatin immunoprecipitation**

Chromatin samples were prepared from L3 larvae with everted anterior spiracles based on the protocol described (26) with modifications. All steps were done in the presence of a protease inhibitor cocktail (Calbiochem). Samples (1 g L3 ea.) were ground in liquid nitrogen in a mortar and resuspended in 7 ml Buffer A (60 mM KCl, 0.5906 in NaCl, 15 mM Hepes-KOH pH 7.6, 13 mM EDTA, 0.1 mM EGTA, 10 mM Na-butyrate, 0.15 mM spermine, 0.5 mM spermidine, 0.5% NP-40, 0.5 mM DTT). The suspension was homogenized in a dounce homogenizer with pestle B and filtered through two layers of Miracloth (Calbiochem) filter. Homogenate was transferred over 2 ml Buffer AS (60 mM KCl, 15 mM NaCl, 15 mM Hepes-KOH pH 7.6, 1 mM EDTA, 0.1 mM EGTA, 10 mM Na-butyrate, 0.15 mM spermine, 0.5 mM spermidine, 0.5 mM DTT and 10% sucrose) and nuclei were pelleted with centrifugation (3000 r.p.m.,  $5\,\text{min},\ 4^\circ\text{C}$ ). The pellet was resuspended in 3 ml Buffer A, further homogenized in a dounce homogenizer, transferred over 1 ml Buffer AS and nuclei collected by centrifugation. The nuclear pellet was

resuspended in wash buffer (60 mM KCl, 15 mM NaCl, 15 mM Hepes-KOH pH 7.6, 1 mM EDTA, 0.1 mM EGTA, 10 mM Na-butyrate, 0.1% NP-40), and crosslinked with 1% formaldehyde for 10 min at room temperature. Crosslinking was stopped by the addition of 300 µl 1 M glycine. The nuclei were pelleted and washed two times with 10 ml wash buffer. After washing, nuclei were resuspended in 1.5 ml nuclei lysis buffer (50 mM Tris-HCl pH 8.0, 1% SDS, 10 mM EDTA, 10 mM Na-butyrate) and sonicated for  $4 \times 20 \,\mathrm{s}$  on high setting in a Diogenode Bioruptor. Debris was removed by centrifugation at 14000 r.p.m. for 10 min at 4°C, and the concentration of chromatin was determined by spectrophotometer.

Immunoprecipitations were performed as described in (27) using 25 µg chromatin samples with the following antibodies: α-H3 (1 μg, Abcam ab1791), α-H3K9ac (4 μg, Abcam ab4441),  $\alpha$ -H3K14ac (4 µg, Upstate 07-353), α-dADA2b (5 μl, (10), α-Pol. II (2.5 μg, clone 7G5, (24). The specificity of modified histone-specific antibodies used here has been tested and verified by their suppliers, the specificity of the dADA2b Ab has been shown earlier (10) and here as well, though this Ab has not been used for chromatin immunoprecipitation (ChIP) experiments previously. The Pol II-specific anti-C-terminal domain 7G5 Ab has been used in ChIP experiments and its specificity has been demonstrated (28). Chromatin was pre-cleared using BSA and salmon sperm DNA blocked Protein A—Sepharose CL-4B beads (Sigma). Pre-cleared chromatin lysates were incubated with antibodies at 4°C overnight, then chromatin-antibody complexes were collected with blocked Protein A—Sepharose beads at 4°C for 4h. The supernatant of the mock control was used as total input chromatin (TIC) control. After several washing steps with RIPA, LiCl (0.25 M LiCl, 0.5% NP-40, 0.5% Na-deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.0) and TE buffers, the beads were resuspended in 100 µl TE buffer, the cross-links were reversed and the precipitated DNA was extracted with phenol/chloroform. The amount of precipitated DNA was determined with quantitative RT PCR using Power SYBR Green PCR master mix (Applied Biosystems) in an ABI 7500 Real-Time PCR system. In quantitative PCR analysis, reactions were done in duplicates next to a TIC standard curve, and the quantity of DNA bound by specific antibodies was calculated by deducting the amount of DNA bound by the mock controls. Primers used for PCR are given in Table 1. The primers for the eu- and hetero-chromatic intergenic regions were as described (29).

#### **RESULTS**

# dAda2b mutation results in a drastic decrease in histone H3K9ac and H3K14ac levels

Recently, we reported the isolation of a dAda2b null allele  $(dAda2b^{d842})$  and showed that the loss of dAda2b function results in lethality in later developmental stages, and a decrease of histone H3K9ac and H3K14ac levels on polytene chromosomes (14). Similar data were reported

using independently-isolated dAda2b alleles (15). In dAda2b mutant flies, neither of the two dADA2b protein isoforms (14) are detectable by immunoblot in L3 or later stages of development (Figure 1A), and a decreased level of H3K9ac is observed by immunoblots developed with H3K9ac-specific antibodies (Figure 1B). In agreement, decreased levels of H3K9ac and H3K14ac are observed by staining of either larval tissues or polytene chromosomes of Ada2b null mutants (Figure 1C and data not shown). Interestingly, despite the severely reduced H3K9 and K14 acetylation, homozygous dAda2b animals follow a seemingly normal development until P5 stage, except that they complete the larval and the first stages of pupal development slightly slower than their heterozygous siblings (Figure 2A). dAda2b mutants do not show morphological abnormalities until P5, at this stage the reduced development of the legs and head becomes obvious and 85% of the animals die. A small fraction of mutants even develop further, occasionally reaching pharate adult stage. The normal development until pupa stage in the absence of dADA2b wondered us whether H3K9/K14 acetylation is required for transcription activation and whether the pattern of gene expression is changed in the lack of H3K9/K14 acetylation. To answer these questions, first we heat stressed third instar  $w^{III8}$  and dAda2b larvae to activate heat shock genes, and stained polytene chromosome squashes with antibodies raised against the Ser5phosphorylated C-terminal domain of the largest subunit of RNA polymerase II, and acetylated H3K9. This experiment revealed that Pol II recruited the puffs containing heat shock genes; while the H3K9ac signal in the same regions remained low (Figure 1D). Based on these observations we concluded that a significant change in H3K9 acetylation is not prerequisite for the strong transcription activation, and decided to study the effects of the loss of dSAGA-specific acetylation on the total RNA profile of dAda2b mutants.

# dAda2b mutation affects the expression of only a small subset of genes and results in both down- and up-regulation of gene expression

To determine the effect of dAda2b on gene expression, we compared the total mRNA profiles of  $w^{1118}$  and dAda2b null mutants at two stages: in late L3 and in P4 (Figure 2A). The narrow time windows of spiracle eversion and white pupa stages provided a convenient means of collecting synchronized samples for the comparison of the RNA content of mutant and control animals. We prepared  $poly(A)^+$  RNA samples from  $w^{1118}$  and dAda2b mutant animals, labeled them with fluorescent dye, and hybridized to *Drosophila* whole genome cDNA microarrays (Affymetrix). For the validation of hybridization data we compared the level of selected mRNAs by Q-RT-PCR. For this, RNA samples were obtained from animals in developmental stages identical to those used for hybridization sample preparation, and as well as from additional two time points corresponding to mid L3 (12–16h before puparium formation) and white pupa stage (1 h after puparium formation) (Figure 2A). As expected, no dAda2b specific message was detected in

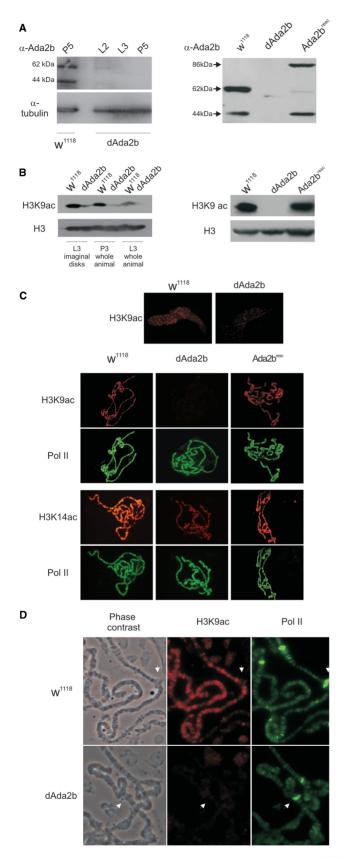



Figure 1. (A) Western blot of total protein samples of  $Ada2b^{d842}$  mutant,  $w^{III8}$  control, and Ada2bEGFP transgene carrier  $Ada2b^{d842}$ animals. The labels are P: pupa, L: larvae Ada2b<sup>resc</sup>: Ada2bEGFP transgene carrier *Ada2b<sup>d842</sup>* and as indicated. The Mw of the two

dAda2b mutants in any of the stages tested. A comparison of the mRNA profiles of dAda2b mutant and control (w1118) animals revealed a relatively small number of mRNAs present at a significantly lower or higher level in the mutants than in the corresponding control samples at both time points analyzed. (We considered only those mRNAs which gave a 'present' score in at least two out of three hybridizations at each time point). In dAda2b mutants, the level of 239 and 437 mRNAs were less than 50% of that detected in  $w^{1118}$  samples in larva and pupa stages, respectively (Figure 2B). For approximately one-third of these, the difference between the mRNA levels in the mutant and control were more than three-fold. Surprisingly, a higher number of mRNAs, 334 in larvae and 466 in pupae, were detected to be present at more than 2-fold increased levels in the mutants compared to  $w^{1118}$  samples (Figure 2B). Again, for  $\sim$ 35% of these, the levels in mutants were more than three-fold higher as the levels detected in the control samples. By comparing the RNA profiles corresponding to larva and pupa stages, we observed a relatively small overlap between the two stages in both mutant and  $w^{III8}$  samples. Only  $\sim 10\%$  of the mRNAs affected by dAda2b mutation in larva stage was also affected in pupae. We believe this reflects the shift that takes place in the expression profile of the *Drosophila* genome at the time of larva to pupa transition. These data together indicate that: (i) dAda2b affects the expression level of a relatively small fraction of genes in both stages tested; (ii) a direct or indirect involvement of dAda2b both in down- and up-regulation of gene expression can be assumed since in dAda2b mutants some mRNAs can be detected at lower, while others at higher levels than in  $w^{1118}$  samples, and finally; (iii) the significant shift in the gene expression profile required for transition from larva to pupa can take place in the absence of dADA2b.

Although the microarray comparisons described above indicated a rather small number of genes affected by dAda2b mutation, even this number might be an overestimate, since—in order to facilitate further comparisons with other dSAGA and ATAC mutations—in these experiments we compared the RNA profiles of  $w^{III8}$  and dAda2b animals. This might show gene expression alterations resulting from genetic differences unrelated to

dADA2b isoforms are indicated. Note that in Ada2bresc the EGFP tag attached to the C-terminus of the larger dADA2b isoform increases its size. At the bottom on the left panel the same filter developed with alpha-tubulin-specific Ab as loading control is shown. (B) Western blot of total protein samples of  $Ada2b^{d842}$  mutants,  $w^{II18}$  control and Ada2bEGFP transgene carrier  $Ada2b^{d842}$  animals developed with histone H3K9ac-specific antibody. Labels, genotypes and developmental stages are as indicate, and as in (A). On the bottom: the same filters developed with anti-histone H3 antibody. (C) Immunostaining of salivary glands (top) and of polytene chromosomes (bottom) of late third instar  $Ada2b^{d842}$ , control ( $w^{III8}$ ) and Ada2bEGFP transgene carrier  $Ada2b^{d842}$  larvae with H3K9ac- and H3K14ac-specific Abs. Pol II-specific staining (Ab: 7G5) of the same polytene chromosomes is shown as staining controls. (D) Accumulation of H3K9ac is not detectable in wild type ( $w^{III8}$ ) heat-shock puff (top). Puff is formed in the absence of H3K9ac in  $Ada2b^{d842}$  mutant (bottom). Puffs formed at the 93D cytological region are indicated by arrow as an example. Red: H3K9ac-specific, green: Pol II-specific Ab (H14) staining.

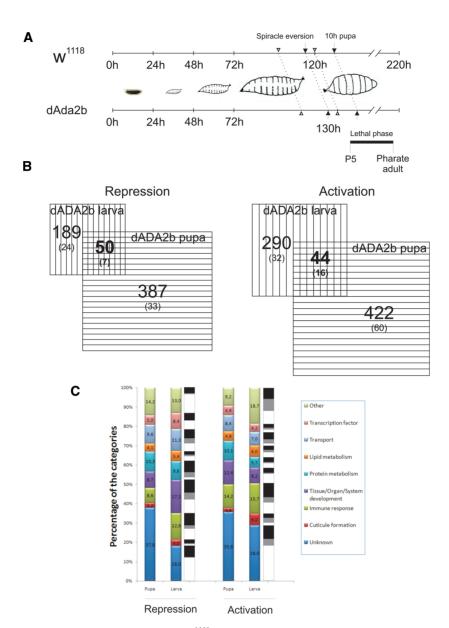



Figure 2. (A) Time scale showing the development of wild type  $(w^{1118})$  and dAda2b animals. The lethal phase of dAda2b null mutants and the time points at which samples were collected for microarray (filled arrows) and Q-RT-PCR analysis (filled and open arrows) are indicated. (B) VENNdiagrams showing the numbers of up- and down-regulated genes in dAda2b larvae and pupae. The numbers of affected defense-related genes are shown in parentheses. (C) The distribution of genes represented with a more than two-fold altered RNA level in dAda2b mutants according to gene ontology categories. In the Larva columns the fractions of the genes in each category which were rescued (black), rescued to some extent (grey), and not rescued (white), by the Ada2bEGFP transgene in dAda2b<sup>d842</sup> homozygotes are shown.

the dAda2b status as well. Therefore, to obtain a further control, we performed additional sets of microarray in which we compared the total RNA profiles of dAda2b null mutants with that of an Ada2bEGFP transgene carrier dAda2b null. The expression of the Ada2bEGFP transgene, used for this, can be regulated by either the cognate dAda2b, or by a GAL4-inducible promoter. When expressed under the control of the dAda2b promoter, the expression level of dADA2b proteins in the transgene carriers is comparable to wild type controls (Figure 1A) and the transgene results in an 80% phenotypic rescue of dAda2b null mutants, with a detectable restoration of H3K9ac and H3K14ac levels

(Figure 1B and C). With the help of a strong GAL4 driver, such as Act5C-GAL4, even a higher level of dADA2b expression can be achieved from the Ada2bEGFP transgene, however, this does not result in a more effective rescue. We assume, therefore, that the incomplete rescue is not due to a limiting level of dADA2b proteins; rather the EGFP tag at the C-terminus might interfere with dADA2b function. In Ada2bEGFP carrier Ada2b<sup>d842</sup> larvae, the mRNA levels of 186 (56%) and 123 (52%) out of those genes which are activated or repressed in w<sup>1118</sup> versus dAda2b null mutants are partially restored. The distribution of these genes among the different gene ontology categories

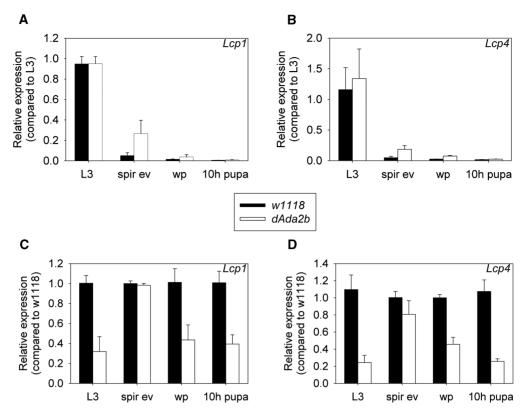



Figure 3. RNA levels of larval cuticle protein (Lcp) genes at the 44C-D cytological region as determined by Q-RT-PCR in dAda2b mutants at four time points in L3 and pupa stages (spir ev: spiracle eversion, wp: white pupa, 10 h pupa: 10 h after pupariation). The RNA levels of Lcp1 (A and C), and Lcp4 (B and D) at the indicated stages are shown in comparison with the level observed in the L3 stage of the particular genotype (A and B), and in comparison with the levels observed in the control samples ( $w^{III8}$ ) in the given time point (C and D).

follows that of those genes identified in the dAda2b versus  $w^{1118}$  comparison (Figure 2C). We believe therefore that the two estimates i.e. dAda2b versus Ada2bEGFP carrier, and dAda2b versus  $w^{1118}$  represent a low and a high approximation of the number of genes affected by dAda2b mutation.

# No linkage among dADA2b-regulated genes can be observed based on their topology or expression levels

Since dADA2b is a component of the dSAGA HAT complex, which might have both global and locus specific effects on transcription, we next analyzed the gene expression profiling data asking whether mRNAs detected at either increased or decreased levels in dAda2b mutant represent genes localized in close proximity in the genome (i.e. are there islands of activated/ inactivated genes). The other question we asked was whether genes expressed at a high level in wild type animals are regulated by dADA2b. Our data analysis revealed that the answers to both questions were negative. Genes represented in mutants by either higher or lower mRNA levels than in  $w^{1118}$  samples were distributed evenly among the four chromosomes. In a few instances groups of adjacent three to five genes each up- or down-regulated at a particular stage can be identified, the number of these co-localizations, however, is not significant. Similarly, no pattern among the affected

genes based on the level of their expression can be recognized. Among the most highly expressed genes at both larva and pupa stages are those coding for ribosomal proteins, ecdysone-induced genes, genes encoding proteins involved in cuticle synthesis and immune functions. Out of these, the level of none of the ribosomal protein messages change significantly in dAda2b mutants compared to  $w^{III8}$  control in either larva or pupa stage. In summary, based on these observations we concluded that a coordinated regulation of topologically linked or highly expressed housekeeping genes by dADA2b does not exist. It is worth to note that despite the small overlap between genes affected in larvae and pupae a functional grouping of the genes with altered mRNA levels in either larva or pupa stage revealed similar distribution of both the up- and down-regulated genes (Figure 2C).

