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Abstract
The 3D reconstruction of biological specimens using Electron Microscopy is currently capable of
achieving subnanometer resolution. Unfortunately, this goal requires gathering tens of thousands of
projection images that are frequently selected manually from micrographs. In this paper we introduce
a new automatic particle selection that learns from the user which particles are of interest. The training
phase is semi-supervised so that the user can correct the algorithm during picking and specifically
identify incorrectly picked particles. By treating such errors specially, the algorithm attempts to
minimize the number of false positives. We show that our algorithm is able to produce datasets with
fewer wrongly selected particles than previously reported methods. Another advantage is that we
avoid the need for an initial reference volume from which to generate picking projections by instead
learning which particles to pick from the user. This package has been made publicly available in the
open-source package Xmipp.
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1 Introduction
There is at present a strong investment in achieving high-throughput elucidation of large
biological complexes using 3D Electron Microscopy (3DEM). The goal is to automate as much
as possible all the steps from data acquisition to 3D reconstruction. In this line, several projects
aim at automating the image acquisition within the microscope (Lei and Frank, 2005; Suloway
et al., 2005; Stagg et al., 2006), the CTF detection (Sorzano et al., 2007), and the particle picking
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(see Zhu et al. (2004) and references therein). In this article we address this latter problem.
Particle picking aims to locate the bidimensional projections of the structure under study in an
electron micrograph. In the modality of single particles, the macromolecule under study is
imaged in such a way that each particle is most often isolated from the rest, as opposed to the
formation of large molecular arrays or regular crystals. Currently, in most structural biology
studies employing the single particle approach, the projections are manually identified by the
scientist. The goal of automatic particle picking (APP) is to reduce the particle picking time
with the aim of being able to select a large number of particles from a set of micrographs. At
the same time, using APP algorithms improves the objectivity of the picking process so that it
is more reproducible.

APP algorithms can be divided into three categories depending on the features being sought
within the image. A large group of algorithms uses a reference volume from which projections
are generated in all directions. The different particle views are matched in the micrographs
(Huang and Penczek, 2004; Rath and Frank, 2004; Roseman, 2004; Wong et al., 2004). Another
group of algorithms is completely reference free and the particles are automatically detected
based on some measure of “saliency” of the images (Kumar et al., 2004; Ogura and Sato,
2005; Plaisier et al., 2004; Singh et al., 2004; Umesh Adiga et al., 2004). Between these two
extremes there is another group of algorithms that learn the kind of images to be picked by a
training dataset provided by the user (Hall and Patwardhan, 2004; Mallick et al., 2004; Ogura
and Sato, 2004; Plaisier et al., 2004; Short, 2004; Volkmann, 2004). Still, some other algorithms
rely on a simplified geometric description of the overall shape of the particles being sought
(Yu and Bajaj, 2004). The algorithms based on a 3D reference volume are useful for an
advanced stage of the image processing in which such a reference already exists and it is used
to collect more images. However, they are not useful in early stages in which the reconstructed
volume is not yet available. On the other hand, those algorithms relying solely on image
saliencies disregard completely the user preferences and assume that all particles and
orientations in the micrographs are desired. This may not always be the case, as for some
projects it is required to select only a particular set of orientations or of particle type (see, for
example, Zhu et al. (2003, 2004)).

Our algorithm belongs to the family of algorithms that learn from the user which is the kind
of images of interest. A number of features is learned from each training image and the new
projections are picked according to the statistical distribution of the learned features. Our
method differs from other APP approaches (Hall and Patwardhan, 2004; Mallick et al., 2004;
Short, 2004; Volkmann, 2004) in the features calculated for each training image, the classifier
used, and our emphasis on a continuous learning process so that the user can always “teach”
the algorithm about wrongly selected particles (false positives) as more and more micrographs
are being processed. Our image features are rotationally invariant (inspired by those of Short
(2004)), speeding up the particle selection process by avoiding having to learn rotated training
images or rerunning the algorithm on the same micrograph at different orientations. Our
classifier is an ensemble classifier (Polikar, 2007), using a modified Naive Bayes classifier at
its base. The classifier has been designed to reduce as much as possible the false positive rate
(i.e., selected objects that do not correspond to true particles). This is important to reduce the
number of junk particles selected. We applied our algorithm to the standard KLH dataset used
in Zhu et al. (2003, 2004) as well as to the in-house datasets of the SV40 Large T antigen in
complex with Replication Protein A (LTAg+RPA, Alcorlo et al., manuscript in preparation)
and adenovirus.

2 Methods
In this section we present the details of our APP algorithm. First we explain our approach to
micrograph preprocessing and our choice of image features that will be used to identify the
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particles; then we introduce our basic classifier, and finally we present our three-stage ensemble
classifier.

2.1 Micrograph preprocessing
Before computing the image features, it is important to remove as much noise as possible so
that the computed features are stable. We propose to high-pass filter the image, then to apply
a Bayesian wavelet denoising algorithm (Sorzano et al., 2006), downsampling the image by a
factor two by removing all high frequency wavelet components, outlier rejection clipping all
extremely small and high values, and histogram partitioning into a fixed (user supplied) number
of bins. Fig. 1 shows an example of this preprocessing. We suggest to perform the high-pass
filter with a cutoff frequency of 0.02 (the maximum digital frequency is 0.5). The outlier
rejection is performed by removing 2.5% of the smallest values and 2.5% of the largest values.
Note that this outlier rejection is performed in real space and not in wavelet space since it is
aimed at getting rid of bright or dark pixels usually related to hot/cold pixels in a CCD camera
or dust particles. For the histogram partitioning we used 8 bins.

