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Abstract
Clustering analysis is one of the most widely used statistical tools in many emerging areas such as
microarray data analysis. For microarray and other high-dimensional data, the presence of many
noise variables may mask underlying clustering structures. Hence removing noise variables via
variable selection is necessary. For simultaneous variable selection and parameter estimation,
existing penalized likelihood approaches in model-based clustering analysis all assume a common
diagonal covariance matrix across clusters, which however may not hold in practice. To analyze
high-dimensional data, particularly those with relatively low sample sizes, this article introduces a
novel approach that shrinks the variances together with means, in a more general situation with
cluster-specific (diagonal) covariance matrices. Furthermore, selection of grouped variables via
inclusion or exclusion of a group of variables altogether is permitted by a specific form of penalty,
which facilitates incorporating subject-matter knowledge, such as gene functions in clustering
microarray samples for disease subtype discovery. For implementation, EM algorithms are derived
for parameter estimation, in which the M-steps clearly demonstrate the effects of shrinkage and
thresholding. Numerical examples, including an application to acute leukemia subtype discovery
with microarray gene expression data, are provided to demonstrate the utility and advantage of the
proposed method.
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1. Introduction
Clustering analysis is perhaps the most widely used analysis method for microarray data: it has
been used for gene function discovery (Eisen et al. 1998 [10]) and cancer subtype discovery
(Golub et al. 1999 [15]). In such an application involving a large number of genes arrayed, it
is necessary but challenging to choose a set of informative genes for clustering. If some
informative ones are excluded because fewer genes are used, then it becomes difficult or
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impossible to discriminate some phenotypes of interest such as cancer subtypes. On the other
hand, using redundant genes introduces noise, leading to the failure to uncover the underlying
clustering structure. For example, Alaiya et al. (2002) [1] considered borderline ovarian tumor
classification via clustering protein expression profiles: using all 1584 protein spots on an array
failed to achieve an accurate classification, while an appropriate selection of spots (based on
discriminating between benign and malignant tumors) did give biologically more meaningful
results.

In spite of its importance, it is not always clear how to select genes for clustering. In particular,
as demonstrated by Pan and Shen (2007) [39] and Pan et al. (2006) [37], unlike in the context
of supervised learning, including regression, best subset selection, one of the most widely used
model selection methods for supervised learning, fails for clustering and semi-supervised
learning, in addition to its prohibitive computing cost for high-dimensional data; the reason is
the existence of many correct models, most of which are not of interest. In a review of the
earlier literature on this problem, Gnanadesikan et al. (1995) [14] commented that “One of the
thorniest aspects of cluster analysis continue to be the weighting and selection of variables”.
More recently, Raftery and Dean (2006) [41] pointed out that “Less work has been done on
variable selection for clustering than for classification (also called discrimination or supervised
learning), perhaps reflecting the fact that the former is a harder problem. In particular, variable
selection and dimension reduction in the context of model-based clustering have not received
much attention”. For variable selection in model-based clustering, most of the recent researches
fall into two lines: one is Bayesian (Liu et al. 2003 [30]; Hoff 2006 [18]; Tadesse et al. 2005
[43]; Kim et al. 2006 [25]), while the other is penalized likelihood (Pan and Shen 2007 [39];
Xie et al. 2008 [52]; Wang and Zhu 2008 [50]). The basic statistical models of these approaches
are all the same: informative variables are assumed to come from a mixture of Normals,
corresponding to clusters, while noise variables coming from a single Normal distribution;
they differ in how they are implemented. In particular, the Bayesian approaches are more
flexible than the penalized methods (because the latter all require a common diagonal
covariance matrix, though our main goal here is to relax this assumption), but they are also
computationally more demanding because of their use of MCMC for stochastic search;
furthermore, penalized methods enjoy the flexibility of the use of penalty functions, such as to
accommodate grouped parameters or variables as to be discussed later. Other recent efforts
include the following: Raftery and Dean (2006) [41] considered a sequential, stepwise
approach to variable selection in model-based clustering; however, as acknowledged by the
authors, “when the number of variables is vast (e.g., in microarray data analysis when thousands
of genes may be the variables being used), the method is too slow to be practical as it stands”.
Friedman and Meulman (2004) [11] dealt with a more general problem: selecting possibly
different subsets of variables and their associated weights for different clusters for non-model-
based clustering; Hoff (2004) [17] pointed out that the method might only “pick up the change
in variance but not the mean”, and advocated the use of his model-based approach (Hoff 2006
[18]). Mangasarian and Wild (2004) [32] proposed the use of L1 penalty for K-median
clustering; the idea with the use of L1 penalty is similar to ours, but we consider a more general
case with cluster-specific variance parameters.