Next, we considered the change of expression of mRNAs corresponding to functionally-related genes. In dAda2b mutants, we detected marked changes in the levels of several, but not all, ecdysone-induced mRNAs, in a number of immune function-related mRNAs, and some cuticle protein genes. In order to validate the hybridization data, we quantified the expression changes of two Lcp genes by Q-RT-PCR, at four time points (Figure 2A). Lcp1 and Lcp4 are the proximal and distal genes of an Lcp gene group at 44C6-D1. In  $w^{III8}$  animals, the levels of both mRNAs decrease dramatically during the transition from L3 to pupa stage (Figure 3). In dAda2b mutants, the

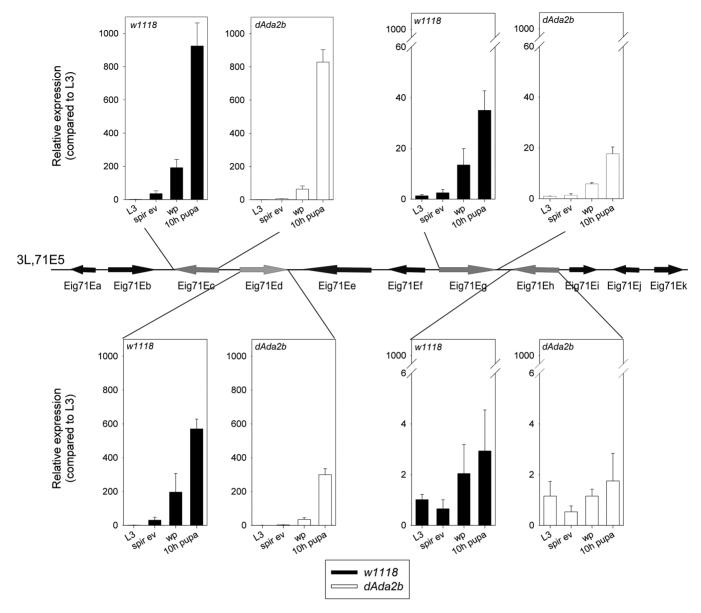



Figure 4. The change of RNA levels of ecdysone-induced genes (Eig71E) located at the 71E5 cytological region. The organization of the Eig71E gene cluster is shown in the center, with the direction of transcription indicated by arrows. The graphs show the relative level of Eig71Ec, d, g and h in control (w1118) and dAda2b mutants compared to the levels of RNAs found in L3 stage. Note that the scales of the graphs are different, in order to show the dramatically different changes in expression among the four genes studied. Abbreviations are as in Figure 3.

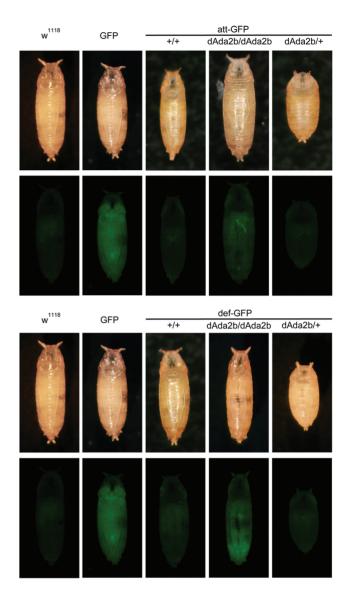
change of Lcp1 and Lcp4 expression follows a slightly different pattern in that both the Lcp1 and the Lcp4 mRNA level drops during an extended time period. Thus, the sharp down-regulation, characteristic for both Lcp1 and Lcp4 expression from L3 to spiracle eversion is observable in the absence of dADA2b, but the kinetics of the expression change is altered.

We also observed alterations in the expression levels of ecdysone-regulated genes in dAda2b mutants. A cluster of late responding ecdysone-induced genes is located at the 71E cytological region (30). The cluster extends to an approximately 13 Kb region, and consists of five pairs of head-to-head oriented genes, each encoding a short cysteine-rich peptide. These genes are

believed to be functionally related, and originated from duplication of a single copy gene. Therefore, we found interesting to compare their expression in dAda2b mutants and  $w^{1118}$  controls. Members of the Eig71E gene family are expressed at a low level in L3 stage, but some of them are among the most highly expressed genes in pupae. In dAda2b mutants they show a similar change, with small differences in expression kinetics (Figure 4). Significantly, despite their similar structure, some genes of the cluster show very high, while others only moderate activation in pupae both in  $w^{1118}$  and mutant animals (Figure 4, compare Eig71Ec and Eig71Eh). At specific stages the relative expression of different members of the cluster is modified similarly