2.2 Image features
In order to identify particles disregarding their in-plane orientation, for each image we compute
a vector of rotational invariant features. These vectors will be used by the classifier to
distinguish between particles, non-particles and errors (this concept will be introduced later).

For achieving rotational invariance, we compute a coarse polar representation of our image
formed by Nr equally thick rings, and Ns sectors (see Fig. 2). The polar conversion is performed
by simply adding all pixel values falling in a polar bin. The diameter of the circle should be a
little bit larger than the expected diameter of the particle. The rotational invariant feature vector
is formed by the histogram of all the rings, the correlation function between the rings i and i–
j where j ∈ {1, 2}, the average of the vector Φδ (to be defined later) and the autocorrelation
of Φδ.

Given a ring as a vector of size Nr, the correlation between two such rings ri1 and ri2 is computed
as

(1)

where r[m] denotes the m-th component of vector r.

The correlation between two sectors si1 and si2 is computed as

(2)

With this correlation index between sectors, for each δ ∈ {1, 2, …, Ns − 1}, we construct the
vector Φδ as
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(3)

whose average and autocorrelation (defined as in Eq. (1)) are rotation invariants.

The total number of features in our feature vector is

(4)

The first term accounts for the ring histograms (Ng is the number of gray values used in the
histogram partitioning described in the previous section; the last value of the histogram is not
stored since the fact that the sum of the histogram values must add up to 1 reduces 1 degree of
freedom). The second term considers the correlation between rings (r0 makes sure that the rings
are not too small to have reliable estimates of their values). The last term accounts for the
correlation between sectors (φs(i1, i2)). In our experiments we used Ng = 8, Nr = 16, r0 = 8 and
Ns = 16, so the total length of the feature vector was 575.

This feature vector is computed on a regular grid of points within the micrograph. It is
recommended that the distance between grid points is much smaller than the expected particle
diameter. In our experiments we made it 10%, meaning that within the area of an expected
particle, 100 (=10×10) grid points are explored as possible particle candidates.

2.3 Basic classifier
We use an ensemble classifier formed by many individual classifiers. As each member of the
ensemble behaves similarly, we present here the most basic classifier.

Let us consider the problem of classifying a dataset into K classes with Nk (k ∈ {0, 1, …, K
−1} training vectors for each class. The training vectors in each class are called  with i ∈

{0, 1, …, NK − 1}. Let  be the j-th component of this vector (i.e., the value of the j-th feature
for this image). Let us also assume that there are up to J features in each vector.

We discretize each feature independently into Nj bins so as to have maximum separation
between classes. To perform this partition, let us consider the absolute range of the feature
observed in all classes [vf,min, vf max]. We first find a value T within this range such that the
entropy of the partition is maximized, i.e.,

(5)

Once we have splitted the interval [vj,min, vj,max] into two halves, we repeat the same procedure
with each one of the halves. This process is iterated until the desired amount of bins is achieved.
In our experiments we used Nj = 8.

Let us call  a label between 0, 1, …, Nj −1 corresponding to the bin containing the value

. If a feature is good for classification, the probability density function (PDF) of labels under
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class k must be very different from the PDF under class k′. Differences between two PDFs can
be measured through the Kullback-Leibler divergence

(6)

We define the classification power of feature j as

(7)

This number is close to 0 if the feature j cannot discriminate between the K classes and increases
as the discriminative power of the feature increases.

Given a feature vector v that we want to classify, a discrete Naive Bayes classifier (NBC)
assigns the class that maximizes the probability that this vector comes from the distribution of
vectors in class k assuming that each feature is independent from the rest:

(8)

where Pr {k} is the a priori probability of class k. It is directly estimated from the training set
as the number of cases in class k over the total number of cases in the training set.

Although features are seldom independent, NBCs usually yield powerful classifiers whose
performance is not far from the classifier using the true dependence structure (Hand and Yu,
2001; Zhang, 2004). The performance of the NBC can be improved if the different features
are weighted according to their classification power

(9)

In this scheme, features with low classification powers (they are distributed similarly for any
of the classes) have an exponent (wj) close to 0 and, therefore, the corresponding probability

 is close to 1. In this way we avoid introducing noise in the classification
process due to features that cannot distinguish between different classes.

The classification rule in Eq. (9) assumes that the cost of committing a classification error is
the same for all classes. However, in this work we have made the choice of preferring to miss
a true particle than picking up a non-particle image. Therefore, we assign different costs to
different classification errors. Let C(k, k′) be the cost matrix, i.e., the cost of classifying an
object as of class k when actually it is of class k′ (in our setting C(k, k) = 0). Instead of looking
for the class that maximizes the probability of observing the feature vector v, we look for the
class that minimizes the expected cost
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(10)

We will refer to this classifier as cost-aware, weighted Naive Bayes classifier (CWNBC). In
our experiments we set the cost of missing a particle to 1, and the cost of picking a non-particle
to 10. Of course, different families of classifiers could be designed using these weights.