The penalized methods proposed so far for simultaneous variable selection and model fitting
in model-based clustering all assume a common diagonal covariance matrix. For high-
dimensional data, it may be necessary to utilize a diagonal covariance matrix for model-based
clustering; even for supervised learning, it has been shown that using a diagonal covariance
matrix in naive Bayes discriminant analysis or its variants is more effective than that of a more
general covariance matrix (Bickel and Levina 2004 [5]; Dudoit et al. 2002 [7]; Tibshirani et
al. 2003 [47]). Hence we will restrict our discussion to a diagonal covariance matrix in what
follows. On the other hand, the common (diagonal) covariance matrix assumption implies that
the clusters all have the same size, as in the K-means method (which further assumes that all
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the clusters are sphere-shaped with a scaled identity matrix as the covariance). Of course, this
assumption may be violated in practice. A general argument is the following: it is well known
that the variance of gene expression levels is in general a function of the mean expression
levels, suggesting possibly varying variances of a gene’s expression levels across clusters with
different mean expression levels; this point is going to be verified for our real data example.
Here we extend the method to allow for cluster-dependent (diagonal) covariance matrices,
which is nontrivial and requires a suitable construction of penalty function.

In some applications, there is prior knowledge about grouping variables: some variables
function as a group; either all of them or none of them is informative. Yuan and Lin (2006)
[54] discussed this issue in the context of penalized regression; they demonstrated convincingly
the efficiency gain from incorporating such prior knowledge. On the other hand, in genomic
studies of clustering samples through gene expression profiles, it is known that genes function
in groups as in biological pathways. Hence, rather than treating genes individually, it seems
natural to apply biological knowledge on gene functions to group the genes accordingly in
clustering microarray samples, which has not been considered in previous applications of
model-based clustering of expression profiles (e.g. Ghosh and Chinnaiyan 2002 [13]; Li and
Hong 2001 [27]; McLachlan et al. 2002 [33]; Yeung et al. 2001 [53]). Note that, a few existing
works clustered genes by incorporating gene function annotations in a weaker form that did
not require either all or none of a group of genes to appear in a final model: Pan (2006b) [38]
treated the genes within the same functional group as sharing the same prior probability of
being in a cluster, while genes from different groups might not have the same prior probability,
in model-based clustering of genes; others took account of gene groups in the definition of a
distance metric in other clustering methods (Huang and Pan 2006 [20]). In addition, the
aforementioned clustering methods did not allow for variable selection directly, while it is our
main aim to consider variable selection, possibly assisted with biological knowledge. This is
in line with the currently increasing interest in incorporating biological information on gene
functional groups into analysis of detecting differential gene expression (e.g. Pan 2006 [37];
Efron and Tibshirani 2007 [8]; Newton et al. 2007 [36]).

The rest of this article is organized as follows. Section 2 briefly reviews the penalized model-
based clustering method with a common diagonal covariance, followed by our proposed
methods that allow for cluster-specific diagonal covariance matrices and for grouped variables.
The EM algorithms for implementing the proposed methods are also detailed, in which the M-
steps characterize the penalized mean and variance estimators with clear effects of shrinkage
and thresholding. Simulation results in section 3 and an application to real microarray data in
section 4 illustrate the utility of the new methods and their advantages over other methods.
Section 5 presents a summary and a short discussion on future work.

2. Methods
2.1. Mixture model and its penalized likelihood

We have K-dimensional observations xj, j = 1, …, n. It is assumed that the data have been
standardized to have sample mean 0 and sample variance 1 across the n observations for each
variable. The observations are assumed to be (marginally) iid from a mixture distribution with

g components: , where θi is an unknown parameter vector of the distribution
for component i while πi is a prior probability for component i. To obtain the maximum
penalized likelihood estimator (MPLE), we maximize the penalized log-likelihood

Xie et al. Page 3

Electron J Stat. Author manuscript; available in PMC 2009 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where Θ represents all unknown parameters and pλ (Θ) is a penalty with regularization
parameter λ. The specific form of pλ (Θ) depends on the aim of analysis. For variable selection,
the L1 penalty is adopted as in the Lasso (Tibshirani 1996 [46]).