Table 2. Expression changes of selected defense-related genes in dAda2b mutants

| PART A                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                        |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                   | 10.0                                                                                                                                                           |                                                                                                                                                                                        |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| name                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | larva                                                                                                                  |                                                        | pup                                                                                                                                                                                        | а                                                                                                                                                                                                                                          | log2<br>dAda2b/                                                                                                                                                   | log2<br>dAda2b/                                                                                                                                                | P(larva)                                                                                                                                                                               | P(pupa)                                                                                                                                                                                                                                            | name                                                                                                                                                                                                                                                              |                                                                                                                          | larva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          | pup                                                                                                                                   | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | log2<br>dAda2b/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | log2<br>dAda2b/                                                                                                                                                              | P(larva)                                                                                                                                                                                                                                                                                                         | P(pupa)                                                                                                                                                                                              |
| w1118 dAda2b Ada2b <sup>resc</sup>                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | w1118 d                                                                                                                | dAda2b                                                 | w1118<br>Jarva                                                                                                                                                                             | w1118<br>pupa                                                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                        | w1118                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   | Ada2b <sup>resc</sup>                                                                                                    | w1118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dAda2b                                                                                                                                                                   | w1118<br>Jarva                                                                                                                        | w1118<br>pupa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| Attacins: 4 m<br>att A                                                                                                                                                                                                                      | embers<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 167                                                                                                                    | 100                                                    | 22                                                                                                                                                                                         | 550                                                                                                                                                                                                                                        | 4 40                                                                                                                                                              | 4.60                                                                                                                                                           | 7.3E-02                                                                                                                                                                                | 1 55 01                                                                                                                                                                                                                                            | Induced unkno                                                                                                                                                                                                                                                     | own prot                                                                                                                 | eins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| att B1                                                                                                                                                                                                                                      | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202                                                                                                                    | 183<br>225                                             | 43                                                                                                                                                                                         | 559                                                                                                                                                                                                                                        | 1.12<br>1.63                                                                                                                                                      | 4.63<br>3.71                                                                                                                                                   | 1.2E-01                                                                                                                                                                                | 1.5E-01<br>1.6E-01                                                                                                                                                                                                                                 | Fst                                                                                                                                                                                                                                                               | 1177                                                                                                                     | 2728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2771                                                                                                                                                                     | 30                                                                                                                                    | 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.53                                                                                                                                                                         | 1.7E-04                                                                                                                                                                                                                                                                                                          | 8.2E-04                                                                                                                                                                                              |
| att C                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | 10                                                                                                                                                                                         | 331                                                                                                                                                                                                                                        | -                                                                                                                                                                 | 5.12                                                                                                                                                           | -                                                                                                                                                                                      | 1.9E-01                                                                                                                                                                                                                                            | CG13905                                                                                                                                                                                                                                                           | 224                                                                                                                      | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 414                                                                                                                                                                      | 59                                                                                                                                    | 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.74                                                                                                                                                                         | 2.1E-03                                                                                                                                                                                                                                                                                                          | 6.5E-04                                                                                                                                                                                              |
| att D                                                                                                                                                                                                                                       | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 312                                                                                                                    | 43                                                     | 72                                                                                                                                                                                         | 655                                                                                                                                                                                                                                        | 2.88                                                                                                                                                              | 3.19                                                                                                                                                           | 6.8E-02                                                                                                                                                                                | 7.0E-02                                                                                                                                                                                                                                            | CG14567<br>CG15043                                                                                                                                                                                                                                                | 269<br>382                                                                                                               | 111<br>977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 130<br>318                                                                                                                                                               | 307                                                                                                                                   | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.86                                                                                                                                                                        | 5.2E-05<br>5.9E-02                                                                                                                                                                                                                                                                                               | 3.7E-03                                                                                                                                                                                              |
| Diptericin (dp                                                                                                                                                                                                                              | t) family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : 2 men                                                                                                                | nbers                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                    | CG16772                                                                                                                                                                                                                                                           | - 302                                                                                                                    | . 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 310                                                                                                                                                                    | 201                                                                                                                                   | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.05                                                                                                                                                                        | 5.92-02                                                                                                                                                                                                                                                                                                          | 3.0E-02                                                                                                                                                                                              |
| dpt                                                                                                                                                                                                                                         | -,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                      |                                                        | 68                                                                                                                                                                                         | 800                                                                                                                                                                                                                                        | -                                                                                                                                                                 | 3.56                                                                                                                                                           | -                                                                                                                                                                                      | 1.4E-01                                                                                                                                                                                                                                            | CG18279/IM10                                                                                                                                                                                                                                                      | 4                                                                                                                        | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19                                                                                                                                                                       | 37                                                                                                                                    | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.04                                                                                                                                                                         | 1.7E-02                                                                                                                                                                                                                                                                                                          | 2.1E-02                                                                                                                                                                                              |
| dpt B                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65                                                                                                                     | 19                                                     | 62                                                                                                                                                                                         | 499                                                                                                                                                                                                                                        | 2.09                                                                                                                                                              | 3.00                                                                                                                                                           | 1.9E-01                                                                                                                                                                                | 1.8E-01                                                                                                                                                                                                                                            | CG9989                                                                                                                                                                                                                                                            | 1821                                                                                                                     | 1112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1016                                                                                                                                                                     | 112                                                                                                                                   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                              | 1.0E-02                                                                                                                                                                                                                                                                                                          | 9.1E-03                                                                                                                                                                                              |
| Cecropin (cec                                                                                                                                                                                                                               | c) family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 mem                                                                                                                  | hers                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                    | CG16718<br>CG2217                                                                                                                                                                                                                                                 | 24                                                                                                                       | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96                                                                                                                                                                       | 15<br>18                                                                                                                              | 37<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.27<br>1.06                                                                                                                                                                 | 7.6E-02                                                                                                                                                                                                                                                                                                          | 6.9E-03<br>1.8E-01                                                                                                                                                                                   |
| cecA2                                                                                                                                                                                                                                       | o, ranniy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                      | ibers                                                  | 19                                                                                                                                                                                         | 285                                                                                                                                                                                                                                        | -                                                                                                                                                                 | 3.91                                                                                                                                                           | -                                                                                                                                                                                      | 2.0E-01                                                                                                                                                                                                                                            | CG10420                                                                                                                                                                                                                                                           | 66                                                                                                                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44                                                                                                                                                                       | - '-                                                                                                                                  | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                            | 5.1E-05                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                    |
| cecA1                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | 93                                                                                                                                                                                         | 562                                                                                                                                                                                                                                        | -                                                                                                                                                                 | 2.59                                                                                                                                                           | -                                                                                                                                                                                      | 2.2E-01                                                                                                                                                                                                                                            | CG18067                                                                                                                                                                                                                                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          | 406                                                                                                                                   | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.99                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                | 2.0E-02                                                                                                                                                                                              |
| cecC<br>cecB                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | 8<br>6                                                                                                                                                                                     | 49<br>73                                                                                                                                                                                                                                   | -                                                                                                                                                                 | 2.62                                                                                                                                                           | -                                                                                                                                                                                      | 2.2E-01<br>2.0E-01                                                                                                                                                                                                                                 | CG10912                                                                                                                                                                                                                                                           | - 86                                                                                                                     | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127                                                                                                                                                                      | 34<br>13                                                                                                                              | 72<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.10                                                                                                                                                                         | 2.5E-03                                                                                                                                                                                                                                                                                                          | 1.1E-01<br>2.8E-04                                                                                                                                                                                   |
| Cecb                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | Ü                                                                                                                                                                                          | 73                                                                                                                                                                                                                                         | -                                                                                                                                                                 | 0.71                                                                                                                                                           | -                                                                                                                                                                                      | 2.01                                                                                                                                                                                                                                               | CG15678<br>Vago                                                                                                                                                                                                                                                   | 190                                                                                                                      | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168                                                                                                                                                                      | - 13                                                                                                                                  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                              | 6.4E-02                                                                                                                                                                                                                                                                                                          | Z.0L-04                                                                                                                                                                                              |
| Drosomycin (                                                                                                                                                                                                                                | drs) fam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ily: 6 m                                                                                                               | embers                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                    | CG12505                                                                                                                                                                                                                                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          | 243                                                                                                                                   | 2075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.10                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                | 4.6E-04                                                                                                                                                                                              |
| drs                                                                                                                                                                                                                                         | · - · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                      |                                                        | 1195                                                                                                                                                                                       | 3103                                                                                                                                                                                                                                       | -                                                                                                                                                                 | 1.38                                                                                                                                                           | -                                                                                                                                                                                      | 7.0E-05                                                                                                                                                                                                                                            | CG13618                                                                                                                                                                                                                                                           |                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                          | 271                                                                                                                                   | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.41                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                | 2.2E-02                                                                                                                                                                                              |
| dro2                                                                                                                                                                                                                                        | - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 20                                                                                                                   | 16                                                     | 20                                                                                                                                                                                         | 52                                                                                                                                                                                                                                         | 0.70                                                                                                                                                              | 1.40                                                                                                                                                           | 1.05.01                                                                                                                                                                                | 5.7E-02                                                                                                                                                                                                                                            | CG13641                                                                                                                                                                                                                                                           | 63                                                                                                                       | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140<br>18                                                                                                                                                                | 9                                                                                                                                     | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 67                                                                                                                                                                         | 6.1E-03<br>1.5E-02                                                                                                                                                                                                                                                                                               | 4 0E 00                                                                                                                                                                                              |
| dro3<br>dro4                                                                                                                                                                                                                                | 12<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20<br>140                                                                                                              | 16<br>66                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                            | 2,38                                                                                                                                                              | -                                                                                                                                                              | 1.2E-01<br>7.6E-05                                                                                                                                                                     | .                                                                                                                                                                                                                                                  | CG18348<br>CG6426                                                                                                                                                                                                                                                 | 11                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                          | 4520                                                                                                                                  | 2562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.82                                                                                                                                                                        | 1.35-02                                                                                                                                                                                                                                                                                                          | 4.0E-02<br>4.0E-03                                                                                                                                                                                   |
| dro5                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | 1389                                                                                                                                                                                       | 4520                                                                                                                                                                                                                                       | -                                                                                                                                                                 | 1.70                                                                                                                                                           | -                                                                                                                                                                                      | 4.9E-05                                                                                                                                                                                                                                            | CG11413                                                                                                                                                                                                                                                           |                                                                                                                          | · <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          | 84                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.77                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                | 4.6E-02                                                                                                                                                                                              |
| dro6                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | 5266                                                                                                                                                                                       | 1052                                                                                                                                                                                                                                       | -                                                                                                                                                                 | -2.32                                                                                                                                                          | -                                                                                                                                                                                      | 2.2E-04                                                                                                                                                                                                                                            | CG16887                                                                                                                                                                                                                                                           | 49                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62                                                                                                                                                                       |                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                              | 4.5E-02                                                                                                                                                                                                                                                                                                          | 0.55.01                                                                                                                                                                                              |
| other AMPs                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                        |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                    | CG14762<br>CG16743                                                                                                                                                                                                                                                | 119                                                                                                                      | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                       | 11<br>42                                                                                                                              | 18<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.61                                                                                                                                                                        | 8.2E-03                                                                                                                                                                                                                                                                                                          | 2.5E-01<br>7.8E-02                                                                                                                                                                                   |
| drosocin                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | 44                                                                                                                                                                                         | 795                                                                                                                                                                                                                                        | -                                                                                                                                                                 | 4.17                                                                                                                                                           | -                                                                                                                                                                                      | 8.1E-02                                                                                                                                                                                                                                            | CG6357                                                                                                                                                                                                                                                            | 418                                                                                                                      | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 233                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 0.01                                                                                                                                                                       | 1.5E-02                                                                                                                                                                                                                                                                                                          | 02                                                                                                                                                                                                   |
| metchnikowin                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                      |                                                        | 329                                                                                                                                                                                        | 701                                                                                                                                                                                                                                        | -                                                                                                                                                                 | 1.09                                                                                                                                                           | -                                                                                                                                                                                      | 2.1E-01                                                                                                                                                                                                                                            | CG15784                                                                                                                                                                                                                                                           | 142                                                                                                                      | 473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 833                                                                                                                                                                      | 391                                                                                                                                   | 2960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.92                                                                                                                                                                         | 1.6E-02                                                                                                                                                                                                                                                                                                          | 7.8E-04                                                                                                                                                                                              |
| defensin                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102                                                                                                                    | 57                                                     | 6<br>39                                                                                                                                                                                    | 171<br>63                                                                                                                                                                                                                                  | 1.78                                                                                                                                                              | 4.72                                                                                                                                                           | 1.9E-01                                                                                                                                                                                | 1.7E-01                                                                                                                                                                                                                                            | BG:DS07721.3                                                                                                                                                                                                                                                      |                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                          | 32<br>19                                                                                                                              | 62<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.96<br>0.92                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                | 3.0E-02<br>4.0E-02                                                                                                                                                                                   |
| andropin                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | 39                                                                                                                                                                                         | 63                                                                                                                                                                                                                                         | -                                                                                                                                                                 | 0.70                                                                                                                                                           | -                                                                                                                                                                                      | 5.1E-02                                                                                                                                                                                                                                            | C7695<br>CG10910                                                                                                                                                                                                                                                  | 83                                                                                                                       | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 134                                                                                                                                                                      | 19<br>16                                                                                                                              | 35<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.04                                                                                                                                                                         | 4.7E-02                                                                                                                                                                                                                                                                                                          | 4.0E-02<br>7.7E-02                                                                                                                                                                                   |