As will be seen in the two subsequent sections, the CWNBC is the most basic unit of the
ensemble classifier, i.e., each member of the ensemble is a CWNBC. In the overall structure,
three ensemble classifiers are gathered in a three-stage classifier, which is our proposed schema
to classify candidate particle centers as really being particles or not.

2.4 Ensemble classifier
An ensemble classifier is a classifier formed by many potentially weak classifiers (Polikar,
2007). In our case we chose the CWNBC as the basic unit of the ensemble classifier. Each
individual classifier assigns a label to the input vector, then a decision is made based upon the
labeling of the individual classifiers (see Fig. 3). The particularities of the decision making
process in our case will be described in the next section. The advantage of using ensemble
classifiers resides in the fact that even if each individual classifier has bad classification error
rates, collectively they have a much better performance (Polikar, 2007).

For this schema to work, each classifier in the ensemble must be trained differently from the
rest of the elements. For achieving this goal, randomness is usually introduced at the training
level so that none of the individual classifiers is identical to any other. In our case, we chose
to train each CWNBC on a bootstrap sample of the training vectors and features (Efron and
Tibshirani, 1993; Zoubir and Iskander, 2007), i.e., each CWNBC sees a different subset of
training vectors and a different subset of features randomly chosen from the original set of
training vectors and features by sampling with replacement following a uniform distribution.

From an operational point of view, the ensemble classifier can be seen as a black box that is
trained on a given set of input vectors whose label is known, and that operates on input vectors
with unknown labels to assign them. The training vectors are used to learn the classification
rules. Application of these rules to the training vectors produces correctly assigned vectors as
well as incorrectly assigned ones. For instance, a vector of class 0 that is classified as class 0
(0 → 0) is correctly classified, while a vector of class 0 that is classified as class 1 (0 → 1) is
incorrectly classified. This notion and notation will be important in the next section when
defining the particle classifier.

As described in the next section, our particle classifier is a three-stage classifier. At each stage,
there is an ensemble classifier which has to classify in either two (particles vs. errors) or three
classes (particles vs. non-particles and errors).

2.5 Three-stage classifier
Our classification algorithm has been designed either to continuously learn from the user if
they decide to do so, or to learn from just a few micrographs at the beginning of the process,
and then work independently. The algorithm works as follows. For the first micrograph, the
user must manually pick all particles, typically obtaining a dataset of between 50–100 particles.
If this amount is not achieved in one micrograph, several micrographs can be used. For the
sake of simplicity, let us assume that the first micrograph already contains enough particles.
These particles will be used to train the algorithm. The algorithm assumes that anything in the
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first micrograph that was not picked up is not a particle, and uses this information to learn how
to distinguish between particles and non-particles. In the second micrograph, the algorithm is
trained with the particle and non-particle vectors determined for the first micrograph, and then
it tries to predict which are particles and which are not. After taking a decision for each point
of a fine grid in the micrograph, the results are presented to the user. The user can then correct
the algorithm results by adding new particles and by removing those wrongly picked particles.
These errors are treated differently in our algorithm from non-particles, since they are probably
more similar to particles and, therefore, more difficult to distinguish. They form a new class,
and the classifier for the third micrograph will have to distinguish between particles, non-
particles and errors (i.e., non-particles particularly similar to particles). Therefore, the classifier
for the third micrograph is trained on the set of all particles picked up in micrographs 1 and 2,
the set of all non-particles identified in micrographs 1 and 2, and the set of errors committed
in micrograph 2. Then, the classifier tries to assign a label to each grid point. Only those points
identified as particles are presented to the user, who can again correct the algorithm and increase
the population of errors. To successfully perform this three-class classification, our algorithm
makes use of three classification stages. Each stage is formed by an ensemble classifier with
a different task. The structure of this classifier is presented in Fig. 4 while a detailed explanation
is given in the following paragraphs.

The first stage of classifiers must distinguish among the three different classes. If a certain
percentage of the classifiers decides that the vector to be classified corresponds to a particle,
the vector progresses to the next stage. Otherwise, the vector is discarded as not corresponding
to a particle. In our experiments we used 10 classifiers in each ensemble, and in this stage it
sufficed that 1 of them classified the vector as particle.

The task of the first stage is a difficult one since it has to draw decision boundaries between
three classes, two of them (particles and errors) being rather similar. The second stage takes
the alleged particles produced by the first stage and classifies them between particles and errors.
Since it has only to distinguish between two classes, the task is easier (although still the
separation between particles and errors is a difficult one). If a certain percentage of the
classifiers classifies the vector as error, then the vector does not progress any more through the
cascade (in our experiments we used 10 classifiers and it sufficed that 1 of them classified the
vector as error). Those vectors marked as particles progress to the next stage.