Denote by zij the indicator of whether xj is from component i; that is, zij = 1 if xj is indeed from
component i, and zij = 0 otherwise. Because we do not observe which component an observation
comes from, zij’s are regarded as missing data. If zij’s could be observed, then the log-penalized-
likelihood for complete data is:

(1)

Let X = {xj: j = 1, …, n} represent the observed data. To maximize log LP, the EM algorithm
is often used (Dempster et al. 1977 [6]). The E-step of the EM calculates

(2)

while the M-step maximizes QP to update estimated Θ. In the sequel, because τij’s always
depend on r, for simplicity we may suppress the explicit dependence from the notation.

2.2. Penalized clustering with a common covariance matrix
Pan and Shen (2007) [39] specified each component fi as a Normal distribution with a common
diagonal covariance structure V:

where , and . They proposed a penalty function pλ(Θ) with
an L1 norm involving the mean parameters alone:

(3)

where μik’s are the components of μi, the mean of cluster i. Note that, because the data have
been standardized to have sample mean 0 and variance 1 for each variable k, if μ1k = ··· = μgk
= 0, then variable k is noninformative in terms of clustering and can be considered as a noise
variable and excluded from the clustering analysis. The L1 penalty function used in (3) can
effectively shrink a small μik to be exactly 0.

For completeness and to compare with the proposed methods, we list the EM updates to
maximize the above penalized likelihood (Pan and Shen 2007 [39]). We use a generic notation
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Θ(r) to represent the parameter estimate at iteration r. For the posterior probability of xj’s
coming from component i, we have

(4)

for the prior probability of an observation from the ith component fi,

(5)

for the variance for variable k,

(6)

and for the mean for variable k in cluster i,

(7)

with i = 1, 2, …, g and k = 1, 2, …, K. Evidently, we have μ̂ik = 0 if λ1 is large enough. As
discussed earlier, if μ̂1k = μ̂2k = ··· = μ̂gk = 0 for variable k, variable k is a noise variable that
does not contribute to clustering.

2.3. Penalized clustering with unequal covariance matrices
To allow varying cluster sizes, we consider a more general model with cluster-dependent
diagonal covariance matrices:

(8)

where , and .

As discussed earlier, to realize variable selection, we require that a noise variable have a
common mean and a common variance across clusters. Hence, the penalty has to involve both
the mean and variance parameters. We shall penalize the mean parameters in the same way as
before, while the variance parameters can be regularized in two ways: shrink  towards 1, or
shrink  towards 0.
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2.3.1. Regularization of variance parameters: scheme one—First, we will use the
following penalty for both mean and variance parameters:

(9)

Again the L1 norm is used to coerce a small estimate of μik to be exactly 0, while forcing an
estimate of  that is close to 1 to be exactly 1. Therefore, if a variable has common mean 0
and common variance 1 across clusters, this variable is effectively treated as a noise variable;
this aspect is evidenced from (4), where a noise variable does not contribute to the posterior
probability and thus clustering.

Note that penalty (9) differs from the so-called double penalization in non-parametric mixed-
effect models for longitudinal and other correlated data (Lin and Zhang 1999 [29]; Gu and Ma
2005 [16]): aside from the obvious differences in the choice of the L1-norm here versus the
L2-norm there and in clustering here versus regression there, they penalized fixed- and random-
effect parameters, both mean parameters, whereas we regularize variance parameters in
addition to mean parameters. Ma et al. (2006) [31] applied such a mixed-effect model to cluster
genes with time course (and thus correlated) expression profiles; in addition to the
aforementioned differences, a key difference is that their use of penalization was for parameter
estimation, not for variable selection as aimed here.

An EM algorithm is derived as follows. The E-step gives QP as shown in (2). The M-step
maximizes QP with respect to the unknown parameters, resulting in the same updating formulas
for τij and πi as given in (4) and (5). In Appendix B, we derive the following theorem:

Theorem 1: The sufficient and necessary conditions for μ̂ik to be a (global) maximizer of
QP are

(10)

and

(11)

resulting in a slightly changed formula for the mean parameters

(12)

For the variance parameters, some algebra yields the following theorem:
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Theorem 2: The necessary conditions for  to be a local maximizer of QP are

(13)

and

(14)

Although a sufficient condition for  can be derived as a special case of Theorem 5, we
do not have any sufficient condition for . Hence, we do not have a simple formula to
update . Below we characterize the solution , suggesting a computational algorithm as
well as illustrating the effects of shrinkage.