| Peptidoglyca                                                                                                                                                                                                                                | n recogn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ition pr                                                                                                               | otein (PC                                              | GRP) fam                                                                                                                                                                                   | ily                                                                                                                                                                                                                                        |                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                    | CG14661                                                                                                                                                                                                                                                           |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          | 99                                                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.72                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                | 1.7E-03                                                                                                                                                                                              |
| PGRP-SC2                                                                                                                                                                                                                                    | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 301                                                                                                                    | 278                                                    | 91                                                                                                                                                                                         | 223                                                                                                                                                                                                                                        | 0.69                                                                                                                                                              | 1.29                                                                                                                                                           | 2.8E-03                                                                                                                                                                                | 2.9E-02                                                                                                                                                                                                                                            | CG14907                                                                                                                                                                                                                                                           |                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                          | 21                                                                                                                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.60                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                | 3.7E-02                                                                                                                                                                                              |
| PRGP-SC1b                                                                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 239                                                                                                                    | 910                                                    | 6                                                                                                                                                                                          | 19                                                                                                                                                                                                                                         | 2.53                                                                                                                                                              | 1.67                                                                                                                                                           | 1.6E-03                                                                                                                                                                                | 1.4E-01                                                                                                                                                                                                                                            | CG5765                                                                                                                                                                                                                                                            |                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                          | 39                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1.47                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                | 2.0E-02                                                                                                                                                                                              |
| PRGP-SC1a<br>PGRP-SB1                                                                                                                                                                                                                       | 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46                                                                                                                     | 26                                                     | 26<br>5                                                                                                                                                                                    | 54<br>28                                                                                                                                                                                                                                   | -2 52                                                                                                                                                             | 1.06<br>2.59                                                                                                                                                   | 3.7E-04                                                                                                                                                                                | 2.5E-01<br>1.8E-01                                                                                                                                                                                                                                 | CG2875<br>DNApoli                                                                                                                                                                                                                                                 |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          | 33<br>14                                                                                                                              | 22<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.62<br>1.07                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                | 1.3E-01<br>1.3E-01                                                                                                                                                                                   |
| PGRP-SB2                                                                                                                                                                                                                                    | 3445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170                                                                                                                    | 2269                                                   | 46                                                                                                                                                                                         | 29                                                                                                                                                                                                                                         | -4.34                                                                                                                                                             | -0.66                                                                                                                                                          | 1.4E-04                                                                                                                                                                                | 9.1E-02                                                                                                                                                                                                                                            | CG6073                                                                                                                                                                                                                                                            | 13                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26                                                                                                                                                                       | - '-                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                            | 8.5E-03                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                    |
| PGRP-SD                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | 72                                                                                                                                                                                         | 47                                                                                                                                                                                                                                         | -                                                                                                                                                                 | -0.63                                                                                                                                                          | -                                                                                                                                                                                      | 1.8E-01                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| PGRP-LA                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                      |                                                        | 34                                                                                                                                                                                         | 12                                                                                                                                                                                                                                         | -                                                                                                                                                                 | -1.55                                                                                                                                                          | -                                                                                                                                                                                      | 1.2E-01                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| Lysozyme (ly                                                                                                                                                                                                                                | s) family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                        |                                                        |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                    | DADED                                                                                                                                                                                                                                                             |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |                                                        |                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                    | PART B                                                                                                                                                                                                                                                            |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| lysX                                                                                                                                                                                                                                        | 2487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1157                                                                                                                   | 1067                                                   | 2095                                                                                                                                                                                       | 495                                                                                                                                                                                                                                        | -1.10                                                                                                                                                             | -2.08                                                                                                                                                          | 1.4E-03                                                                                                                                                                                | 5.9E-04                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   |                                                                                                                          | larva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          | pup                                                                                                                                   | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | log2<br>dAda2b/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | log2<br>dAda2b/                                                                                                                                                              | P/lang)                                                                                                                                                                                                                                                                                                          | P(nuna)                                                                                                                                                                                              |
| l'                                                                                                                                                                                                                                          | 2487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1157                                                                                                                   | 1067                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                            | -1.10<br>-                                                                                                                                                        | -2.08<br>1.49                                                                                                                                                  | 1.4E-03                                                                                                                                                                                |                                                                                                                                                                                                                                                    | name                                                                                                                                                                                                                                                              | w1118                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ada2b <sup>resc</sup>                                                                                                                                                    | pup<br>w1118 (                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dAda2b/<br>w1118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dAda2b/<br>w1118                                                                                                                                                             | P(larva)                                                                                                                                                                                                                                                                                                         | P(pupa)                                                                                                                                                                                              |
| lysX<br>lysB<br>lysS                                                                                                                                                                                                                        | 2487<br>236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1157<br>-<br>135                                                                                                       | 1067<br>136                                            | 2095<br>2549                                                                                                                                                                               | 495<br>7164                                                                                                                                                                                                                                | -1.10<br>-0.81                                                                                                                                                    |                                                                                                                                                                | 1.4E-03<br>2.2E-01                                                                                                                                                                     | 5.9E-04<br>1.4E-04                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                   |                                                                                                                          | dAda2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          | w1118                                                                                                                                 | dAda2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dAda2b/<br>w1118<br>larva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dAda2b/<br>w1118<br>pupa                                                                                                                                                     | P(larva)                                                                                                                                                                                                                                                                                                         | P(pupa)                                                                                                                                                                                              |
| lysB<br>lysS<br>lysE                                                                                                                                                                                                                        | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135<br>-                                                                                                               | 136                                                    |                                                                                                                                                                                            |                                                                                                                                                                                                                                            | -<br>-0.81                                                                                                                                                        | 1.49<br>-0.14<br>2.17                                                                                                                                          | 2.2E-01                                                                                                                                                                                |                                                                                                                                                                                                                                                    | name<br>Genes encodir                                                                                                                                                                                                                                             | ng canor                                                                                                                 | dAda2b /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ponents                                                                                                                                                                  | w1118 of the To                                                                                                                       | dAda2b<br>oll signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dAda2b/<br>w1118<br>larva<br>aling pat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dAda2b/<br>w1118<br>pupa<br>thway                                                                                                                                            |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| lysB<br>lysS<br>lysE<br>lysP                                                                                                                                                                                                                | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135<br>-<br>130                                                                                                        | 136<br>231                                             | 2549<br>- 1179                                                                                                                                                                             | 7164<br>5321                                                                                                                                                                                                                               | -                                                                                                                                                                 | 1.49<br>-0.14<br>2.17<br>0.57                                                                                                                                  | 2.2E-01<br>7.4E-04                                                                                                                                                                     | 1.4E-04<br>-<br>2.9E-05                                                                                                                                                                                                                            | name Genes encodir                                                                                                                                                                                                                                                | ng canor                                                                                                                 | dAda2b /<br>nic com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ponents                                                                                                                                                                  | w1118 of the To                                                                                                                       | dAda2b<br>oll signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dAda2b/<br>w1118<br>larva<br>aling pat<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dAda2b/<br>w1118<br>pupa<br>thway                                                                                                                                            | 2.4E-01                                                                                                                                                                                                                                                                                                          | 1.9E-01                                                                                                                                                                                              |
| lysB<br>lysS<br>lysE<br>lysP<br>CG7798                                                                                                                                                                                                      | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135<br>-                                                                                                               | 136                                                    | 2549<br>- 1179<br>- 72                                                                                                                                                                     | 7164<br>5321<br>40                                                                                                                                                                                                                         | -0.81<br>- 5.01<br>-1.95                                                                                                                                          | 1.49<br>-0.14<br>2.17                                                                                                                                          | 2.2E-01                                                                                                                                                                                | 1.4E-04<br>2.9E-05<br>2.1E-02                                                                                                                                                                                                                      | name  Genes encodir spatzle Toll                                                                                                                                                                                                                                  | ng canor<br>117<br>2                                                                                                     | dAda2b /<br>nic com<br>116<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nponents<br>141<br>5                                                                                                                                                     | w1118 of the To                                                                                                                       | dAda2b<br>oll signa<br>65<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dAda2b/<br>w1118<br>larva<br>aling pat<br>-0.02<br>1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dAda2b/<br>w1118<br>pupa<br>hway<br>0.16<br>0.25                                                                                                                             | 2.4E-01<br>4.5E-02                                                                                                                                                                                                                                                                                               | 1.9E-01<br>2.0E-01                                                                                                                                                                                   |
| lysB<br>lysS<br>lysE<br>lysP                                                                                                                                                                                                                | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135<br>-<br>130                                                                                                        | 136<br>231                                             | 2549<br>- 1179                                                                                                                                                                             | 7164<br>5321                                                                                                                                                                                                                               | -<br>-0.81                                                                                                                                                        | 1.49<br>-0.14<br>2.17<br>0.57                                                                                                                                  | 2.2E-01<br>7.4E-04                                                                                                                                                                     | 1.4E-04<br>-<br>2.9E-05                                                                                                                                                                                                                            | name Genes encodir                                                                                                                                                                                                                                                | 117<br>2<br>233<br>214                                                                                                   | dAda2b /<br>nic com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141<br>5<br>199<br>224                                                                                                                                                   | w1118 of the To                                                                                                                       | 65<br>59<br>251<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dAda2b/<br>w1118<br>larva<br>aling pat<br>-0.02<br>1.26<br>-0.14<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dAda2b/<br>w1118<br>pupa<br>thway                                                                                                                                            | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01                                                                                                                                                                                                                                                                         | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02                                                                                                                                                             |
| lysB<br>lysS<br>lysE<br>lysP<br>CG7798<br>CG8492<br>CG11159                                                                                                                                                                                 | 236<br>- 4<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 135<br>130<br>6                                                                                                        | 136<br>231                                             | 2549<br>- 1179<br>- 72<br>98                                                                                                                                                               | 7164<br>5321<br>40<br>30                                                                                                                                                                                                                   | -0.81<br>5.01<br>-1.95<br>1.20                                                                                                                                    | 1.49<br>-0.14<br>2.17<br>0.57                                                                                                                                  | 2.2E-01<br>7.4E-04                                                                                                                                                                     | 1.4E-04<br>-<br>2.9E-05<br>-<br>2.1E-02<br>4.7E-03                                                                                                                                                                                                 | name  Genes encodir spatzle Toll DmMyD88 tube pelle                                                                                                                                                                                                               | 117<br>2<br>233<br>214<br>125                                                                                            | 116<br>6<br>211<br>222<br>113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 141<br>5<br>199<br>224<br>90                                                                                                                                             | w1118 of the To 58 49 487 91 119                                                                                                      | 65<br>59<br>251<br>74<br>129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dAda2b/<br>w1118<br>larva<br>aling pat<br>-0.02<br>1.26<br>-0.14<br>0.06<br>-0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dAda2b/<br>w1118<br>pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12                                                                                                  | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01                                                                                                                                                                                                                                                              | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01                                                                                                                                                  |
| lysB<br>lysS<br>lysE<br>lysP<br>CG7798<br>CG8492<br>CG11159<br>Induced serin                                                                                                                                                                | 236<br>- 4<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 135<br>130<br>6                                                                                                        | 136<br>231                                             | 2549<br>- 1179<br>- 72<br>98<br>29                                                                                                                                                         | 7164<br>5321<br>40<br>30<br>77                                                                                                                                                                                                             | -0.81<br>5.01<br>-1.95<br>1.20                                                                                                                                    | 1.49<br>-0.14<br>2.17<br>0.57                                                                                                                                  | 2.2E-01<br>7.4E-04                                                                                                                                                                     | 1.4E-04<br>-<br>2.9E-05<br>-<br>2.1E-02<br>4.7E-03<br>4.2E-03                                                                                                                                                                                      | name  Genes encodir spatzie Toll DmMyD88 tube pelle cactus                                                                                                                                                                                                        | 117<br>2<br>233<br>214<br>125<br>136                                                                                     | 116<br>6<br>211<br>222<br>113<br>107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 141<br>5<br>199<br>224<br>90<br>120                                                                                                                                      | w1118 of the To 58 49 487 91 119 274                                                                                                  | 65<br>59<br>251<br>74<br>129<br>303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dAda2b/<br>w1118<br>larva<br>aling pat<br>-0.02<br>1.26<br>-0.14<br>0.06<br>-0.15<br>-0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dAda2b/<br>w1118<br>pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15                                                                                          | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02                                                                                                                                                                                                                                                   | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01                                                                                                                                       |
| lysB<br>lysS<br>lysE<br>lysP<br>CG7798<br>CG8492<br>CG11159<br>Induced serin                                                                                                                                                                | 236<br>- 4<br>22<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135<br>130<br>6<br>-                                                                                                   | 136<br>231<br>6                                        | 2549<br>- 1179<br>- 72<br>98<br>29<br>439                                                                                                                                                  | 7164<br>5321<br>40<br>30<br>77                                                                                                                                                                                                             | -0.81<br>-0.81<br>-1.95<br>1.20<br>-1.64                                                                                                                          | 1.49<br>-0.14<br>2.17<br>0.57                                                                                                                                  | 2.2E-01<br>7.4E-04<br>2.4E-03                                                                                                                                                          | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03                                                                                                                                                                                                | name  Genes encodir spatzie Toll DmMyD88 tube pelle cactus DIF                                                                                                                                                                                                    | 117<br>2<br>233<br>214<br>125<br>136<br>21                                                                               | 116<br>6<br>211<br>222<br>113<br>107<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 141<br>5<br>199<br>224<br>90<br>120                                                                                                                                      | w1118 of the To  58 49 487 91 119 274 12                                                                                              | 65<br>59<br>251<br>74<br>129<br>303<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dAda2b/<br>w1118<br>larva<br>aling pat<br>-0.02<br>1.26<br>-0.14<br>0.06<br>-0.15<br>-0.34<br>-0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dAda2b/<br>w1118<br>pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68                                                                                  | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01                                                                                                                                                                                                                                        | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02                                                                                                                            |
| lysB<br>lysS<br>lysE<br>lysE<br>lysP<br>CG7798<br>CG8492<br>CG11159<br>Induced serin<br>CG6639<br>CG18563                                                                                                                                   | 236<br>- 4<br>22<br><br>ne protea<br>- 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 135 - 130 6                                                                                                            | 136<br>231<br>6                                        | 2549<br>-<br>1179<br>-<br>72<br>98<br>29<br>439<br>183                                                                                                                                     | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70                                                                                                                                                                                               | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64                                                                                                                          | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40                                                                                                        | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05                                                                                                                                          | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>4.8E-03<br>3.0E-05                                                                                                                                                                          | name  Genes encodir spatzie Toll DmMyD88 tube pelle cactus                                                                                                                                                                                                        | 117<br>2<br>233<br>214<br>125<br>136                                                                                     | 116<br>6<br>211<br>222<br>113<br>107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 141<br>5<br>199<br>224<br>90<br>120                                                                                                                                      | w1118 of the To 58 49 487 91 119 274                                                                                                  | 65<br>59<br>251<br>74<br>129<br>303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dAda2b/<br>w1118<br>larva<br>aling pat<br>-0.02<br>1.26<br>-0.14<br>0.06<br>-0.15<br>-0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dAda2b/<br>w1118<br>pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15                                                                                          | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02                                                                                                                                                                                                                                                   | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01                                                                                                                                       |
| lysB<br>lysS<br>lysE<br>lysP<br>CG7798<br>CG8492<br>CG11159<br>Induced serin                                                                                                                                                                | 236<br>- 4<br>22<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135<br>130<br>6<br>-                                                                                                   | 136<br>231<br>6                                        | 2549<br>- 1179<br>- 72<br>98<br>29<br>439                                                                                                                                                  | 7164<br>5321<br>40<br>30<br>77                                                                                                                                                                                                             | -0.81<br>-0.81<br>-1.95<br>1.20<br>-1.64                                                                                                                          | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40                                                                                                        | 2.2E-01<br>7.4E-04<br>2.4E-03                                                                                                                                                          | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03                                                                                                                                                                                                | name  Genes encodir spatzie Toll DmMyD88 tube pelle cactus DIF                                                                                                                                                                                                    | 117<br>2<br>233<br>214<br>125<br>136<br>21<br>38                                                                         | 116<br>6<br>211<br>222<br>113<br>107<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20                                                                                                                          | w1118 of of the To  58 49 487 91 119 274 12                                                                                           | 65<br>59<br>251<br>74<br>129<br>303<br>19<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dAda2b/<br>w1118<br>larva<br>aling pat<br>-0.02<br>1.26<br>-0.14<br>0.06<br>-0.15<br>-0.34<br>-0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dAda2b/<br>w1118<br>pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68                                                                                  | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01                                                                                                                                                                                                                                        | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02                                                                                                                            |
| lysB<br>lysS<br>lysE<br>lysE<br>CG7798<br>CG8492<br>CG11159<br>Induced serin<br>CG6639<br>CG18563<br>CG9631<br>CG15046<br>Jon65Aiv                                                                                                          | 236<br>4<br>22<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135 - 130 6                                                                                                            | 136<br>231<br>6<br>166<br>35                           | 2549<br>- 1179<br>- 72<br>- 98<br>- 29<br>- 439<br>- 183<br>- 25<br>- 48                                                                                                                   | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13                                                                                                                                                                                         | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64                                                                                                                          | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02                                                                              | 2.2E-01<br>-<br>7.4E-04<br>2.4E-03<br>-<br>-<br>9.1E-05<br>6.0E-05                                                                                                                     | 1.4E-04<br>-<br>2.9E-05<br>-<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>-<br>3.6E-02                                                                                                                                                | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic                                                                                                                                                                    | 117<br>2<br>233<br>214<br>125<br>136<br>21<br>38<br>ses/Serpi                                                            | 116<br>6<br>211<br>222<br>113<br>107<br>20<br>18<br>ins actin<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstre</b><br>55                                                                                                | w1118 of of the To  58 49 487 91 119 274 12 11 eam of th 663                                                                          | 65 59 251 74 129 303 19 20 e Toll p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dAdazb/<br>w1118<br>Jarva aling pat -0.02 1.26 -0.14 0.06 -0.15 -0.34 -0.08 -1.10 pathway -1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dAda2b/<br>w1118<br>pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94                                                                          | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03                                                                                                                                                                                                                             | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02                                                                                                                 |
| lysB<br>lysB<br>lysE<br>lysP<br>CG7798<br>CG8492<br>CG11159<br>Induced serir<br>CG6639<br>CG18563<br>CG9631<br>CG15046<br>Jon65Alv<br>CG9645                                                                                                | 236<br>4<br>22<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135 - 130 6                                                                                                            | 136<br>231<br>6<br>166<br>35                           | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14                                                                                                                             | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29                                                                                                                                                                            | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65                                                                                                | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40                                                                                                        | 2.2E-01<br>-<br>7.4E-04<br>2.4E-03<br>-<br>-<br>9.1E-05<br>6.0E-05                                                                                                                     | 1.4E-04<br>-2.9E-05<br>-2.1E-02<br>4.7E-03<br>4.2E-03<br>4.8E-03<br>3.0E-05<br>1.8E-02<br>-3.6E-02<br>6.0E-02                                                                                                                                      | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE                                                                                                                                                                | 117<br>2<br>233<br>214<br>125<br>136<br>21<br>38<br>sees/Serpi<br>103<br>14                                              | 116<br>6<br>211<br>222<br>113<br>107<br>20<br>18<br>ins actir<br>43<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstr</b><br>55<br>5                                                                                            | w1118 of of the To 58 49 487 91 119 274 12 11 eam of th 663 214                                                                       | 65 59 251 74 129 303 19 20 e Toll p 390 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dAdazb/<br>w1118<br>Jarva -0.02 -0.02 -1.266 -0.14 -0.06 -0.15 -0.34 -0.08 -1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dAda2b/<br>w1118<br>pupa<br>.:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94                                                                         | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03                                                                                                                                                                                                                             | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02                                                                                                                 |