The second stage still makes many classification errors (in the order of 30% of the errors used
for training in the training phase are wrongly classified as particles). The errors of the second
stage are those really difficult errors that cannot be well distinguished from true particles using
the computed rotational invariant features. The third classifier focuses in these very difficult
particles and is trained to distinguish between particles and the classification errors of stage 2.
Again, it suffices that a certain percentage of the classifiers in the ensemble classifies the vector
as error so as to be considered as an error (in our experiment we used 10 classifiers in the
ensemble and the particle was removed from the list of particle candidates if at least one of the
basic classifiers classified it as error). This idea of concentrating on the errors of a previous
classifier is the one also exploited in Adaboost (Freund and Schapire, 1996) which was already
used in (Mallick et al., 2004). Adaboost is a rather general Machine Learning technique.
However, we have tuned this method for our algorithm by disregarding classification errors
caused by non-particles and instead concentrating only on the errors between particles and
false particles.

2.6 Post-processing
The list of particle candidates is sorted by ascending average cost (Eq. 10). Candidates at the
top of the list are finally returned as valid candidates, while candidates lower in the list are
removed if they have another close-by (determined by a distance threshold) candidate above
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in the list. In our implementation we give the user the possibility of further choosing high-
quality particles by removing particles of this sorted list through a slider that permits to drop
the most costly particles in the remaining list.

3 Results
To test the experimental validity of our APP algorithm, we applied it to the standard dataset
of KLH (Keyhole Limpet Haemocyanin) (Zhu et al., 2003, 2004) on which many other papers
have reported their results (Mallick et al., 2004; Roseman, 2004; Volkmann, 2004; Wong et
al., 2004; Yu and Bajaj, 2004), and where, therefore, comparison is possible. We also applied
it to two in-house produced datasets to test its performance on images and specimens with
different characteristics.

KLH Dataset
82 micrographs at a magnification of 66000x were collected in a Phillips CM200 transmission
electron microscope. Images were recorded in a Tietz CCD camera of size 2048×2048. The
pixel size is approximately 2.2 Å/pixel. Our results will be presented on the far from focus
subset as it was done in previous works (Mallick et al., 2004; Roseman, 2004; Volkmann,
2004; Wong et al., 2004; Yu and Bajaj, 2004). The defocus used for these images was −3μm.

We chose the particle diameter to be 256 pixels, the minimum distance between particle
candidates 64, and the distance between grid points 26. The high-pass filter for preprocessing
was 0.02, the preprocessed image gray levels were binned into 8 bins (see Fig. 1), and the polar
transformation (see Fig. 2) was calculated with 8 rings and 16 sectors.

We used the particles picked by Fabrice Mouche (Zhu et al., 2004) in the first three micrographs
to initially train the algorithm. This first training set had 44 vectors corresponding to particles
(learned from Fabrice Mouche), and 202 vectors of non-particles (learned from regions far
from the picked particles). The algorithm tried to automatically pick up particles from the 4th
micrograph. It picked 74 particles out of which 10 corresponded to true particles (there were
11 of them, therefore, we have a True Positive Rate (TPR) at this micrograph of 10/11=91%)
and 64 corresponded to errors (i.e., a False Positive Rate (FPR) of 64/74=86%). We labeled
the 64 wrongly picked particles as errors, picked the missed particle, and built a new model
now with 55 particles, 273 non-particles, and 64 errors. We repeated this procedure with all
the 82 micrographs, Fig. 5 shows the TPR and FPR results for the whole process.

As can be seen in Fig. 5, the algorithm learns a reasonably good model after 20 micrographs.
In the following micrographs (between 21 and 50), the TPR is 62.9% and the FPR is 16.0%.
However, if we keep training, the TPR increases to 69.1% and the FPR decreases to 9.3%
(measured over the last 30 micrographs). Fig. 6 shows an example of particles picked up in the
last micrograph after learning from the 82 micrographs.

In an experimental setting it is more convenient to train the algorithm on a few micrographs
and let it run without any more training for the rest of the micrographs. We chose to train the
algorithm for 20 micrographs and then pick up the rest of the micrographs using this model.
Note that this training on the first 20 micrographs was run independently from our previous
experiments and, therefore, the two models need not be the same up to the 20-th micrograph.
The model after 20 micrographs had 282 true particles, 1839 non-particles, and 94 errors. When
this model was evaluated on the set of the 60 remaining micrographs, the TPR was 61.5% and
the FPR 13.6%. For a fair comparison with the previous experiment (described in the previous
paragraph), we evaluated this model in the last 30 micrographs, the TPR was then 63.4% and
the FPR 10.7%.
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In this particular case in which the particles being sought are all side views (rectangularly
shaped), quite similar to each other, the set of automatically picked particles can be further
refined by aligning the automatically picked particles (we used a Maximum Likelihood
alignment with only one class (Scheres et al., 2005)). Then, the cross-correlation between the
picked particles and the average of the aligned particles was computed. Knowing that a typical
FPR is somewhere between 10% and 20%, we removed 15% of the images with the smallest
correlation coefficients (this idea was already introduced by Zhu et al. (2004)). The resulting
dataset had only 1.6% false positives, and the TPR dropped from 61.5% to 60.0%.

In any of the two experiments described above, the processing time per micrograph was 41
seconds in a single core of a Intel Core Duo, 64 bits, 2 Ghz. The following table shows the
FPR and TPR, principle of learning (projections learned from user, projections learned from
an initial 3D reference model, or KLH geometry specifically exploited) for our algorithm as
well as for those reported in Zhu et al. (2004). The table has been sorted by ascending FPR.