Let , and , then (13) reduces to

, while (14) becomes |bi − cik| ≤ λ2. Note that  is the usual MLE

when λ2 = 0. It is easy to verify that if , then . Below we consider cases with λ2 >

0 and . It is shown in Appendix B that

1. if |bi − cik| > λ2,

(15)

is the unique maximizer of QP and is between 1 and ;

2. if |bi − cik| ≤ λ2,

a. if , then  is the unique maximizer;

b. if , i) if bi − cik < λ2, then  is a local maximizer; there may exist

another local maximizer between  and 1; between the two, the one
maximizing QP is chosen; ii) if bi − cik = λ2, then either

 or  is the unique
maximizer.

Naturally the above formulas suggest an updating algorithm for . Clearly,  has been
shrunk towards 1, and can be exactly 1 if, for example, λ2 is sufficiently large.
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2.3.2. Regularization of variance parameters: scheme two—The following penalty
is adopted for both mean and variance parameters:

(16)

Note that the only difference between (9) and (16) is the penalty of the variance parameters,
where  is replaced by , which is used to shrink  to 0 (i.e.  to 1) if

 is close to 0. Therefore, variable selection can be realized as before.

An EM algorithm for the variance parameters is derived as follows.

Theorem 3: The sufficient and necessary conditions for  to be a local maximizer of QP are

(17)

and

(18)

If we denote  and , then (17) reduces to

, while (18) becomes |bi − cik| ≤ λ2, where  is the usual
MLE for λ2 = 0. Derivations in Appendix B imply that

. Combining the two cases, we obtain

(19)

The above formula suggests an updating algorithm for . When λ2 is small, sign(|bi − cik| −

λ2)+ = 1,  has been shrunk from  towards 1; when λ2 is sufficiently large, sign(|bi − cik|
− λ2)+ = 0, then  is exactly 1.

2.4. Using adaptive penalization to reduce bias
We can adopt the idea of adaptive penalization, as proposed by Zou (2006) [57] for regression,
in the present context. Following Pan et al. (2006) [40], we use a weighted L1 penalty function
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(20)

where wik = 1/|μ̂ik|w and  with w ≥ 0, and μ̂ik and  are the MPLE obtained in
section 2.3.1; we also tried the usual MLE in wik and vik, but it did not work well in simulations,
hence we skip its discussion; we only consider w = 1. The EM updates are slightly modified
for the purpose: we only need to replace λ1 and λ2 by λ1wik and λ2vik respectively, while keeping
other updates unchanged.

The main idea of adaptive penalization is to reduce the bias of the MPLE associated with the
standard L1 penalty: as can be seen clearly, if an initial estimate |μ̂ik| is larger, then the resulting
estimate is shrunk less towards 0; similarly for the variance parameter.

2.5. Penalized clustering with grouped variables
Now we consider a situation where candidate variables can be grouped based on the prior belief
that either all the variables in the same group or none of them are informative to clustering.
Following the same idea of the grouped Lasso of Yuan and Lin (2006) [54], we construct a
penalty for this purpose here.

Suppose that the variables are partitioned into M groups with the corresponding mean

parameters , and .

Accordingly, we decompose  and
 with Vim as a km × km diagonal matrix, and

 is the column vector containing the diagonal elements of matrix Vim.

For grouping mean parameters, we will use a penalty pλ (Θ) containing

for the mean parameters, where ||v|| is the L2 norm of vector v. Accordingly, we use

as a penalty for grouped variance parameters. Note that we do not have to group both means
and variances at the same time. For instance, we may group only means but not variances: we
will thus use the second term in (9) as the penalty for variance parameters while retaining the
above penalty for grouped mean parameters.

The E-step of the EM yields QP with the same form as (2). Next we derive the updating formulas
for the mean and variance parameters in the M-step.
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2.5.1. Grouping mean parameters—If the penalty for grouped means is used, we have
the following result.

Theorem 4: The sufficient and necessary conditions for , i = 1, 2, …, g and m = 1, 2,
…, M to be a unique maximizer of QP are

(21)

and

(22)

yielding

(23)

where , and  is the usual MLE.