| lysB<br>lysS<br>lysE<br>lysE<br>CG7798<br>CG8492<br>CG11159<br>Induced serin<br>CG6639<br>CG18563<br>CG9631<br>CG15046<br>Jon65Aiv                                                                                                          | 236<br>4<br>22<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 135 - 130 6                                                                                                            | 136<br>231<br>6<br>166<br>35                           | 2549<br>- 1179<br>- 72<br>- 98<br>- 29<br>- 439<br>- 183<br>- 25<br>- 48                                                                                                                   | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13                                                                                                                                                                                         | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64                                                                                                                          | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02                                                                              | 2.2E-01<br>-<br>7.4E-04<br>2.4E-03<br>-<br>-<br>9.1E-05<br>6.0E-05                                                                                                                     | 1.4E-04<br>-<br>2.9E-05<br>-<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>-<br>3.6E-02                                                                                                                                                | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic                                                                                                                                                                    | 117<br>2<br>233<br>214<br>125<br>136<br>21<br>38<br>ses/Serpi                                                            | 116<br>6<br>211<br>222<br>113<br>107<br>20<br>18<br>ins actin<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstre</b><br>55                                                                                                | w1118 of of the To  58 49 487 91 119 274 12 11 eam of th 663                                                                          | 65 59 251 74 129 303 19 20 e Toll p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dAdazb/<br>w1118<br>Jarva aling pat -0.02 1.26 -0.14 0.06 -0.15 -0.34 -0.08 -1.10 pathway -1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dAda2b/<br>w1118<br>pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94                                                                          | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03                                                                                                                                                                                                                             | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02                                                                                                                 |
| lysB<br>lysS<br>lysE<br>lysP<br>CG7798<br>CG8492<br>CG11159<br>Induced serir<br>CG6639<br>CG18563<br>CG9631<br>CG15046<br>Jon65Aiv<br>CG9645<br>Ser7                                                                                        | 236<br>4 22<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 135   130   6   -                                                                                                      | 136<br>231<br>6<br>166<br>35<br>34                     | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14                                                                                                                             | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29                                                                                                                                                                            | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65                                                                                                | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>-<br>2.09<br>1.04<br>-1.64                                                | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05<br>6.0E-05<br>2.2E-02                                                                                                                    | 1.4E-04<br>-2.9E-05<br>-2.1E-02<br>4.7E-03<br>4.2E-03<br>4.8E-03<br>3.0E-05<br>1.8E-02<br>-3.6E-02<br>6.0E-02                                                                                                                                      | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass                                                                                                                                        | 117 2 233 214 125 136 21 38 sees/Serpi 103 14 31                                                                         | 116<br>6<br>211<br>222<br>113<br>107<br>20<br>18<br>iins actii<br>43<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstr</b><br>55<br>5                                                                                            | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 84                                                                      | 65 59 251 74 129 303 19 20 e Toll p 390 85 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dAdazb/<br>wi118 larva aling pat -0.02 1.26 -0.14 0.06 -0.15 -0.34 -0.08 -1.10 pathway -1.28 -1.58 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dAda2b/<br>w1118 pupa<br>pupa<br>.:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94                                                                    | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02                                                                                                                                                                      | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02                                                                                                                 |
| lysB<br>lysS<br>lysE<br>lysP<br>CG7798<br>CG8492<br>CG11159<br>Induced serir<br>CG6639<br>CG18563<br>CG9631<br>CG15046<br>Jon65Aiv<br>CG9645<br>Ser7<br>CG99733<br>CG3505                                                                   | 236 4 22 680 9 43 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135<br>130<br>6<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-              | 136<br>231<br>6<br>166<br>35<br>34                     | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65                                                                                                                       | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21                                                                                                                                                                      | -0.81<br>-5.01<br>-1.95<br>-1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65                                                                                               | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>-<br>2.09<br>1.04<br>-1.64<br>0.91                                        | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05<br>6.0E-05<br>2.2E-02                                                                                                                    | 1.4E-04<br>- 2.9E-05<br>- 2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>- 3.6E-02<br>6.0E-02<br>2.6E-03                                                                                                                                   | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide                                                                                                                              | 117<br>2<br>233<br>214<br>125<br>136<br>21<br>38<br>ses/Serpi<br>103<br>14<br>31<br>213<br>190<br>8                      | 116<br>6<br>211<br>222<br>113<br>107<br>20<br>18<br>ins actii<br>43<br>5<br>39<br>226<br>202<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstrr</b><br>55<br>37<br>284<br>192<br>6                                                                       | w1118 of the To  588 499 487 91 119 274 12 11 eam of th 663 214 84 34 495 8                                                           | 65 59 251 74 129 303 19 20 e Toll p 390 85 150 58 114 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dAdazb/<br>w1118 larva aling pat -0.02 1.26 -0.14 0.06 -0.15 -0.34 -0.08 -1.10  pathway -1.28 -1.58 0.34 0.09 0.09 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dAda2b/<br>w1118 pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.12                                  | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02                                                                                                                                                                      | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>1.4E-02<br>2.7E-02<br>1.7E-01<br>2.2E-04<br>1.0E-01                                                          |
| lysB lysS lysE lysE lysE lysP CG7798 CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG15046 Jon65Aiv CG9645 Ser7 CG9733 CG3505 Induced small                                                                                            | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135                                                                                                                    | 136<br>231<br>6<br>166<br>35<br>34<br>56               | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65                                                                                                                       | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21                                                                                                                                                                      | -0.81<br>5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65                                                                                                 | 1.49 -0.14 2.17 0.57 -0.86 -1.70 1.40  1.23 -1.39 -1.02 - 2.09 1.04 -1.64 0.91 0.74                                                                            | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05<br>6.0E-05<br>2.2E-02<br>-<br>3.3E-04                                                                                                    | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>3.6E-02<br>6.0E-02<br>2.6E-03<br>1.3E-03                                                                                                                              | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass                                                                                                                                        | 117 2 233 214 125 136 21 38 sees/Serp 103 14 31 213                                                                      | dAda2b // nic com  116 6 211 222 113 107 20 18 ins actii 43 5 39 226 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstrr</b><br>55<br>5<br>37<br>284<br>192                                                                       | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 84 34 495                                                               | 65 59 251 74 129 303 19 20 <b>e Toll p</b> 390 85 150 58 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dAdazb/<br>w1118<br>larva<br>aling pat<br>-0.02<br>1.26<br>-0.14<br>0.06<br>-0.15<br>-0.34<br>-0.08<br>-1.10<br>pathway<br>-1.28<br>0.34<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dAda2b/<br>w1118 pupa<br>ihway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77                                                   | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02                                                                                                                                                                      | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>5.0E-02<br>2.7E-02<br>1.7E-01<br>2.2E-04                                                                     |
| lysB lysS lysE lysE lysP CG7798 CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG15046 Jon65Alv CG9645 Ser7 CG9733 CG3505 Induced smal CG30080                                                                                          | 236<br>4<br>22<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 135                                                                                                                    | 136 231 6 166 35 34 56 344aa)                          | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65                                                                                                                       | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21                                                                                                                                                                      | -0.81<br>-5.01<br>-1.95<br>-1.20<br>-1.64<br>-2.56<br>-2.00<br>-0.65                                                                                              | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>2.09<br>1.04<br>-1.64<br>0.91<br>0.74                                     | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05<br>6.0E-05<br>2.2E-02<br>-<br>3.3E-04                                                                                                    | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>2.6E-03<br>1.3E-03                                                                                                                                                    | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2                                                                                                                    | ng canor<br>117<br>2<br>233<br>214<br>125<br>136<br>21<br>38<br>ses/Serp<br>103<br>14<br>31<br>213<br>190<br>8<br>4      | 116<br>6<br>211<br>222<br>113<br>107<br>20<br>18<br>ins actii<br>43<br>5<br>39<br>226<br>202<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstr</b><br>55<br>5<br>37<br>284<br>192<br>6<br>3                                                              | w1118 of the To 58 49 487 91 119 274 12 11 eam of th 663 214 84 495 8 59                                                              | 65 59 251 74 129 303 19 20 <b>e Toll p</b> 390 85 150 58 114 17 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dAdazb/<br>wi1118<br>larva<br>alling pat<br>-0.02<br>1.26<br>-0.14<br>0.06<br>-0.15<br>-0.34<br>-0.08<br>-1.10<br>eathway<br>-1.28<br>0.34<br>0.09<br>0.09<br>0.47<br>-1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dAda2b/<br>w1118 pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.12                                  | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02                                                                                                                                                                      | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>5.0E-02<br>2.7E-02<br>1.7E-01<br>2.2E-04                                                                     |
| lysB lysS lysE lysE lysE lysE lysE lysE lysE CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG15046 Jone55Aiv CG9645 Ser7 CG9733 CG3505 Induced small                                                                                   | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135                                                                                                                    | 136<br>231<br>6<br>166<br>35<br>34<br>56               | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856                                                                                                                | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21                                                                                                                                                                      | -0.81<br>5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65                                                                                                 | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>2.09<br>1.04<br>-1.64<br>0.91                                             | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05<br>6.0E-05<br>2.2E-02<br>-<br>3.3E-04                                                                                                    | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>3.6E-02<br>6.0E-02<br>2.6E-03<br>1.3E-03                                                                                                                              | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide                                                                                                                              | ng canor<br>117<br>2<br>233<br>214<br>125<br>136<br>21<br>38<br>ses/Serp<br>103<br>14<br>31<br>213<br>190<br>8<br>4      | 116<br>6<br>211<br>222<br>113<br>107<br>20<br>18<br>ins actii<br>43<br>5<br>39<br>226<br>202<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstr</b><br>55<br>5<br>37<br>284<br>192<br>6<br>3                                                              | w1118 of the To 58 49 487 91 119 274 12 11 eam of th 663 214 84 495 8 59                                                              | 65 59 251 74 129 303 19 20 <b>e Toll p</b> 390 85 150 58 114 17 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dAdazb/<br>wi1118<br>larva<br>alling pat<br>-0.02<br>1.26<br>-0.14<br>0.06<br>-0.15<br>-0.34<br>-0.08<br>-1.10<br>eathway<br>-1.28<br>0.34<br>0.09<br>0.09<br>0.47<br>-1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dAda2b/<br>w1118 pupa<br>:hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.12                                  | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02                                                                                                                                                                      | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>5.0E-02<br>2.7E-02<br>1.7E-01<br>2.2E-04                                                                     |
| lysB lysS lysE lysE lysE lysP CG7798 CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG15046 Jon65Alv CG9645 Ser7 CG9733 CG3505 Induced smal CG30080 IIIM1 CG16978                                                                       | 236 - 4 22 - 680 9 43 - 6 680 166 56 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135                                                                                                                    | 136 231 6 166 35 34 56 34aa) 66 357                    | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856                                                                                                                | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430                                                                                                                                                              | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65                                                                                                | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>2.09<br>1.04<br>-1.64<br>0.91                                             | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05<br>6.0E-05<br>2.2E-02<br>-<br>-<br>3.3E-04                                                                                               | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>2.6E-03<br>1.3E-03                                                                                                                                                    | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2 Genes encodir imd                                                                                                  | 117 2 233 214 125 136 21 1 38 sees/Serpi 103 14 31 213 190 8 4 4 nng canor                                               | 116 6 211 222 113 107 20 18 ins actii 43 5 39 226 202 10 2 nic com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstrr</b><br>55<br>5<br>37<br>284<br>192<br>6<br>3                                                             | w1118 of the To 58 49 487 91 119 274 12 11 eam of th 663 214 84 495 8 59 of the Im                                                    | 65<br>59<br>251<br>74<br>129<br>303<br>19<br>20<br>e Toll p<br>390<br>85<br>150<br>58<br>114<br>17<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dAda2b/<br>wi118<br>larva -0.02 1.26 -0.14 0.06 -0.15 -0.34 -0.08 -1.10  pathway -1.28 0.34 0.09 0.47 -1.45 vay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dAda2b/<br>w1118<br>pupa<br>::hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.12<br>1.04                      | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02<br>1.0E-01                                                                                                                                                           | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>1.4E-02<br>2.7E-02<br>1.7E-01<br>2.2E-04<br>1.0E-01<br>3.6E-02                                               |
| lysB lysS lysE lysE lysE lysE lysF CG7798 CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG15046 Jon65Aiv CG9645 Ser7 CG9733 CG3505 Induced smal CG30080 CG9080 IM1 CG16978 IM23                                                        | 236 - 4 22 680 9 43 6 680 16 56 183 3 3 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 3 - 6 6 683 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 135 - 130 6                                                                                                            | 136 231 6 166 35 34 56 34aa) 66 357 4                  | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>-<br>856                                                                                                           | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430                                                                                                                                                              | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80                                                                                       | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>2.09<br>1.04<br>-1.64<br>0.91<br>0.74                                     | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05<br>6.0E-05<br>2.2E-02<br>-<br>-<br>3.3E-04<br>-<br>4.2E-02<br>3.5E-03<br>5.0E-02                                                         | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>2.6E-03<br>-<br>1.3E-03                                                                                                                                               | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2 Genes encodir imd DmTak1                                                                                           | 117 2 233 214 125 136 21 136 21 31 190 8 4 4 ng canor                                                                    | dAda2b / nic com  116 6 211 222 113 107 20 18 ins actil 43 5 39 226 202 10 2 2 nic com 69 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br>ng upstro<br>55<br>5<br>37<br>284<br>192<br>6<br>3<br>ponents                                                         | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 495 59 of the Im  8 57                                                  | 14da2b sign: 65 59 251 74 129 303 19 20 e Toll p 390 85 150 58 114 17 75 d pathw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dadaży w 1118 larva aling pat 1-0.02 1.266 -0.14 0.06 -0.15 -0.34 -0.08 -1.10 pathway -1.28 -1.58 0.34 0.09 0.47 -1.45 vay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dAda2b/<br>w1118<br>pupa<br>chhway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.112<br>1.04<br>0.33                     | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02<br>1.0E-01                                                                                                                                                | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>2.7E-02<br>2.7E-02<br>1.7E-01<br>2.2E-04<br>1.0E-01<br>3.6E-02                                               |
| lysB lysS lysE lysE lysE lysE lysE lysE lysE lysE                                                                                                                                                                                           | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135<br>130<br>6<br>130<br>6<br>115<br>34<br>27<br>57<br>57<br>128<br>398<br>34<br>4                                    | 136 231 6 166 35 34 56 34aa) 66 357 4                  | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856                                                                                                                | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430                                                                                                                                                              | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80                                                                                       | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>-1.04<br>-1.64<br>0.91<br>0.74                                            | - 2.2E-01<br>- 7.4E-04<br>2.4E-03<br>- 9.1E-05<br>6.0E-05<br>2.2E-02<br>3.3E-04<br>- 4.2E-02<br>3.5E-03<br>5.0E-02                                                                     | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>6.0E-02<br>2.6E-03<br>1.3E-03<br>1.1E-01<br>1.8E-02<br>6.6E-02<br>9.7E-03                                                                                             | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2 Genes encodir imd DmTak1 Tab2                                                                                      | 117 2 233 214 125 136 21 1 38 ses/Serpi 103 14 31 190 8 4 4 ng canor                                                     | 116 6 211 222 118 118 201 118 118 201 118 118 201 118 118 201 118 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 201 118 | 141<br>5<br>199<br>224<br>90<br>120<br>120<br>127<br>20<br><b>ng upstr</b><br>55<br>5<br>37<br>284<br>192<br>6<br>3<br><b>ponents</b>                                    | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 84 495 8 59 of the Im  8 57 123                                         | 65 59 251 74 129 303 19 20 e Toll r 58 114 17 75 d d pathw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dAdd2b/<br>wi118 larva  -0.02 1.26 -0.14 0.06 -0.15 -0.34 -0.08 -1.10  pathway -1.28 -1.58 0.34 0.09 0.09 0.47 -1.45  vay  -0.06 0.46 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dAda2b/<br>w1118 pupa<br>chtway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.77<br>-2.12<br>1.04<br>0.33                                 | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>1.0E-01                                                                                                                                                           | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>5.0E-02<br>2.7E-02<br>1.7E-01<br>2.2E-04<br>1.0E-01<br>3.6E-02                                               |
| lysB lysS lysE lysE lysE lysE lysP CG7798 CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG15046 Jon65Aiv CG9645 Ser7 CG9733 CG3505 Induced small CG30080 CG9080 LM1 CG16978 IM23                                                       | 236 - 4 22 680 9 43 6 680 16 56 183 3 3 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 - 6 6 683 3 3 3 3 3 - 6 6 683 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 135 - 130 6                                                                                                            | 136 231 6 166 35 34 56 34aa) 66 357 4                  | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>-<br>856                                                                                                           | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430                                                                                                                                                              | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80                                                                                       | 1.49 -0.14 2.17 0.57 -0.86 -1.70 1.40  1.23 -1.39 -1.02 - 2.09 1.04 -1.64 0.91 0.74 - 3.65 -1.15 3.66 -2.20 2.44                                               | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05<br>6.0E-05<br>2.2E-02<br>-<br>-<br>3.3E-04<br>-<br>4.2E-02<br>3.5E-03<br>5.0E-02                                                         | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>2.6E-03<br>-<br>1.3E-03                                                                                                                                               | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2 Genes encodir imd DmTak1                                                                                           | 117 2 233 214 125 136 21 136 21 31 190 8 4 4 ng canor                                                                    | dAda2b / nic com  116 6 211 222 113 107 20 18 ins actil 43 5 39 226 202 10 2 2 nic com 69 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br>ng upstro<br>55<br>5<br>37<br>284<br>192<br>6<br>3<br>ponents                                                         | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 495 59 of the Im  8 57                                                  | 14da2b sign: 65 59 251 74 129 303 19 20 e Toll p 390 85 150 58 114 17 75 d pathw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dadaży w 1118 larva aling pat 1-0.02 1.266 -0.14 0.06 -0.15 -0.34 -0.08 -1.10 pathway -1.28 -1.58 0.34 0.09 0.47 -1.45 vay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dAda2b/<br>w1118<br>pupa<br>::hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.12<br>1.04<br>0.33              | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02<br>1.0E-01                                                                                                                                                | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>5.0E-02<br>2.7E-02<br>1.7E-01<br>2.2E-04<br>1.0E-01<br>3.6E-02                                               |
| lysB lysS lysE lysE lysF lysF lysF lysF CG7798 CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG9631 CG9635 Ser7 CG9733 CG3505 Induced smal CG30080 CG9080 IM1 CG16978 IM23 CG4250 CG44957 IM2                                          | 236 - 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 135<br>130<br>6<br>-<br>115<br>34<br>27<br>57<br>-<br>57<br>-<br>128<br>398<br>34<br>-<br>1052<br>2241<br>50           | 136 231 6 166 35 34 56 344aa) 66 357 4 30 3297         | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>-<br>48<br>14<br>65<br>856                                                                                                           | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>6<br>6<br>35<br>213<br>1193                                                                                                                         | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80<br>-1.19<br>1.12<br>3.50                                                              | 1.49 -0.14 2.17 0.57 -0.86 -1.70 1.40  1.23 -1.39 -1.02  2.09 1.04 -1.64 0.91 0.74  3.65 -1.15 3.66 -2.20 2.44 -3.02                                           | - 2.2E-01<br>- 7.4E-04<br>2.4E-03<br>- 9.1E-05<br>6.0E-05<br>2.2E-02<br>3.3E-04<br>- 4.2E-02<br>3.5E-03<br>5.0E-02<br>- 1.9E-03<br>6.4E-04<br>2.1E-05<br>6.6E-02                       | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>6.0E-02<br>2.6E-03<br>-<br>1.3E-03                                                                                                                                    | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 Iap2 dFADD/BG4 dredd                                                                | 117 2 233 214 125 136 21 1 38 ses/Serpi 103 14 31 190 8 4 4 ng canor 71 180 208 72 106                                   | 116 6 211 1 222 113 100 18 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 100 18 | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br>ng upstrr<br>55<br>5<br>37<br>284<br>192<br>6<br>3<br>ponents                                                         | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 84 495 8 59 of the Im  8 57 123 135 - 94                                | 14da2b sign: 59 251 74 129 303 390 85 150 58 114 77 70 106 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dadaty with the part of the pa | dAda2b/<br>w1118 pupa<br>chikway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.77<br>-2.12<br>1.04<br>0.33                                | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>1.0E-01<br>1.4E-02<br>6.2E-02<br>1.3E-01<br>4.9E-01<br>1.4E-02<br>6.2E-02<br>1.3E-01                                                                                         | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>1.4E-02<br>1.7E-01<br>2.2E-04<br>1.0E-01<br>1.8E-01<br>1.2E-01<br>1.5E-01                                    |
| lysB lysS lysE lysE lysP CG7798 CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG15046 Jon65Aiv CG9645 Ser7 CG9733 CG3505 Induced smal CG30080 CG9080 IIM1 CG66425 CG4250 CG14957 IM2 CG4250 CG14324 CG13324                            | 236 - 4 22 - 680 9 43 - 16 56 183 3 - 13 150 953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 135 130 6 6 1 135 136 136 136 136 136 136 136 136 136 136                                                              | 136 231 6 166 35 34 56 34aa) 66 357 4 30 3297 2222     | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856                                                                                                                | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>6<br>6<br>35<br>213<br>31193                                                                                                                        | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-<br>1.80<br>-<br>1.19<br>1.12<br>3.50                                                      | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>-<br>2.09<br>1.04<br>-1.64<br>0.91<br>0.74                                | 2.2E-01<br>7.4E-04<br>2.4E-03<br>-<br>9.1E-05<br>6.0E-05<br>2.2E-02<br>-<br>-<br>3.3E-04<br>-<br>-<br>4.2E-02<br>3.5E-03<br>5.0E-02<br>-<br>-<br>1.9E-03<br>6.4E-04<br>2.1E-05         | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>6.0E-02<br>2.6E-03<br>1.3E-03<br>1.3E-03<br>                                                                                                                          | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 Iap2 dFADD/BG4 dredd kenny                                                          | 117 2 2 233 214 125 136 21 38 sees/Serp 103 13 190 8 4 190 208 72 208 360 360                                            | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstr</b><br>55<br>5<br>37<br>284<br>192<br>6<br>3<br><b>ponents</b><br>65<br>166<br>166<br>253<br>63<br>130    | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 495 59 of the Im  8 57 123 135                                          | blada2b blada2b blada2b blada2b blada2b blada2b sign.  59 251 74 129 303 19 200 8 Follow blada2b blada2b 150 58 114 17 75 d pathw 7 70 106 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dAddzb/<br>wi118 larva aling pat -0.02 1.266 -0.14 0.06 -0.15 -0.34 -0.08 -1.10 pathway -1.28 0.34 0.09 0.47 -1.45 vay -0.06 0.46 0.29 0.25 0.07 0.08 -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dAda2b/<br>w1118 pupa<br>::hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.12<br>1.04<br>0.33                 | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02<br>1.0E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01                                                                                         | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>2.7E-02<br>2.7E-02<br>1.7E-01<br>2.2E-04<br>1.0E-01<br>1.8E-01<br>1.2E-01<br>1.5E-01                         |
| lysB lysS lysE lysE lysE lysE lysP CG7798 CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG15046 Jon65Aiv CG9645 Ser7 CG9733 CG3505 Induced smal CG30080 CG9080 IM1 CG161978 IM23 CG6425 CG14957 IM2 CG4250 CG14957 IM2 CG13324 CG15126 | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135<br>130<br>6<br>130<br>6<br>115<br>34<br>27<br>57<br>57<br>es (40-1<br>128<br>398<br>34<br>9<br>1052<br>2241<br>50  | 136 231 6 166 35 34 56 34aa) 66 357 4 30 3297 2222 3   | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856                                                                                                                | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>6 6<br>35<br>213<br>1193<br>51<br>74                                                                                                                | -0.81<br>5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80<br>1.19<br>1.12<br>3.50<br>-1.65<br>2.81<br>1.23<br>3.91                               | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>-2.09<br>1.04<br>-1.64<br>0.91<br>0.74                                    | 2.2E-01 7.4E-04 2.4E-03 - 9.1E-05 6.0E-05 2.2E-02 3.3E-04 4.2E-02 3.5E-03 5.0E-02 - 1.9E-03 6.4E-04 2.1E-05 6.6E-02                                                                    | 1.4E-04 - 2.9E-05 - 2.1E-02 4.7E-03 4.2E-03 3.0E-05 1.8E-02 6.0E-02 2.6E-03 - 1.3E-03 - 1.1E-01 1.8E-02 6.6E-02 9.7E-03 9.7E-04 - 5.3E-02 8.7E-03                                                                                                  | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 Iap2 dFADD/BG4 dredd kenny Dmikkb/ird5                                              | ng canor  117 2 233 214 125 136 21 103 14 31 213 190 8 4 ng canor  71 180 180 208 8 72 106 360 360 360 361               | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br>ng upstre<br>55<br>37<br>284<br>192<br>6<br>3<br>ponents<br>65<br>166<br>166<br>166<br>253<br>63<br>130<br>319<br>111 | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 495 59 of the Im  8 57 123 135 94 76                                    | blada2b blada2b blada2b blada2b blada2b blada2b sign.  59 251 74 129 303 19 9 6 8 5150 58 114 17 75 d pathw 7 70 106 155 120 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dadazy with part of the control of t | dAda2b/<br>w1118<br>pupa<br>chhway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.112<br>1.04<br>0.33                     | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02<br>1.0E-01<br>4.9E-01<br>4.9E-01<br>2.0E-02<br>1.3E-01<br>1.4E-02<br>6.2E-02<br>1.3E-01<br>1.2E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01 | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>2.7E-02<br>2.7E-02<br>1.7E-01<br>3.6E-01<br>1.2E-01<br>1.5E-01<br>1.5E-01                                    |
| lysB lysS lysE lysE lysE lysE lysE lysE lysE lysE                                                                                                                                                                                           | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135<br>130<br>6<br>-<br>115<br>34<br>27<br>57<br>-<br>57<br>-<br>28<br>398<br>34<br>-<br>1052<br>2241<br>50<br>-<br>39 | 136 231 6 166 35 34 56 34aa) 66 357 4 30 3297 4 2222 3 | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856                                                                                                                | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>65<br>213<br>1193<br>51<br>74<br>62<br>92                                                                                                           | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80<br>-1.19<br>1.12<br>3.50<br>-1.65<br>2.81<br>1.23<br>3.91<br>-1.65<br>2.81<br>1.23    | 1.49 -0.14 2.17 0.57 -0.86 -1.70 1.40  1.23 -1.39 -1.02 -2.09 1.04 -1.64 0.91 0.74  3.65 -1.15 3.66 -2.20 2.44  3.02 1.58 -1.29 1.68                           | - 2.2E-01<br>- 7.4E-04<br>2.4E-03<br>- 9.1E-05<br>6.0E-05<br>2.2E-02<br>3.3E-04<br>3.5E-03<br>5.0E-02<br>- 1.9E-03<br>6.4E-04<br>2.1E-05<br>6.6E-02                                    | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>6.0E-02<br>2.6E-03<br>1.3E-03<br>1.1E-01<br>1.8E-02<br>6.6E-02<br>9.7E-03<br>9.7E-04<br>5.3E-02<br>8.7E-03<br>2.5E-02<br>1.2E-01                                      | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 Iap2 dFADD/BG4 dredd kenny                                                          | 117 2 2 233 214 125 136 21 38 sees/Serp 103 13 190 8 4 190 208 72 208 360 360                                            | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br><b>ng upstr</b><br>55<br>5<br>37<br>284<br>192<br>6<br>3<br><b>ponents</b><br>65<br>166<br>166<br>253<br>63<br>130    | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 84 495 8 59 of the Im  8 57 123 135 - 94                                | 14da2b sign: 59 251 74 129 303 390 85 150 58 114 77 70 106 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dAddzb/<br>wi118 larva aling pat -0.02 1.266 -0.14 0.06 -0.15 -0.34 -0.08 -1.10 pathway -1.28 0.34 0.09 0.47 -1.45 vay -0.06 0.46 0.29 0.25 0.07 0.08 -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dAda2b/<br>w1118 pupa<br>::hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.12<br>1.04<br>0.33                 | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02<br>1.0E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01                                                                                         | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>2.7E-02<br>2.7E-02<br>1.7E-01<br>3.6E-02<br>3.6E-01<br>1.2E-01<br>1.5E-01<br>5.8E-02<br>8.7E-02              |
| lysB lysS lysE lysE lysE lysE lysP CG7798 CG8492 CG11159 Induced serin CG6639 CG18563 CG9631 CG15046 Jon65Aiv CG9645 Ser7 CG9733 CG3505 Induced smal CG30080 CG9080 IM1 CG161978 IM23 CG6425 CG14957 IM2 CG4250 CG14957 IM2 CG13324 CG15126 | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135<br>130<br>6<br>130<br>6<br>115<br>34<br>27<br>57<br>57<br>es (40-1<br>128<br>398<br>34<br>9<br>1052<br>2241<br>50  | 136 231 6 166 35 34 56 34aa) 66 357 4 30 3297 2222 3   | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856                                                                                                                | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>6 6<br>35<br>213<br>1193<br>51<br>74                                                                                                                | -0.81<br>5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80<br>1.19<br>1.12<br>3.50<br>-1.65<br>2.81<br>1.23<br>3.91                               | 1.49<br>-0.14<br>2.17<br>0.57<br>-0.86<br>-1.70<br>1.40<br>1.23<br>-1.39<br>-1.02<br>-2.09<br>1.04<br>-1.64<br>0.91<br>0.74                                    | 2.2E-01 7.4E-04 2.4E-03 - 9.1E-05 6.0E-05 2.2E-02 3.3E-04 4.2E-02 3.5E-03 5.0E-02 - 1.9E-03 6.4E-04 2.1E-05 6.6E-02                                                                    | 1.4E-04 - 2.9E-05 - 2.1E-02 4.7E-03 4.2E-03 3.0E-05 1.8E-02 6.0E-02 2.6E-03 - 1.3E-03 - 1.1E-01 1.8E-02 6.6E-02 9.7E-03 9.7E-04 - 5.3E-02 8.7E-03                                                                                                  | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 Iap2 dFADD/BG4 dredd kenny Dmikkb/ird5                                              | ng canor  117 2 233 214 125 136 21 103 14 31 213 190 8 4 ng canor  71 180 180 208 8 72 106 360 360 360 361               | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br>ng upstre<br>55<br>37<br>284<br>192<br>6<br>3<br>ponents<br>65<br>166<br>166<br>166<br>253<br>63<br>130<br>319<br>111 | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 495 59 of the Im  8 57 123 135 94 76                                    | blada2b blada2b blada2b blada2b blada2b blada2b sign.  59 251 74 129 303 19 9 6 8 5150 58 114 17 75 d pathw 7 70 106 155 120 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dadazy with part of the control of t | dAda2b/<br>w1118<br>pupa<br>chhway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.112<br>1.04<br>0.33                     | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02<br>1.0E-01<br>4.9E-01<br>4.9E-01<br>2.0E-02<br>1.3E-01<br>1.4E-02<br>6.2E-02<br>1.3E-01<br>1.2E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01<br>4.9E-01 | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>2.7E-02<br>2.7E-02<br>1.7E-01<br>3.6E-02<br>3.6E-01<br>1.2E-01<br>1.5E-01<br>5.8E-02<br>8.7E-02              |
| lysB lysS lysE lysE lysE lysE lysE lysE lysE lysE                                                                                                                                                                                           | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135 130 6 6                                                                                                            | 136 231 6 166 35 34 56 34aa) 66 357 4 30 3297 2222 3   | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856<br>5<br>14<br>3<br>981<br>220<br>6<br>25<br>38<br>9<br>9<br>21<br>25                                           | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>6<br>3<br>55<br>213<br>1193<br>51<br>74<br>16<br>29<br>21<br>3<br>3<br>5<br>4<br>4<br>4<br>4<br>6<br>7<br>7<br>7<br>7<br>7<br>7                     | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80<br>-1.12<br>3.50<br>-1.65<br>2.81<br>1.23<br>3.91<br>-3.56<br>0.59<br>1.19            | 1.49 -0.14 2.17 0.57 -0.86 -1.70 1.40  1.23 -1.39 -1.02  2.09 1.04 -1.64 0.91 0.74  3.65 -1.15 3.66 -2.20 2.44  3.02 1.58 -1.29 1.68 0.95 0.59                 | - 2.2E-01<br>- 7.4E-04<br>2.4E-03<br>- 9.1E-05<br>6.0E-05<br>2.2E-02<br>3.3E-04<br>3.5E-03<br>5.0E-02<br>- 1.9E-03<br>6.4E-04<br>2.1E-05<br>6.6E-02<br>- 9.2E-02<br>1.1E-01<br>5.1E-02 | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>6.0E-02<br>2.6E-03<br>1.3E-03<br>-<br>1.3E-03<br>9.7E-04<br>-<br>5.3E-02<br>8.7E-03<br>9.7E-04<br>-<br>1.2E-01<br>7.8E-02<br>2.5E-02<br>2.5E-02<br>2.5E-02<br>2.5E-02 | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 lap2 dFADD/BG4 dredd kenny Dmikkb/ird5 relish  Genes encodir                        | ng canor  117 2 233 214 125 136 21 1 38 ses/Serpi 103 14 31 190 8 4 ng canor  71 180 208 72 106 360 111 404              | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141 5 199 224 90 120 17 20 ng upstra 55 5 37 284 192 6 3 ponents 65 166 253 63 130 319 111 474 affect th                                                                 | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 495 8 59 of the Im  8 57 123 135 94 76 191                              | Section   Sect | dadazy with the patential  | dAda2b/<br>w1118 pupa<br>chway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.77<br>-2.12<br>1.04<br>0.33                                  | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>1.0E-01<br>4.9E-01<br>1.4E-02<br>6.2E-02<br>1.3E-01<br>4.9E-01<br>2.0E-01<br>2.0E-01<br>2.0E-01                                                                   | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>1.4E-02<br>1.7E-01<br>2.2E-04<br>1.0E-01<br>1.8E-01<br>1.5E-01<br>5.8E-02<br>8.7E-02<br>9.4E-03              |
| lysB lysS lysE lysE lysE lysE lysE lysE lysE lysE                                                                                                                                                                                           | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135                                                                                                                    | 136 231 6 166 35 34 56 34aa) 66 357 4 30 3297 2222 3   | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856<br>5<br>14<br>3<br>3<br>981<br>1220<br>6<br>25<br>38<br>9<br>21<br>25                                          | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>6<br>35<br>213<br>11193<br>511<br>74<br>16<br>29<br>41<br>38                                                                                        | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80<br>-1.12<br>3.50<br>-1.65<br>2.81<br>1.23<br>3.91<br>-3.56<br>0.59<br>1.19<br>0.98    | 1.49 -0.14 2.17 0.57 -0.86 -1.70 1.40  1.23 -1.39 -1.02 - 2.09 1.04 -1.64 0.91 0.74 - 3.65 -1.15 3.66 -2.20 2.44 - 3.02 1.58 -1.29 1.68 0.95 0.59 - 1.00       | 2.2E-01 7.4E-04 2.4E-03 - 9.1E-05 6.0E-05 2.2E-02 3.3E-04 - 4.2E-02 3.5E-03 5.0E-02 1.9E-03 6.4E-04 2.1E-05 6.6E-02 - 9.2E-02 1.1E-01 5.1E-02 1.4E-02                                  | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>6.0E-02<br>2.6E-03<br>1.3E-03<br>1.3E-03<br>9.7E-04<br>                                                                                                               | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 Iap2 dFADD/BG4 dredd kenny Dmikkb/ird5 relish  Genes encodir skpA                   | ng canor  117 2 233 214 125 136 21 38 ses/Serpi 103 14 31 213 190 8 4 ng canor  71 180 180 180 208 72 106 360 111 404    | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141 5 199 224 90 120 17 20 ng upstre 55 5 37 284 192 6 3 ponents 65 166 253 63 130 319 111 474  affect th 1474                                                           | w1118 of the To  58 49 487 91 11 119 274 12 11 eam of th 663 214 84 495 8 59 of the Im  8 57 123 135 - 94 76 - 191                    | Section   Sect | dAdazby wi1118 larva aling pat 1.266 -0.14   0.06   -0.15   -0.34   -0.08   -1.10   o.47   -1.45   o.47   o.47   o.47   o.48   o.49   o.47   o.46   o.25   o.47   o.46   o.25   o.47   o.48   o.48   o.49   o.49   o.49   o.47   o.48   o.49   o.49   o.47   o.48   o.49   o | dAda2b/<br>w1118 pupa<br>::hway<br>0.16<br>0.25<br>-0.95<br>-0.31<br>0.12<br>0.15<br>0.68<br>0.94<br>-0.76<br>-1.33<br>0.83<br>0.77<br>-2.12<br>1.04<br>0.33                 | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02<br>1.0E-01<br>4.9E-01<br>1.4E-02<br>6.2E-02<br>1.3E-01<br>1.2E-01<br>4.7E-01<br>2.0E-01                                                                   | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>2.7E-02<br>1.7E-01<br>3.6E-02<br>3.6E-01<br>1.2E-01<br>1.2E-01<br>1.5E-01<br>-5.8E-02<br>9.4E-03             |
| lysB lysS lysE lysE lysE lysF lysF lysF lysF lysF lysF lysF lysF                                                                                                                                                                            | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135                                                                                                                    | 136 231 6 166 35 34 56 34aa) 66 357 4 30 3297 2222 3   | 2549<br>1179<br>72<br>98<br>29<br>183<br>25<br>48<br>14<br>65<br>856<br>5<br>14<br>3<br>981<br>220<br>6<br>6<br>25<br>38<br>9<br>9<br>21<br>25                                             | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>65<br>213<br>1193<br>51<br>74<br>16<br>29<br>41<br>36<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41                 | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-1.80<br>-1.12<br>3.50<br>-1.65<br>2.81<br>1.23<br>3.91<br>-3.56<br>0.59<br>1.19            | 1.49 -0.14 2.17 0.57 -0.86 -1.70 1.40  1.23 -1.39 -1.02 -2.09 1.04 -1.64 0.91 0.74  -3.65 -1.15 3.66 -2.20 2.44 -3.02 1.58 -1.29 1.68 0.95 -1.00 2.75          | - 2.2E-01<br>- 7.4E-04<br>2.4E-03<br>- 9.1E-05<br>6.0E-05<br>2.2E-02<br>3.3E-04<br>3.5E-03<br>5.0E-02<br>- 1.9E-03<br>6.4E-04<br>2.1E-05<br>6.6E-02<br>- 9.2E-02<br>1.1E-01<br>5.1E-02 | 1.4E-04 -2.9E-05 -2.1E-02 4.7E-03 4.2E-03 3.0E-05 1.8E-02 6.0E-02 2.6E-03 -1.3E-03 -1.1E-01 1.8E-02 6.6E-02 9.7E-03 9.7E-04 -5.3E-02 8.7E-02 1.2E-01 7.8E-02 1.2E-01 7.8E-02 1.4E-01                                                               | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 Iap2 IdFADD/BG4 dredd kenny Dmikkb/ird5 relish  Genes encodir skpA UEV1a            | 117 2 233 214 125 136 21 38 ses/Serp 103 14 31 213 190 8 4 180 208 72 106 360 111 404 163 protein fields 1635 1223       | 116 Ada2b / 116 Com 116 6 6 211 1 222 113 107 20 18 115 Ada 20 18 115 Ada 20 2 10 2 2 10 2 2 10 2 10 2 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141 5 199 224 90 120 17 20 18 199 290 120 17 20 199 190 190 190 190 190 190 190 190 19                                                                                   | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 495 8 59 of the Im  8 57 123 135 94 76 191                              | Section   Sect | dAdd2b/<br>wi118 larva aling pat -0.02 1.266 -0.14 0.06 -0.15 -0.34 -0.08 -1.10  eathway -1.28 -1.58 0.34 0.09 0.47 -1.45 vay -0.06 0.46 0.29 0.25 0.07 0.08 -0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dAda2/w1118 pupa chiway 0.16 0.25 -0.95 -0.31 0.12 0.15 0.68 0.94 -0.76 -1.33 0.83 0.77 -2.112 1.04 0.33 -0.28 0.29 -0.21 0.20 - 0.36 0.24 - 0.50                            | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>1.0E-01<br>4.9E-01<br>4.9E-01<br>2.0E-01<br>2.0E-01                                                                                                               | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>2.7E-02<br>2.7E-02<br>1.7E-01<br>3.6E-01<br>1.2E-01<br>1.5E-01<br>1.5E-01                                    |
| lysB lysS lysE lysE lysE lysE lysE lysE lysE lysE                                                                                                                                                                                           | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135 130 6 6 1 130 135 130 135 130 135 135 135 135 135 135 135 135 135 135                                              | 136 231 6 166 35 34 56 34aa) 66 357 4 30 3297 2222 3   | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>48<br>14<br>65<br>856<br>5<br>14<br>3<br>3<br>981<br>1220<br>6<br>25<br>38<br>9<br>21<br>25                                          | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>6<br>35<br>213<br>11193<br>511<br>74<br>16<br>29<br>41<br>38                                                                                        | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1.49 -0.14 2.17 0.57 -0.86 -1.70 1.40  1.23 -1.39 -1.02 - 2.09 1.04 -1.64 0.91 0.74 - 3.65 -1.15 3.66 -2.20 2.44 - 3.02 1.58 -1.29 1.68 0.95 0.59 - 1.00       | 2.2E-01 7.4E-04 2.4E-03 - 9.1E-05 6.0E-05 2.2E-02 3.3E-04 4.2E-02 3.5E-03 5.0E-02 1.9E-03 6.4E-04 2.1E-05 6.6E-02 9.2E-02 1.1E-01 5.1E-02 1.4E-02                                      | 1.4E-04<br>2.9E-05<br>2.1E-02<br>4.7E-03<br>4.2E-03<br>3.0E-05<br>1.8E-02<br>6.0E-02<br>2.6E-03<br>1.3E-03<br>1.3E-03<br>9.7E-04<br>                                                                                                               | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 Iap2 dFADD/BG4 dredd kenny Dmikkb/ird5 relish  Genes encodir skpA                   | ng canor  117 2 233 214 125 136 21 38 ses/Serpi 103 14 31 213 190 8 4 ng canor  71 180 180 180 208 72 106 360 111 404    | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141 5 199 224 90 120 17 20 ng upstre 55 5 37 284 192 6 3 ponents 65 166 253 63 130 319 111 474  affect th 1474                                                           | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 84 34 495 8 59 of the Im  8 57 123 1355 - 94 76 - 191 e Toll an 522 300 | Section   Sect | dAdazb/<br>wi1118<br>larva aling pat  -0.02 1.266 -0.14 0.06 -0.15 -0.34 -0.08 -1.10  pathway -1.28 0.34 0.09 0.47 -1.45  vay  -0.06 0.46 0.29 0.25 0.07 0.08 -0.12 0.01 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dAda2b/<br>w1118 pups<br>::hway  0.16 0.25 -0.95 -0.31 0.12 0.15 0.68 0.94  -0.76 -1.33 0.83 0.77 -2.12 1.04 0.33  -0.28 0.29 -0.21 0.20 - 0.50  thway(s) -0.50              | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>7.6E-02<br>1.0E-01<br>4.9E-01<br>1.4E-02<br>6.2E-02<br>1.3E-01<br>1.2E-01<br>4.7E-01<br>2.0E-01                                                                   | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>1.4E-02<br>1.7E-01<br>2.2E-04<br>1.0E-01<br>1.8E-01<br>1.2E-01<br>1.5E-01<br>5.8E-02<br>8.7E-02<br>9.4E-03   |
| lysB lysS lysE lysE lysE lysE lysE lysE lysE lysE                                                                                                                                                                                           | 236 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 135 130 6 6 1 130 135 130 135 130 135 135 135 135 135 135 135 135 135 135                                              | 136 231 6 166 35 34 56 34aa) 66 357 4 30 3297 2222 3   | 2549<br>1179<br>72<br>98<br>29<br>439<br>183<br>25<br>-<br>48<br>14<br>65<br>856<br>-<br>5<br>144<br>3<br>981<br>220<br>6<br>25<br>38<br>9<br>21<br>25<br>35<br>35<br>35<br>35<br>35<br>25 | 7164<br>5321<br>40<br>30<br>77<br>1026<br>70<br>13<br>206<br>29<br>21<br>1430<br>67<br>6<br>6<br>35<br>213<br>1193<br>51<br>74<br>16<br>29<br>41<br>38<br>70<br>23<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32 | -0.81<br>-5.01<br>-1.95<br>1.20<br>-1.64<br>-2.56<br>2.00<br>-0.65<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1.49 -0.14 2.17 0.57 -0.86 -1.70 1.40  1.23 -1.39 -1.02  2.09 1.04 -1.64 0.91 0.74  3.65 -1.15 3.66 -2.20 2.44 -3.02 1.58 -1.29 1.68 0.95 0.59 -1.00 2.75 3.23 | 2.2E-01 7.4E-04 2.4E-03 - 9.1E-05 6.0E-05 2.2E-02 3.3E-04 4.2E-02 3.5E-03 5.0E-02 1.9E-03 6.4E-04 2.1E-05 6.6E-02 9.2E-02 1.1E-01 5.1E-02 1.4E-02                                      | 1.4E-04 2.9E-05 2.1E-02 4.7E-03 4.2E-03 3.0E-05 1.8E-02 6.0E-02 2.6E-03 1.3E-03 1.1E-01 1.8E-02 6.6E-02 9.7E-03 9.7E-04 5.3E-02 8.7E-03 2.5E-02 2.4E-01 7.8E-02 2.4E-01 7.8E-02 2.4E-01 7.9E-02 1.4E-01                                            | name  Genes encodir spatzle Toll DmMyD88 tube pelle cactus DIF dorsal  Serine Proteas Necrotic SPE persephone Spirit Grass spheroide sphinx1/2  Genes encodir imd DmTak1 Tab2 Iap2 dFADD/BG4 dredd kenny Dmikkb/ird5 relish  Genes encodir skpA UEV1a Helicase89B | 117 2 233 214 125 136 21 38 ses/Serpi 103 14 31 190 8 4 4 ng canor 71 180 208 72 106 360 111 404 ng protei 1635 1233 132 | 116 Adab j j ilo com 116 6 2111 222 113 107 20 18 18 113 107 20 18 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 141<br>5<br>199<br>224<br>90<br>120<br>17<br>20<br>ng upstrr<br>55<br>5<br>37<br>284<br>192<br>6<br>3<br>ponents<br>65<br>166<br>253<br>63<br>130<br>319<br>111<br>474   | w1118 of the To  58 49 487 91 119 274 12 11 eam of th 663 214 495 8 59 of the Im  8 57 123 135 94 76 191 e Toll and 522 300           | Adda2b sign:  65 59 251 174 129 303 319 20 e Toll p 20 6 pathw 7 7 6 106 155 120 89 270 dd/or the 505 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dAda2b/<br>wi118 larva -0.02 1.26 -0.14 0.06 -0.15 -0.34 -0.08 -1.10  pathway -1.28 0.34 0.09 0.47 -1.45  vay -0.06 0.46 0.29 0.25 0.07 0.08 -0.12 0.01 0.08 -1.12 0.01 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dAda2b/w1118 pupa chway 0.16 0.25 -0.95 -0.31 0.12 0.15 0.68 0.94 -0.76 -1.33 0.83 0.77 -2.112 1.04 0.33 -0.28 -0.29 -0.21 0.20 -0.36 0.24 - 0.50 chway(s) -0.05 -0.19 -0.09 | 2.4E-01<br>4.5E-02<br>2.7E-01<br>1.4E-01<br>3.4E-01<br>3.8E-02<br>3.1E-01<br>1.2E-03<br>6.3E-03<br>2.0E-02<br>2.6E-02<br>1.4E-01<br>9.7E-02<br>1.0E-01<br>4.9E-01<br>1.4E-02<br>6.2E-02<br>1.3E-01<br>4.9E-01<br>1.2E-01<br>4.9E-01<br>1.2E-01<br>2.0E-01<br>2.0E-01                                             | 1.9E-01<br>2.0E-01<br>4.3E-03<br>9.5E-02<br>2.8E-01<br>1.1E-01<br>6.9E-02<br>1.4E-02<br>2.7E-02<br>1.7E-01<br>3.6E-02<br>3.6E-01<br>1.2E-04<br>1.2E-04<br>1.5E-01<br>1.5E-01<br>-5.8E-02<br>-9.4E-03 |