Algorithm FPR (%) TPR (%) Principle Time/Micrograph
Proposed partially trained and filtered 1.6 60.0 Projections 47s
Sigworth (2004) 4.5 76.8 Initial 3D NA
Proposed fully trained 9.3 69.1 Projections 41s
Proposed partially trained 10.7 63.4 Projections 41s
Mallick et al. (2004) 11.7 85.8 Projections 120s
Volkmann (2004) 12.2 72.6 Projections 60s
Zhu et al. (2003) 13.7 90.3 KLH Geometry NA
Wong et al. (2004) 16.2 76.2 Initial 3D NA
Roseman (2004) 16.6 97.6 Projections 42s
Hall and Patwardhan (2004) 22.0 72.6 Projections NA
Ludtke et al. (1999) 23.7 56.6 Projections 10s
Yu and Bajaj (2004) 24.7 92.7 KLH Geometry 20s
Huang and Penczek (2004) 30.7 53.2 Initial 3D NA

LTAg+RPA Datataset
To further explore the capabilities of our algorithm, we applied it to a dataset of much more
contrasted images. As expected, in this case we found that we can train our algorithm with
fewer micrographs than in the previous experiment since the images are well contrasted.

LTAg-RPA complexes were adsorbed to glow-discharged, carbon-coated grids, negatively
stained with 2% uranyl acetate and observed in a JEOL 1230 transmission electron microscope
at 120 kV accelerating voltage and a magnification of 50000x. Twenty-two micrographs were
obtained under minimum-dose conditions, on Kodak SO-163 plates and scanned in a Zeiss/
Imaging scanner. The sampling rate was 4.2 Å/pixel. Note that although this dataset has much
better contrast due to the negative staining (see Fig. 7), not all bright objects in the micrograph
are considered to be particles, but only those that are sufficiently separated and within an
appropriate size range.

For our algorithm we set the particle diameter to 100 pixels, and the distance between grid
points to 10. The minimum distance between two adjacent particles was set to 25 pixels. The
rest of parameters remained as in the previous dataset.

We manually picked 39 particles in the first two micrographs (see Fig. 7 for examples of
particles). The particle selection of the algorithm was corrected in the third and fourth
micrographs, and these were the only micrographs on which the algorithm was trained. After
these, the algorithm was used to automatically pick up particles in the 18 remaining
micrographs. A total of 1440 particles were automatically detected. The TPR was 97.4% and
the FPR 5%. These figures mean that only 5% of the 1440 automatically selected particles
were wrong, and that most (97.4%) of the particles that a person would have picked, were
actually picked.
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The processing time per micrograph was 12 minutes in a single core of a Intel Core Duo, 64
bits, 2 Ghz. This is much larger than the processing time for the KLH, however it must be noted
that the number of grid points in the LTAg+RPA case was 18 times larger (since the
micrographs are larger and the particle is smaller). In our implementation, several micrographs
can be processed in parallel as long as they all use the same image model for the particles to
be picked (which is the case of all micrographs processed after the training stage). Therefore,
the processing time for a single micrograph should be divided by the number of processors
available.

Adenovirus dataset
Finally, we explored the applicability of our algorithm to pick up large objects in
cryomicroscopy conditions. This is a much more challenging technique since the specimen is
not stained. This dataset consisted of 206 micrographs of human adenovirus type 5, an
icosahedral virus producing mild cold symptoms that has the potential of being used as a
therapeutic tool (San Martín et al., 2008). Virus samples were flash-frozen in liquid ethane and
observed at −175°C and 200kV in a FEI Tecnai G2 transmission electron microscope. Images
were recorded on Kodak SO-163 film using a radiation dose of 10 electrons/Å2, a magnification
of 50000x and defocus values in a range between −0.8 and −6μm. Micrographs were digitized
in a Zeiss Photoscan TD scanner with a 7μm pixel size (1.4Åin the sample).

We kept all parameters of our algorithm the same as in the previous two examples except the
diameter of the particle, that was set to 380, the distance between grid points to 38, and the
minimum distance between two particles to 95.

We manually picked the first micrograph in which 148 viruses were available. We trained the
algorithm on other nine micrographs, correcting the picking up errors committed by the
algorithm after the first micrograph. This process finished the training stage with 401 particles,
2368 non-particles and 71 errors. After training for 10 micrographs we let the algorithm pick
up viruses in the 196 remaining micrographs. The particle picking process took 5 minutes per
micrograph in an Intel Core Duo, 64 bits, 2 Ghz. The algorithm automatically detected 6646
particles, the TPR was 98.75%, and the FPR was 21.75% corresponding mostly to adenoviruses
falling outside the support holes. The automatically picked particles were aligned using
Maximum Likelihood (Scheres et al., 2005) into a single class. After removing the 25%
particles with smallest likelihood to avoid the particles in the border as well as the errors, the
FPR was reduced to 3.6% and the TPR to 93.6%.

4 Discussion
In this article we have introduced a new automatic particle picking algorithm for electron
microscopy images of biological specimens. Its main advantages are its generality and speed.
Moreover, it does not depend upon knowing a low resolution model of the particle being picked,
but it learns directly from the user what kind of particles she is interested in. This learning
capability is maintained during the whole application of the algorithm and, at any moment, the
user can teach more particles or errors in order to refine the model. This learning capability is
an advantage over algorithms fully relying on a previous 3D model, or on algorithms using no
specific information of the kind of particles looked for.

The algorithm has been tested with a range of experimental datasets, from “test” datasets (the
KLH one), to images of negatively stained samples and, finally, images of unstained
cryospecimens.

For the KLH dataset there are two manually picked sets of coordinates used as gold standards
in the field (Zhu et al., 2004), the reported FPR between the two datasets oscillated between
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2.3% and 11.7%. Interestingly, our FPR is about 10%, although as can be seen in Fig. 6, our
wrongly picked particles usually correspond to long particles in which two or more KLH
aggregate.

The LTAg+RPA dataset has much better TPR (97.4%) and FPR (5%) figures because particles
present better contrast due to the staining. However, it must be noted that the presence of highly
contrasted particles does not make the algorithm pick all of these salient objects. Rather, our
algorithm is able to distinguish between good particles and aggregated, broken or small
particles.

One of the important steps of our APP algorithm is image preprocessing. Algorithms based on
image saliencies (Kumar et al., 2004; Ogura and Sato, 2005; Plaisier et al., 2004; Singh et al.,
2004; Umesh Adiga et al., 2004) certainly stress this aspect. However, this does not seem to
be the case of the algorithms based on template matching with the projections of a 3D model,
or based on image features, where simple image preprocessing (mostly, normalization and
masking) is employed. In our case, a careful image preprocessing is important in order to reduce
noise and highlight the projections of the particle with respect to their background. The wavelet
denoising is crucial in this task (Sorzano et al., 2006), and the posterior histogram partitioning
also helps to highlight the structure being picked.

The other important key points of our algorithm is the definition of the rotationally invariant
description vector. Due to the extremely noisy nature of the Electron Microscopy images
(Signal-to-Noise Ratios below 0.3), traditional rotation invariant moments (Chong et al.,
2003; Kotoulas and Andreadis, 2007) did not work in our hands. Our invariants are based on
histograms, averages and correlations that due to their summation construction tend to reduce
the noise level. One of the critical points in the algorithm is the construction of the low
resolution image in polar coordinates (defined by the number of rings and sectors). We used
16 rings and 16 sectors as a compromise between the desired summation properties just referred
to (for this it would be desirable to have as few sectors and rings as possible) and the desired
good polar representation of the original image (for this it would be desirable to have as many
sectors and rings as possible). The description vector we construct is based on three basic
features: the histogram of annular rings, the correlation function between nearby rings, and the
second order characterization (mean and autocorrelation) of the correlation vector between
sectors at all distances. Depending on the number of sectors and rings, the size of the description
vector will be larger or smaller. In our experiments, the description vector had 575 components.
Depending on the particle to pick some of them will be relevant for the classification and some
of them will not. For instance, when telling the difference between round and square particles,
the peaks of the cross-correlation between nearby rings will be much more strongly pronounced
for the square particles than the round. In some cases a particular location of the correlation
profile will be a more suitable feature on which to classify (as determined explicitly by the
classification power) and in other cases will be unimportant. Therefore having a large pool of
features allows the classification algorithm to better adapt to the particles at hand by selecting
which ones are important.

Our algorithm is based on a multistage ensemble classifier. Multistage classification is the basis
of the Adaboost algorithm in which each stage concentrates on the classification errors of the
previous classifers until no further improvement of the classification error is observed. In our
experiments we observed that no further improvement was achieved after three stages.
Moreover, we tuned the standard Adaboost algorithm to our needs by focusing only on the
separation of particles from errors since the first stage already does a reasonable job of
separating particles from non-particles. The number of classifiers in each ensemble (in our
experiments 10) must be a tradeoff between the complexity of the classifier (aiming at a low
number of classifiers) and the classification accuracy (aiming at a high number of classifiers).
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As shown in the Results Section, our algorithm is able to produce particle datasets with FPR
a little bit lower than those already reported in the literature with similar rationale (Hall and
Patwardhan, 2004; Mallick et al., 2004; Ogura and Sato, 2004; Plaisier et al., 2004; Short,
2004; Volkmann, 2004). In Mallick et al. (2004) the Receiver-Operating-Curve (ROC) is
presented for their algorithm (see Fig. 7 in their article), and many other algorithms are plotted
within this curve. Our algorithm is over the curve with a False Positive Rate of about 10% and
a TPR between 60% and 70%. Our FPR could be further reduced to 1.6% by removing the
worse images considering their correlation with the average of all particles automatically
picked.

This performance is achieved at a cost of about 40 seconds per micrograph (in the case of the
KLH), thus allowing nearly picking particles in real-time. The processing time of our algorithm
has been further reduced in our implementation in two different ways. First, the algorithm has
been internally threaded so that it can benefit from the existence of several cores in order to
process a single micrograph. Moreover, it has been integrated in the image processing protocols
published in Scheres et al. (2008) from which, after the training phase, several micrographs
can be processed in parallel in a computer cluster further dividing the processing time. In
particular, with 32 cores we were able to automatically select all particles in the adenovirus
dataset in only 30 minutes.