The average hybridization signal determined on three microarrays in control (w1118), dAda2bd842 (dAda2b), and dAda2bd842 Ada2bEGFP transgene carrier larvae (Ada2bresc) and pupae, and the relative changes in mutants as compared to the control samples are shown. Colors indicate: red: larger than 100% increase, orange: 50-100% increase, dark blue: larger than 100% decrease, light blue 50-100% decrease in signal intensity compared to the control. P-values are calculated by using Student's t-test (one tailed distribution, two sample equal variance, homoscedastic, calculation methods). Shaded boxes in the Ada2b<sup>resc</sup> column indicate genes for which rescue was detected. Immune-related genes are grouped (31).

in dAda2b mutants and controls. These data thus indicate that a robust induction of transcription by the metamorphic regulatory hormone ecdysone can take place in the absence of dADA2b. Furthermore, although these related genes are within a short region in a cluster, during the transition from L to P stage, individual members of the cluster are up-regulated at very different extent. In  $w^{1118}$  and dAda2b mutants these expression changes are similar, both in quantitative and qualitative term.

A third group of functionally-related genes, which shows dramatic changes in expression levels in dAda2b mutants involved in defense mechanisms. In fact, among the genes displaying altered expression in dAda2b mutants, genes induced by microbial infection are represented in the highest number. These include genes encoding peptidoglycan recognition proteins, lysozymes and serine proteases, genes encoding antimicrobial peptides and other small peptides identified by other studies as immune-induced factors. Several other genes as well, with unknown functions belong to this group based on that they have been found to be induced by immune challenges (Table 2) (31). Most of the RNAs corresponding to genes in this group are present in dramatically increased levels in dAda2b mutant samples, some of them displaying a 20-40-fold induction. The presence of a large number of immune function related mRNAs in increased levels in dAda2b mutants is particularly striking in the dAda2b versus  $w^{1118}$  comparison at pupa stage. A smaller, still significant number of immune function related genes are up-regulated in dAda2b mutants in larva stage. In Ada2bEGFP-containing dAda2b null samples, the levels of many of the mRNAs corresponding to these genes are changed towards the values seen in the  $w^{1118}$  control sample, suggesting that the expression of these genes indeed depends on the function of dAda2b (Table 2).