5 Conclusions
In this paper we have presented a new algorithm for automatic particle picking. The algorithm
learns from the user the kind of particles of interest, and after some training the algorithm is
able to pick up the same type of particles. The algorithm does not need a previous 3D reference
model for picking the particle in different orientations. Moreover, it takes only a few seconds
in processing a whole micrograph of size 2048×2048 (with a particle diameter of 256) and,
therefore, can be used to pick particles in real-time in conjunction with an automatic micrograph
acquisition program. The algorithm described in this paper is freely available in the software
package for image processing of electron micrographs Xmipp (Sorzano et al. (2004),
http://xmipp.cnb.csic.es) and is accessible from the image processing protocols described in
Scheres et al. (2008).

Acknowledgments
We would like to thank the thorough and helpful revision of the original draft performed by two anonymous reviewers.

This work was funded by the European Union (3DEM Network of excellence FP6-502828 and UE-512092), the
Spanish National Council of Scientific Research (CSIC, PIF08-020), the Spanish Ministerio de Ciencia e Innovación
(CSD2006-0023, BIO2007-67150-C01, BIO2007-67150-C03, BFU2007-60228, and TIN2008-01117), the Junta de
Andalucía (P06-TIC-01426), the Spanish Fondo de Investigaciones Sanitarias (04/0683), the Universidad San Pablo
CEU (USP-PPC 04/07), and the Comunidad Autónoma de Madrid (S-GEN-0166- 2006, CCG08-CSIC/SAL-3442)
and by Award Number R01HL070472 from the National Heart, Lung, And Blood Institute. The content is solely the
responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, And
Blood Institute or the National Institutes of Health. J.R. Bilbao-Castro is a fellow of the Spanish “Juan de la Cierva”
postdoctoral contracts program, co-funded by the European Social Fund

References
Chong CW, Raveendran P, Mukundan R. Translation invariants of zernike moments. Pattern recognition

2003;36:1765–1773.
Efron, B.; Tibshirani, R. An introduction to the bootstrap. Chapman & Hall; Boca Raton, Florida, USA:

1993.
Freund, Y.; Schapire, RE. Experiments with a new boosting algorithm. Proc. Intl. Work-shop of Machine

Learning; 1996. p. 148-156.

Sorzano et al. Page 12

J Struct Biol. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://xmipp.cnb.csic.es


Hall RJ, Patwardhan A. A two step approach for semi-automated particle selection from low contrast
cryo-electron micrographs. J Structural Biology 2004;145:19–28.

Hand DJ, Yu K. Idiot’s bayes - not so stupid after all? Intl Statistical Review 2001;69:385–399.
Huang Z, Penczek PA. Application of template matching technique to particle detection in electron

micrographs. J Structural Biology 2004;145:29–40.
Kotoulas L, Andreadis I. Accurate calculation of image moments. IEEE Trans Image Processing

2007;16:2028–2037.
Kumar, A.; Smith, B.; Borgelt, C. Dependence relationships between gene ontology terms based on TIGR

gene product annotations. Proc. of the 3rd International Workshop on Computational Terminology;
2004. p. 31-38.

Lei J, Frank J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on
a FEI Tecnai electron microscope. J Structural Biology 2005;150:69–80.

Ludtke SJ, Baldwin PR, Chiu W. EMAN: Semiautomated software for high-resolution single-particle
reconstructions. J Structural Biology 1999;128:82–97.

Mallick SP, Zhu Y, Kriegman D. Detecting particles in cryo-em micrographs using learned features. J
Structural Biology 2004;145:52–62.

Ogura T, Sato C. Automatic particle pickup method using a neural network has high accuracy by applying
an initial weight derived from eigenimages: a new reference free method for single-particle analysis.
J Structural Biology 2004;145:63–75.

Ogura T, Sato C. Auto-accumulation method using simulated annealing enables fully automatic particle
pickup completely free from a matching template or learning data. J Structural Biology
2005;146:344–358.

Plaisier JR, Koning RI, Koerten HK, van Heel M, Abrahams JP. TYSON: Robust searching, sorting, and
selecting of single particles in electron micrographs. J Structural Biology 2004;145:76–83.

Polikar R. Bootstrap-inspired techniques in computational intelligence. IEEE Signal Processing
Magazine 2007;24 (4):59–72.

Rath BK, Frank J. Fast automatic particle picking from cryo-electron micrographs using a locally
normalized cross-correlation function: a case study. J Structural Biology 2004;145:84–90.

Roseman AM. Findem - a fast, efficient program for automatic selection of particles from electron
micrographs. J Structural Biology 2004;145:91–99.

San Martín C, Glasgow JN, Borovjagin A, Beatty MS, Kashentseva EA, Curiel DT, Marabini R, Dmitriev
IP. Localization of the N-terminus of minor coat protein IIIa in the adenovirus capsid. J Molecular
Biology 2008;383:923–934.

Scheres SHW, Núñez-Ramírez R, Sorzano COS, Carazo JM, Marabini R. Image processing for electron
microscopy single-particle analysis using xmipp. Nature Protocols 2008;3:977–990.

Scheres SHW, Valle M, Núñez R, Sorzano COS, Marabini R, Herman GT, Carazo JM. Maximum-
likelihood multi-reference refinement for electron microscopy images. J Molecular Biology
2005;348:139–149.

Short JM. SLEUTH-a fast computer program for automatically detecting particles in electron microscope
images. J Structural Biology 2004;145:100–110.

Sigworth FJ. Classical detection theory and the cryo-em particle selection problem. J Structural Biology
2004;145:111–122.

Singh V, Marinescu DC, Baker TS. Image segmentation for automatic particle identification in electron
micrographs based on hidden markov random field models and expectation maximization. J
Structural Biology 2004;145:123–141.

Sorzano COS, Jonic S, Núñez-Ramírez R, Boisset N, Carazo JM. Fast, robust and accurate determination
of transmission electron microscopy contrast transfer function. J Structural Biology 2007;160:249–
262.

Sorzano COS, Marabini R, Velázquez-Muriel J, Bilbao-Castro JR, Scheres SHW, Carazo JM, Pascual-
Montano A. XMIPP: A new generation of an open-source image processing package for electron
microscopy. J Structural Biology 2004;148:194–204.

Sorzano COS, Ortiz E, López M, Rodrigo J. Improved bayesian image denoising based on wavelets with
applications to electron microscopy. Pattern Recognition 2006;39:1205–1213.

Sorzano et al. Page 13

J Struct Biol. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Stagg SM, Pulokas J, Fellmann D, Cheng A, Quispe JD, Mallick SP, Avila RM, Carragher B, Potter CS.
Automated cryoem data acquisition and analysis of 284,742 particles of groel. Nature 2006;439:234–
238. [PubMed: 16407955]

Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B.
Automated molecular microscopy: the new leginon system. J Structural Biology 2005;151:41–60.

Umesh Adiga PS, Malladi R, Baxter W, Glaeser RM. A binary segmentation approach for boxing
ribosome particles in cryo em micrographs. J Structural Biology 2004;145:142–151.

Volkmann N. An approach to automated particle picking from electron micrographs based on reduced
representation templates. J Structural Biology 2004;145:152–156.

Wong HC, Chen J, Mouche F, Rouiller I, Bern M. Model-based particle picking for cryo-electron
microscopy. J Structural Biology 2004;145:157–167.

Yu Z, Bajaj C. Detecting circular and rectangular particles based on geometric feature detection in
electron micrographs. J Structural Biology 2004;145:168–180.

Zhang, H. In: Barr, V.; Markov, Z., editors. The optimality of naive bayes; Proc. FLAIRS Conference;
AAAI Press; 2004.

Zhu Y, Carragher B, Glaeser RM, Fellmann D, Bajaj C, Bern M, Mouche F, de Haas F, Hall RJ, Kriegman
DJ, Ludtke SJ, Mallick SP, Penczek PA, Roseman AM, Sigworth FJ, Volkmann N, Potter CS.
Automatic particle selection: results of a comparative study. J Structural Biology 2004;145:3–14.

Zhu Y, Carragher B, Mouche F, Potter C. Automatic particle detection through efficient hough
transforms. IEEE Trans Medical Imaging 2003;22 (9):1053–1062.

Zoubir AM, Iskander DR. Bootstrap methds and applications. IEEE Signal Processing Magazine 2007;24
(4):10–19.

Sorzano et al. Page 14

J Struct Biol. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Original piece of a micrograph with KLH particles and its preprocessed counterpart. Note that
the size of the preprocessed image is half the size of the original image. However, it has been
rescaled for better visualization.
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Fig. 2.
Coarse polar representation of an image with Nr = 8 rings and Ns = 16 sectors. The outer ring
and one of the sectors have been highlighted.
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Fig. 3.
Left: Internal structure of the ensemble classifier. Several weak classifiers (CWNBC) assign
a label to a given input vector. Based on these labels, a final decision is made and a label is
assigned to the input vector. Right: From an operational point of view, the ensemble classifier
can be seen, like any other classifier, as a black box that is trained on input vectors with known
class labels and applied to input vectors with unknown class labels. The training vectors are
used to learn the classification rules. The application of these rules to the training data yields
correctly classified vectors (like a vector of class 0 classified as class 0, 0 → 0) and incorrectly
classified vectors (like a vector of class 0 classified as class 1, 0 → 1).
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Fig. 4.
Structure of the multistage ensemble classifier. Stages are cascaded to refine the previous
classification. Each stage is formed by several classifiers in parallel. In the figure P stands for
the particle class, NP for the non-particles, and E for the errors (see text for a detailed
explanation). Particles, non-particles and errors of the present micrograph engross the training
population for the next micrograph.
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Fig. 5.
True Positive Rate and False Positive Rate for the APP algorithm proposed in this article. The
True Positive Rate is defined as the number of true particles automatically picked over the
number of true particles manually picked by Fabrice Mouche in Zhu et al. (2004). The False
Positive Rate is defined as the ratio between the wrongly picked particles (a particle is wrong
if it does not belong to the Fabrice Mouche set) and the total number of particles picked.
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Fig. 6.
Sample micrograph with the particles picked in the KLH dataset after learning for 82
micrographs. Note that in this case, the user is not interested in top views (circularly shaped
projections).
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Fig. 7.
Sample micrograph with the particles picked after learning for 4 micrographs in the Large T
antigen+RPA dataset.
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Fig. 8.
Sample micrograph with the particles picked after learning for 10 micrographs in the
Adenovirus dataset. The curved structure in the top-right corner corresponds to the edge of the
hole in the carbon grid on which the particles are suspended.
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