Particularly, striking is the high induction level of genes encoding antimicrobial peptides (AMP). These include all the known seven classes of AMPs that play roles in defense against gram-negative and gram-positive bacteria and fungi. In order to obtain an independent verification that the expression of these genes is indeed up-regulated in *dAda2b* mutants, we compared the expression of AMP-promoter-GFP transgenes in wild type and *dAda2b* mutant animals. As it is shown in Figure 5, both the *attacin* (*att*) and *defensin* (*def*) promoter-driven GFP transgenes were expressed in higher levels in *dAda2b* null animals than in wild type, or in heterozygous siblings pupariated in the same vials.

While RNAs corresponding to AMPs are present exclusively at higher levels in dAda2b mutants than in  $w^{1118}$  samples, very few other components of the immune response show either an increased or decreased RNA level. Surprisingly, the RNA levels of members of the Toll and Imd pathways, the two major branches of signaling pathways involved in *Drosophila* innate immune responses, are only moderately, if at all, affected by dAda2b mutations, and only a few genes belonging to these pathways show significantly altered RNA levels in dAda2b mutants (Table 2).



**Figure 5.** AMP promoter-GFP reporter gene expression in *dAda2b* mutant pupae. The expression of GFP from *defensin* promoter- (def-GFP) and *attacin* promoter-GFP (att-GFP) transgenes in different *dAda2b* background are shown. An Act5C-GFP transgene carrier is shown (GFP) for comparison. The different AMP promoter-GFP transgene carrier animals are siblings obtained from the same crosses and cultured in the same vials.

# Localization of dADA2b, SAGA-specific histone mark and Pol II at promoters affected differently by dAda2b mutations

The gene expression changes observed in *dAda2b* mutants wondered us whether a direct role of the dADA2b-containing HAT complex can be demonstrated in the transcription of genes, which are affected either positively or negatively in mutants. Searching for an answer to this question, we performed ChIPs to detect the presence of SAGA-specific histone H3 acetylation marks (H3K9ac and H3K14ac) and also dADA2b and Pol II localization in the promoter regions of selected genes. In the ChIP analysis we included genes which were found to be up- [Frost (*Fst*), Hus1-like (*Hus1*), Attacin-D (*AttD*)] or

down-regulated [sugarbabe (sug), cap and collar (cnc), cyclin B (CycB)] in dAda2b mutants, and as well two genes [(ribosomal protein L32 (RpL32), ribosomal protein S23 (RpS23)], which were unaffected by dAda2b mutations (Figure 6A). For further control intergenic regions of the genome (29) were included in some of the ChIP analysis. Some of the genes chosen for the analysis have been shown to play roles in processes believed to be regulated by SAGA in *Drosophila* or another organism: Frost (up-regulated in dAda2b mutants), for example, encodes a protein involved in cold hardening response in Arabidopsis, and is up-regulated during recovery after cold shock in *Drosophila* (32,33). On the other hand, the gene of the zinc finger transcription factor, sugarbabe (sug), down-regulated in dAda2b mutants, is the highest and earliest activated gene upon sugar ingestion in Drosophila (34). We performed ChIP experiments on samples obtained from wild type control and dAda2b mutant larvae. First we used dADA2b-specific antibodies to test the association of dADA2b with the selected genes. Fragments corresponding to promoter and 3' regions of the selected genes were detected in immunoprecipitated samples by Q-PCR, using specific primers (Table 1). ChIPs performed with dADA2b-specific Abs resulted in weak signals both from promoter and 3' regions. We obtained similarly weak signals irrespective whether the specific sequence amplified from a precipitated sample corresponded to promoter or 3' region of an up- or down-regulated or dSAGA-independent gene (Figure 6D and Table 3). dAda2b mutant chromatin samples resulted even weaker signals corresponding to 50% or less of that obtained from wild type samples, and again no differences between different genes or regions were observable. On the transcriptionally silent intergenic regions, we detected dADA2b localization neither in wild-type nor in mutant samples. ChIPs performed with H3K9ac-specific Abs gave different results revealing differences in H3K9ac levels between dSAGA-affected and unaffected genes in wild type and dAda2b samples (Figure 6B and Specifically, in dSAGA-regulated genes the H3K9ac levels were decreased in dAda2b mutants compared to wild type samples. On the other hand, in the two ribosomal protein genes, which were not affected by dSAGA, the amount of H3K9ac-specific Abs precipitated chromatin were equally high in both wild type and dAda2b samples (Figure 6C and Table 3). In contrast with these, on the intergenic regions we detected very low levels of K9-acetylated H3 (Figure 6C and Table 3). We detected H3K14ac, the other dSAGA-specific histone modification, in much lower level than H3K9ac in each gene we tested. Therefore, on this form of dSAGA-modified histone we can conclude only that no strong differences in its levels can be observed in these genes, despite that they are affected differently by dAda2b mutations. The small differences in the H3K9ac levels in the promoters of the RpL32 and RpS23 genes in wild type versus dAda2b mutants might result from low nucleosome occupancy of these regions. To assess this possibility, we performed ChIP experiments using H3-specific Abs. The amounts of amplified probes did not indicate that the levels of H3 at the ribosomal gene promoter were significantly different

from that at the other promoters, studied: H3 specific Abs precipitated similar fractions, ~3\% of input chromatin from both the dSAGA-independent ribosomal protein and the dSAGA-dependent other genes. Finally, we performed ChIPs using Pol II large subunit-specific antibodies. Comparisons of the Pol II occupancy in regions of SAGA-independent and dSAGA-dependent genes in wild type and dAda2b mutants are shown in Figure 6E. The amounts of chromatin immunoprecipitated with Pol II-specific Abs from wild type and dAda2b samples indicate very little differences in the Pol II levels on the dSAGA-independent RpL and RpS promoters. On the promoter regions of genes up-regulated in dAda2b mutants (Fst, Hus1), Pol II is present in higher level in dAda2b samples, while on the promoters of genes down-regulated in dAda2b mutants (sug. cnc), Pol II is present at a lower level in the mutant samples than in wild type ones.

#### DISCUSSION

dADA2b is a complex specific constituent of the dSAGA histone modifying complex. Since dGCN5, the HAT component of dSAGA plays a role in at least one other histone modifying complex, ATAC, dGcn5 mutants cannot be used to study dSAGA-regulated genes. However, as recent data have indicated that the loss of dAda2b function interferes with dSAGA histone modifying activity (14,15), we reasoned that by employing dAda2b mutants we will uncover dSAGA-specific functions. Therefore, we used the dAda2b mutants to learn new information on the function of the dSAGA complex. Recently, dSAGA has shown to play a role in histone H2A and H2B deubiquitination as well (35,36). This function of dSAGA is believed to be associated with a module which is not or only partly affected by dAda2b mutations. Our data, thus, are related mainly to the dGCN5 HAT function of the dSAGA complex.

We assessed the effect of the loss of dAda2b zygotic function. Results of earlier studies showed that dAda2b is essential in the germ line (14,15). During early embryogenesis dAda2b might play specific roles, the effect of which are not observed in these experiments. We assume that at the developmental stages we studied, very small fraction, if any, of the maternal dADA2b is remaining. Nonetheless, we cannot exclude a long lasting maternal effect. Neither can we exclude the possibility that, although dAda2b mutations hamper the H3K9 and H3K14 specific HAT activity of dSAGA, they do not eliminate it completely. Thus, despite that we studied dAda2b null mutants; an activity remaining in H3 acetyltransferase of dSAGA in these animals might play a role.

In order to tackle questions concerning the role of dADA2b (and dSAGA) in determining gene expression changes during the late course of fly development, we choose stages for mutant and control sample comparisons in which a significant decrease in the levels of H3K9ac and H3K14ac in dAda2b null mutants is unquestionable. Thus, if dADA2b plays a role in transcription regulation,

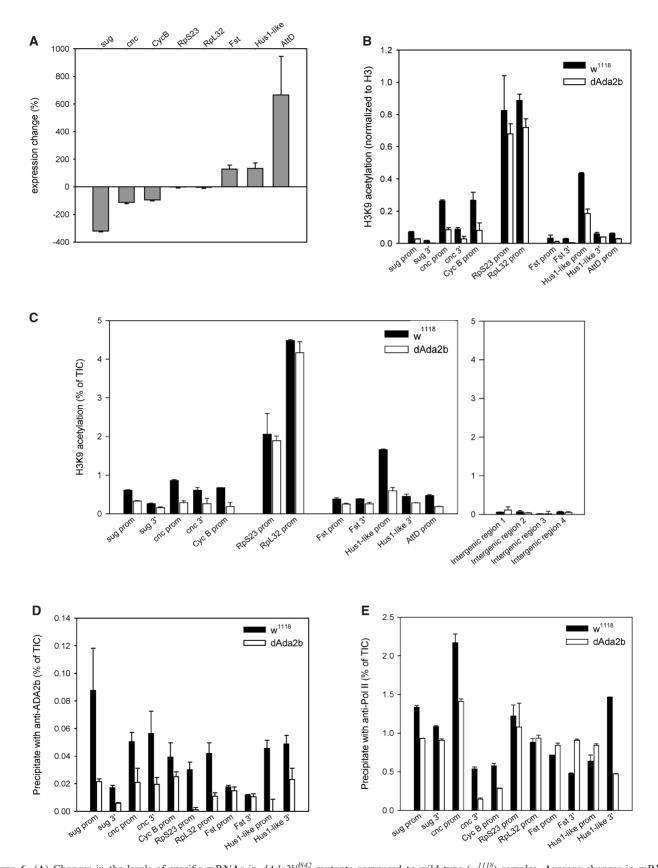



Figure 6. (A) Changes in the levels of specific mRNAs in  $dAda2b^{d842}$  mutants compared to wild type ( $w^{1118}$ ) samples. Average changes in mRNA levels determined by microarray hybridizations in three biological samples are shown. (**B–E**) Q-PCR detection of specific fragments of selected genes in chromatin immunoprecipitated samples. The primers used for Q-PCR are listed in Table 1. H3K9ac-specific (B and C), dADAb- (D) and Pol II-specific (E) antibody-precipitated chromatin from wild type ( $w^{1118}$ ) and dAda2b samples obtained from sycronised third instar larvae.  $C_t$  and dCt values of representative experiments of those shown here are given in Table 3. Note that ChIP experiments to detect H3K9ac in the intergenic regions (C right) were done in separate experiments from those shown on B left.

Table 3. Ct and dCt values of Q-PCR experiments performed to detect K9-acetylated histone H3 levels and the presence of dADA2b at specific gene and intergenic regions in chromatin samples obtained from syncronized wild-type and dAda2b mutant third instar larvae

|                    |        |        | W     | 1118                               |                                | dAda2b |        |       |                                    |                                          |  |  |
|--------------------|--------|--------|-------|------------------------------------|--------------------------------|--------|--------|-------|------------------------------------|------------------------------------------|--|--|
|                    |        | Ct     |       |                                    |                                |        | Ct     |       |                                    | $dCt \ (Ct_{NAC}- \\ Ct_{ADA2b})$        |  |  |
|                    | NAC    | H3K9ac | ADA2b | $dCt \ (Ct_{NAC}- \\ Ct_{H3K9ac})$ | $dCt \ (Ct_{NAC}- Ct_{ADA2b})$ | NAC    | H3K9ac | ADA2b | $dCt \ (Ct_{NAC}- \\ Ct_{H3K9ac})$ |                                          |  |  |
| sug prom           | 28.8   | 24.8   | 27.5  | 3.9                                | 1.2                            | 29.4   | 25.9   | 28.8  | 3.4                                | 0.5                                      |  |  |
| sug 3'             | 31.9   | 27.5   | 30.1  | 4.4                                | 1.9                            | 30.3   | 29.2   | 29.9  | 1.1                                | 0.5                                      |  |  |
| cnc prom           | 31.1   | 24.9   | 29.3  | 6.2                                | 1.7                            | 31.2   | 26.9   | 30.3  | 4.2                                | 0.9                                      |  |  |
| cnc 3'             | 28.8   | 24.5   | 27.7  | 4.3                                | 1.1                            | 29.3   | 26.0   | 28.7  | 3.2                                | 0.6                                      |  |  |
| CycB prom          | 32.1   | 26.5   | 30.8  | 5.6                                | 1.3                            | 33.0   | 29.1   | 31.8  | 3.8                                | 1.1                                      |  |  |
| RpS23 prom         | 33.3   | 24.6   | 32.0  | 8.6                                | 1.3                            | 34.5   | 25.1   | 33.9  | 9.4                                | 0.6                                      |  |  |
| RpL32 prom         | 28.7   | 20.7   | 28.1  | 8.0                                | 0.7                            | 29.7   | 21.0   | 29.7  | 8.7                                | 0.1                                      |  |  |
| Fst prom           | 32.2   | 26.8   | 30.0  | 5.4                                | 2.2                            | 30.2   | 28.0   | 29.3  | 2.2                                | 0.9                                      |  |  |
| Fst 3'             | 30.2   | 25.4   | 28.8  | 4.8                                | 1.5                            | 28.9   | 27.3   | 28.1  | 1.6                                | 0.8                                      |  |  |
| Hus1-like prom     | 29.1   | 22.6   | 28.1  | 6.5                                | 1.0                            | 33.3   | 28.3   | 33.8  | 5.0                                | -0.4                                     |  |  |
| Hus1-like 3'       | 28.6   | 25.4   | 27.9  | 3.2                                | 0.7                            | 29.4   | 26.3   | 28.9  | 3.1                                | 0.5                                      |  |  |
| AttD prom          | 28.3   | 25.1   | 28.0  | 3.2                                | 0.2                            | 28.8   | 26.4   | 28.7  | 2.4                                | 0.1                                      |  |  |
| Intergenic region1 | 29.4   | 28.3   |       | 1.1                                |                                | 28.1   | 27.5   |       | 0.4                                |                                          |  |  |
| Intergenic region2 | 30.0   | 29.2   |       | 0.8                                |                                | 27.3   | 27.2   |       | 0.1                                |                                          |  |  |
| Intergenic region3 | 32.0   | 31.6   |       | 0.4                                |                                | 28.6   | 28.5   |       | 0.1                                |                                          |  |  |
| Intergenic region4 | 29.6   | 28.8   |       | 0.9                                |                                | 27.1   | 27.0   |       | 0.3                                |                                          |  |  |
|                    | Preimm |        | ADA2b |                                    |                                | Preimm |        | ADA2b |                                    | $\frac{dCt\ (Ct_{Preimm}-}{Ct_{ADA2b})}$ |  |  |
| Intergenic region1 | 26.3   |        | 26.6  |                                    | -0.3                           | 27.0   |        | 26.6  |                                    | 0.4                                      |  |  |
| Intergenic region2 | 27.3   |        | 27.5  |                                    | -0.2                           | 26.0   |        | 26.1  |                                    | -0.1                                     |  |  |
| Intergenic region3 | 28.5   |        | 28.8  |                                    | -0.4                           | 26.6   |        | 26.3  |                                    | 0.2                                      |  |  |
| Intergenic region4 | 27.0   |        | 27.0  |                                    | -0.1                           | 24.8   |        | 25.1  |                                    | -0.1                                     |  |  |

For the detection of dADA2b binding to chromatin, preimmune serum control (Preimm) was used instead of no antibody control (NAC).

then comparisons of the total RNA profiles of mutant and  $w^{1118}$  flies at these stages are expected to unravel this role. Surprisingly, the number of genes displaying an altered expression in dAda2b mutant compared to control is rather small. The dAda2b versus  $w^{1118}$  and dAda2b versus dAda2b Ada2bEGFP comparisons we made gave most likely a low and a high estimate of the number of genes affected by dAda2b function. The main reason that these numbers differ considerably might be that the Ada2bEGFP transgene does not provide a complete dAda2b function. Differences in the genetic background of the  $w^{III8}$  and the  $dAda2b^{d842}$  mutant we used can also contribute to this, although as rescue of dAda2b<sup>d842</sup> homozygotes by a genomic transgene results in fertile adults (14), we do not think that this can be a major factor. The similar gene ontology distribution of affected genes of the two samples does not indicate a significant effect arising from different genetic backgrounds either.

Out of those genes affected by dAda2b mutation, more show increased than decreased transcript levels in mutants relative to  $w^{III8}$  control either in larva or in pupa stage. This might seem surprising as subunits of dSAGA were originally identified based on their role in transcription activation. Indeed, in gcn5 mutant yeast cells, most of the affected genes show decreased expression relative to wild type cells, as expected for a coactivator protein (19). Gene expression profile analysis of Arabidopsis (At) Ada2b and Gcn5 mutants, however, provided opposing

results, in that in both AtAda2b and AtGcn5 mutants, most of the affected genes had increased transcript levels, similarly to our observations in *Drosophila* (37). Based on these data, we assume that the dSAGA complex plays dual roles, acting both in repression and activation of target genes. The number of genes that we found to be affected by dAda2b mutations is very close to the numbers reported by Weake et al. recently (35). Noteworthy, they also found that the number of those genes which are represented by an elevated mRNA level in dAda2b mutants (186) is slightly larger than that of those which have a reduced RNA level (158). Since the comparisons in the Workman's lab and in our laboratory were performed in animals at different developmental stages, we did not attempt a systematical comparison of the two datasets.

Our data did not indicate that the absence of dAda2b had a synchronous effect on physically linked clusters of genes, or that dADA2b was essential for the transcription of highly expressed housekeeping genes. Genome-wide profiling of yeast gene expression also suggested a housekeeping role more to TFIID- than SAGAdominated genes (38). During the time period we tested, the expression changes of ecdysteroid-regulated genes play a crucial role in larva-pupa transition. The lack of dAda2b does not abolish ecdysone-mediated gene regulation, thus it seems that activation of transcription by Drosophila nuclear receptors can take place in the absence of dADA2b. This observation is somewhat unexpected

because several studies documented that SAGA and TFTC/STAGA-type complexes function as cofactors in the activation process of nuclear receptors (36,39,40). We must assume that in dAda2b mutant flies, either redundant activities are present at these stages of Drosophila development, or partial dSAGA complexes can form and function as co-activators.

We also observed that down-regulation of gene expression also takes place without a significant defect in dAda2b mutants. An example for this is the sharp drop in the expression of some Lcp genes in dAda2b mutants at the larva-pupa transition. The minor alterations in the timing of the expression change of the *Lcp* genes might indicate a role for dAda2b in modulating the kinetics of the transcriptional response. A similar contribution was suggested for yeast ADA2 in the transcription response to glucose (19). This result is thus consistent with the idea that HATs and/or HAT-containing complexes can contribute to chromatin restructuring and by this modify transcriptional activation. The response of dAda2b mutants to heat stress is also in accord with this view: in dAda2b mutants we observed a slower development of heat shock puffs as compared to controls.

The genes affected by dADA2b depletion most dramatically and in the highest number belong to the group of genes involved in *Drosophila* immune response and specifically those that play a role in defense against microorganisms. The increased level of some of the immune-function related messages is particularly striking in pupa comparisons. While our hybridization data show very high induction of some of the immune effector genes involved in defense against pathogens, we also noted a high level of fluctuation in the level of expression of some of these genes as compared among the triplicates. Nonetheless, we detected the induction of immune-related genes repeatedly in RNA samples obtained independently over a time period more than a year. Since the expression of many of the affected immune function related genes is readjusted at least partially in transgene carrier dAda2b null mutants (Table 2), a causal link between these gene expression changes and the loss of dAda2b function is highly probable. The activation of AMP-promoter linked GFP reporter genes in dAda2b mutants gives a further support this conclusion.

In contrast to the large number of AMP genes affected, only a limited number belonging to the Toll and Imd pathways are misregulated in dAda2b mutants. This might indicate that the lack of dAda2b affects mainly the downstream part of the immune response. Our data do not indicate whether the role of dADA2b in immunerelated gene induction is direct or indirect. We did not observe that sensitivity towards experimental infections by bacteria was higher in dAda2b mutants than in their controls. We favor the idea that in the absence of dADA2b, a functional defect induces immune response genes. Among numerous possibilities, this defect could be in cuticle formation, or activation of an autoimmune mechanism. We believe a direct role of dADA2b in stress response, including immune response gene regulation can be assumed. In this respect the induction of Frost expression in dAda2b mutants is noteworthy as AtAda2b has also been found to be involved in cold response (37). Moreover, Fst also has been found among immuneinduced genes in Drosophila (31).

Earlier, physical interaction has been demonstrated between Dmp53 and dADA2b (11). We also reported that dAda2b mutations interfered with Dmp53-mediated functions, and that X-ray irradiation induced apoptosis in a smaller number of cells in dAda2b mutants than in wild type controls (14). In contrast with that, another group found increased level of Dmp53-dependent apoptosis in response to X-ray radiation in dAda2b mutants (15). These authors concluded that dAda2b is acting upstream of reaper induction in response to irradiation. A more recent report has demonstrated that in mammalian system, among others, the dADA2b subunit of STAGA (the human homologue of dSAGA) makes contacts with p53, and plays a role in p53-dependent gene activation (41). These partially contradicting data on Dmp53 and dAda2b functional interaction made us interested to see whether the mRNA levels of pro- and anti-apoptotic genes were affected in dAda2b mutants. We found repeatedly a decreased number of cells in apoptosis following X-ray irradiation in  $dAda2b^{d842}$  larvae (data not shown). In the microarrays only a small number of those genes implicated in apoptosis showed altered mRNA levels in dAda2b mutants. Among them, however, the level of reaper mRNA was decreased to 50% of the wild-type level, and importantly, in the presence of the rescue transgene the normal level was restored.

The results of ChIP experiments indicated dADA2b in low levels at promoter and 3' regions of several genes we tested. Despite that some of the genes we studied by ChIP are up- or down-regulated in dAda2b mutants, while others are unaffected, we found with none of them the dADA2 protein associated in a significantly higher level than with any other. At first this seems to be an unexpected finding which might result from technical problems. On the other hand, it is in accord with the observation that SAGA is involved in global histone acetylation and in its absence a reduced level of histone acetylation is seen along the polytene chromosomes. The observation that the dSAGA-modified H3K9ac level is lower in all genes we tested is also in accord with this observation. The cause of failure in detecting specific and selective dADA2b-chromatin interaction by ChIP could be that dADA2b is in such a position within the dSAGA complex that it is not accessible to the Abs or is not crosslinked effectively. Alternatively, the contact between dSAGA and the nucleosomes required to deposit the modification could be a "hit-and-run" type interaction, which is not detectable by the ChIPs we performed. Interestingly, dAda2b mutation affects the H3K9ac level by a different extent in dSAGA-dependent and independent genes. In the promoters of the ribosomal protein genes, which are expressed in a high level both in dAda2b and wild type cells, we detected H3K9ac in only 10–20% lower levels in dAda2b mutant than in wild type samples. In the promoters (and also in the 3' regions) of SAGA-regulated genes the H3K9ac levels were much lower in dAda2b mutant than wild type samples.

Comparisons of the H3 and H3K9ac levels at the promoters reveal a further interesting fact; in the promoters of the highly expressed ribosomal genes the level of K9 acetylated H3 is high even in dAda2b mutants (Figure 6C). The ratio of total and K9 acetylated H3 cannot be determined directly by these ChIP experiments because of the different efficiency of immunoprecipitations by the different Abs, nonetheless under the same conditions a much higher fraction of H3 can be precipitated in K9 acetylated form with the RpL32 and RpS23 promoters than with the dSAGA-dependent ones (Figure 6B). In other words, the promoters of ribosomal protein genes are associated with high levels of H3K9ac even in the absence of dSAGA. This observation might point to two important facts: first, that at different regions H3K9 can be acetylated by enzyme(s) other than dSAGA, and second, that the H3K9ac marks might have an important role in ensuring the high level expression of the RpL32 and RpS23 (and probably also other highly expressed dSAGA-independent) genes. On the other hand, the H3K9ac levels in dSAGA-regulated genes depend more on dADA2b. On these genes the activity of dSAGA plays a role in determining the transcription intensity. On genes down-regulated in dAda2b mutants the decreased acetylation is paralleled by a decreased Pol II occupancy on the promoters. On the up-regulated genes the situation is the opposite; a decreased H3K9ac level is detectable together with an increased Pol II occupancy.

The observation that dAda2b mutation results in a drastic decrease in global histone H3 acetylation, yet in dAda2b mutants the expression of only a relatively small numbers of genes are affected, poses an interesting question: does dSAGA play a role in global and genespecific transcription regulation by the same or different mechanisms? In light of the data presented here we propose that the two effects are only seemingly different. We envision that in the landscape of modified histones established in the genome by enzymes in various protein complexes, the loss of dAda2b function (and by this the loss of those acetyltransferase functions of dSAGA which are affected by dAda2b) results in a global decrease in H3 acetylation. Depending on other type of histone modifications and the availability and activity of regulators this can lead to an increase or a decrease in the transcription level of selected genes. In the case of most of the genes, this is observable as a delay in the change in expression in the lack of dADA2b. At other regulatory regions, the combinations of histone modifications which exist in wild type animals are perturbed by the loss of dSAGA-specific histone H3 acetylation more drastically. These genes respond to dAda2b mutations as dSAGA-specific targets. It is worth to point out here that genes are defined as dSAGA-specific on an arbitrary criteria. The genome-wide response to dAda2b mutation is a continuous spectrum of changes in both directions. This interpretation is in accord with the observation that H3 acetylation by dSAGA is deposited all along the polytene chromosomes, and also with the suggested global role of H3 acetylation on transcription in other systems. The phenotype of dAda2b mutants i.e.

that they develop late and have an extended lethal phase, is also in accord with this interpretation. We note, however, that since we studied the effects of dAda2b mutation using RNA samples from whole animals, which were in the later stages of their development, and cultured under normal conditions, a more direct dAda2b-dependent promoter-specific regulation selected genes or under specific conditions cannot be excluded.

This study shows that *Drosophila dAda2b* mutants can serve as a valuable model for the dissection of metazoan SAGA functions. We expect that further studies will uncover details in dSAGA function, among others, will give an answer whether the up-regulation of immuneresponse related genes we observed in Drosophila dAda2b mutants, is a new function of metazoan SAGA which evolved from the general stress protection role SAGA plays in yeast cells.

#### **ACKNOWLEDGEMENTS**

The authors thank Adrienn Bakota for technical assistance. They also thank C. Thibault (IGBMC. Illkirch, France) for the microarray analyses, Dr J.L. Imler (CNTR-UPR9022, Strasbourg, France) and Dr B. Lemaitre (EPFL-SV-GHI, Lausanne), for providing us AMP-promoter-GFP transgene stocks.

# **FUNDING**

Hungarian Science Fund (OTKA K77443 to I.B., PD72491 to L.B.); Hungarian Ministry of Health (ETT 078/2003 to I.B.); INSERM, CNRS, Réseau National des Génopoles (N° 260), European Community (EUTRACC LSHG-CT-2007-037445) grants to L.T.; European Community (HPRN-CT-2004-504228: LSHG-CT-2004-502950) to L.T. and I.B.). Funding for open access charge: Hungarian Science Fund OTKA K77443.

Conflict of interest statement. None declared.

# **REFERENCES**

- 1. Carrozza, M.J., Utley, R.T., Workman, J.L. and Cote, J. (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet., 19, 321-329.
- 2. Nagy, Z. and Tora, L. (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene, 26, 5341-5357.
- 3. Wu,P.Y., Ruhlmann,C., Winston,F. and Schultz,P. (2004) Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell. 15, 199-208.
- 4. Daniel, J.A. and Grant, P.A. (2007) Multi-tasking on chromatin with the SAGA coactivator complexes. Mutat. Res., 618, 135–148.
- 5. Grant, P.A., Duggan, L., Cote, J., Roberts, S.M., Brownell, J.E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C.D., Winston, F. et al. (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev., 11, 1640-1650.
- 6. Pray-Grant, M.G., Schieltz, D., McMahon, S.J., Wood, J.M., Kennedy, E.L., Cook, R.G., Workman, J.L., Yates, J.R. 3rd. and Grant, P.A. (2002) The novel SLIK histone acetyltransferase

- complex functions in the yeast retrograde response pathway. Mol. Cell Biol., 22, 8774-8786.
- 7. Berger, S.L., Pina, B., Silverman, N., Marcus, G.A., Agapite, J., Regier, J.L., Triezenberg, S.J. and Guarente, L. (1992) Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell, 70, 251-265.
- 8. Pina, B., Berger, S., Marcus, G.A., Silverman, N., Agapite, J. and Guarente, L. (1993) ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol. Cell Biol., 13, 5981-5989.
- 9. Baker, S.P. and Grant, P.A. (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene, 26, 5329-5340.
- 10. Muratoglu, S., Georgieva, S., Papai, G., Scheer, E., Enunlu, I., Komonyi,O., Cserpan,I., Lebedeva,L., Nabirochkina,E., Udvardy, A. et al. (2003) Two different Drosophila ADA2 homologues are present in distinct GCN5 histone acetyltransferasecontaining complexes. Mol. Cell Biol., 23, 306-321.
- 11. Kusch, T., Guelman, S., Abmayr, S.M. and Workman, J.L. (2003) Two Drosophila Ada2 homologues function in different multiprotein complexes. Mol. Cell Biol., 23, 3305-3319.
- 12. Ciurciu, A., Komonyi, O., Pankotai, T. and Boros, I.M. (2006) The Drosophila histone acetyltransferase Gcn5 and transcriptional adaptor Ada2a are involved in nucleosomal histone H4 acetylation. Mol. Cell Biol., 26, 9413-9423.
- 13. Guelman, S., Suganuma, T., Florens, L., Swanson, S.K., Kiesecker, C.L., Kusch, T., Anderson, S., Yates, J.R. 3rd, Washburn, M.P., Abmayr, S.M. et al. (2006) Host cell factor and an uncharacterized SANT domain protein are stable components of ATAC, a novel dAda2A/dGcn5-containing histone acetyltransferase complex in Drosophila. Mol. Cell Biol., 26, 871-882
- 14. Pankotai, T., Komonyi, O., Bodai, L., Ujfaludi, Z., Muratoglu, S., Ciurciu, A., Tora, L., Szabad, J. and Boros, I. (2005) The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions. Mol. Cell Biol., 25, 8215-8227.
- 15. Qi, D., Larsson, J. and Mannervik, M. (2004) Drosophila Ada2b is required for viability and normal histone H3 acetylation. Mol. Cell Biol., 24, 8080-8089.
- 16. Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W., Walker, K., Rolfe, P.A., Herbolsheimer, E. et al. (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell, 122, 517-527.
- 17. Robert, F., Pokholok, D.K., Hannett, N.M., Rinaldi, N.J., Chandy, M., Rolfe, A., Workman, J.L., Gifford, D.K. and Young, R.A. (2004) Global position and recruitment of HATs and HDACs in the yeast genome. Mol. Cell, 16, 199-209.
- 18. Howe, L., Auston, D., Grant, P., John, S., Cook, R.G., Workman, J.L. and Pillus, L. (2001) Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev., 15, 3144-3154.
- 19. Wu,M., Newcomb,L. and Heideman,W. (1999) Regulation of gene expression by glucose in S. cerevisiae: a role for ADA2 and ADA3/ NGG1. J. Bacteriol., 181, 4755-4760.
- 20. Kurdistani, S.K., Tavazoie, S. and Grunstein, M. (2004) Mapping global histone acetylation patterns to gene expression. Cell, 117,
- 21. Yan, C. and Boyd, D.D. (2006) Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression. Mol. Cell Biol., 26, 6357-6371.
- 22. Ryder, E., Blows, F., Ashburner, M., Bautista-Llacer, R., Coulson, D., Drummond, J., Webster, J., Gubb, D., Gunton, N., Johnson, G. et al. (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics, 167, 797-813.
- 23. Tzou, P., Ohresser, S., Ferrandon, D., Capovilla, M., Reichhart, J.M., Lemaitre, B., Hoffmann, J.A. and Imler, J.L. (2000) Tissue-specific

- inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity, 13, 737-748.
- 24. Besse, S., Vigneron, M., Pichard, E. and Puvion-Dutilleul, F. (1995) Synthesis and maturation of viral transcripts in herpes simplex virus type 1 infected HeLa cells: the role of interchromatin granules. Gene Expr., 4, 143-161.
- 25. Winer, J., Jung, C.K., Shackel, I. and Williams, P.M. (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem., 270, 41–49.
- 26. Chanas, G., Lavrov, S., Iral, F., Cavalli, G. and Maschat, F. (2004) Engrailed and polyhomeotic maintain posterior cell identity through cubitus-interruptus regulation. Dev. Biol., 272, 522-535.
- 27. Breiling, A. and Orlando, V. (2005) In Adams, G. (ed.), Protein-Protein Interactions, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
- 28. Lebedeva, L.A., Nabirochkina, E.N., Kurshakova, M.M., Robert, F., Krasnov, A.N., Evgen'ev, M.B., Kadonaga, J.T., Georgieva, S.G. and Tora, L. (2005) Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activation. Proc. Natl Acad. Sci. USA, 102, 18087-18092.
- 29. Papp,B. and Muller,J. (2006) Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes. Dev., 20, 2041-2054.
- 30. Wright, L.G., Chen, T., Thummel, C.S. and Guild, G.M. (1996) Molecular characterization of the 71E late puff in Drosophila melanogaster reveals a family of novel genes. J. Mol. Biol., 255, 387-400
- 31. Lemaitre, B. and Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 25, 697-743.
- 32. Goto, S.G. (2001) A novel gene that is up-regulated during recovery from cold shock in Drosophila melanogaster. Gene, 270, 259-264.
- 33. Qin, W., Neal, S.J., Robertson, R.M., Westwood, J.T. and Walker, V.K. (2005) Cold hardening and transcriptional change in Drosophila melanogaster. Insect Mol. Biol., 14, 607-613.
- 34. Zinke, I., Schutz, C.S., Katzenberger, J.D., Bauer, M. and Pankratz, M.J. (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. Embo. J., 21, 6162-6173.
- 35. Weake, V.M., Lee, K.K., Guelman, S., Lin, C.H., Seidel, C., Abmayr, S.M. and Workman, J.L. (2008) SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system. Embo. J., 27, 394-405.
- 36. Zhao, Y., Lang, G., Ito, S., Bonnet, J., Metzger, E., Sawatsubashi, S., Suzuki, E., Le Guezennec, X., Stunnenberg, H.G., Krasnov, A. et al. (2008) A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol. Cell, 29, 92-101.
- 37. Vlachonasios, K.E., Thomashow, M.F. and Triezenberg, S.J. (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell, 15, 626-638.
- 38. Huisinga, K.L. and Pugh, B.F. (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in S. cerevisiae. Mol. Cell, 13, 573-585.
- 39. Anafi, M., Yang, Y.F., Barlev, N.A., Govindan, M.V., Berger, S.L., Butt, T.R. and Walfish, P.G. (2000) GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. Mol. Endocrinol., 14, 718-732.
- 40. Wallberg, A.E., Neely, K.E., Gustafsson, J.A., Workman, J.L., Wright, A.P. and Grant, P.A. (1999) Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain. Mol. Cell Biol., 19, 5952-5959
- 41. Gamper, A.M. and Roeder, R.G. (2008) Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage. Mol. Cell Biol., 28, 2517-2527.