It is clear that, due to thresholding,  when, for example, λ1 is sufficiently large. Noting
that  depends on , we use (23) iteratively to update .

2.5.2. Grouping variance parameters—If the penalty for grouped variances is used, we
have the following theorem:

Theorem 5: The sufficient and necessary conditions for , i = 1, 2, …, g and m = 1, 2,
…, M, to be a local maximizer of QP are

(24)

The necessary condition for  to be a local maximizer of QP is

(25)
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It is clear that  when, for example, λ2 is large enough. It is also easy to verify that (24)
and (25) reduce to the same ones for non-grouped variables when km = 1. To solve (24) and

(25), we develop the following algorithm. Let  and

. Consider any k′th component  of ; correspondingly, bik′ and
cimk′ are the k′th components of bi and cim, respectively. In Appendix B, treating aim as a

constant (i.e. by plugging-in a current estimate of ), we show the following cases. i) If

, then  is a maximizer of QP as other ’s for ∀k ≠ k′ are fixed. ii) If

, there exists only one real root satisfying ; a bisection search

can be used to find the root. iii) If , the real roots must be inside ( , 1), hence
a bisection search can be used to find a root; once a root is obtained, the other two real roots,
if exist, can be obtained through a closed-form expression; we choose the real root that
maximizes QP (while other  for k ≠ k′ are fixed at their current estimates) as the new estimate
of . After cycling through all k′, we update aim with the new estimate. Then the above
process is iterated.

2.5.3. Other grouping schemes—To save space, we briefly discuss grouping variables
under a common diagonal covariance matrix, for which only mean parameters need to be
regularized. The EM updating formula for the mean parameters remains the same as in (23)
except that the cluster-specific covariance Vim there is replaced by a common Vm; updating
formulas for the other parameters remain unchanged. Simulation results (see Xie et al. (2008)
[52]) demonstrated its improved performance over its counterpart without grouping. In
addition, we can also group the mean parameters for the same variable (or gene) across clusters
(Wang and Zhu 2008 [50]), and combine it with grouping variables (Xie et al. 2008 [52]).

The grouping scheme discussed so far follows the grouped Lasso of Yuan and Lin (2006)
[54], which is a special case of the Composite Absolute Penalties (CAP) of Zhao et al. (2006)
[56]. In Appendix A, we derive the results with the CAP, including using both schemes on
regularizing the variance parameters.

2.6. Model selection
To introduce penalization, following Pan and Shen (2007) [39] and Pan et al. (2006) [40], we
propose a modified BIC as the model selection criterion:

where de = g + K + gK − 1 − q is the effective number of parameters with q = #{(i, k): μik = 0,
}. The definition of de follows from that in L1-penalized regression (Efron et al. 2004

[9]; Zou et al. 2004 [59]). This modified BIC is used to select the number of clusters g and the
penalization parameters (λ1, λ2) jointly. We propose using a grid search to estimate the optimal
(g, λ̂1, λ̂2) as the one with the minimum BIC.

For any given (g, λ1, λ2), because of possibly many local maxima for the mixture model, we
run an EM algorithm multiple times with random starts. For our numerical examples, we
randomly started the K-means and used the K-means’ results as an initialization for the EM.
From the multiple runs, we selected the one giving the maximal penalized log-likelihood as
the final result for the given (g, λ1, λ2).
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3. Simulations
3.1. A common covariance versus unequal covariances

3.1.1. Case I—We first considered four simple set-ups: the first was a null case with g = 1;
for the other three, g = 2, corresponding to only mean, only variance, and both mean and
variance differences between the two clusters. Specifically, we generated 100 simulated
datasets for each set-up. In each dataset, there were n = 100 observations, each of which
contained K = 300 variables. Set-up 1) is a null case: all the variables had a standard normal
distribution N(0, 1), thus there was only a single cluster. For each of the other three set-ups,
there were two clusters. One cluster contained 80 observations while the other contained 20;
while 279 variables were noises distributed as N(0, 1), the other 21 variables were informative:
each of the 21 variables were distributed as 2) N(0, 1) in cluster 1 versus N(1.5, 1) in cluster
2; 3) N(0, 1) versus N(0, 2); 4) N(0, 1) versus N(1.5, 2) for the three set-ups respectively.

For each simulated dataset, we fitted a series of models with the three numbers of components
g = 1, 2, 3 and various values of penalization parameter(s). For comparison, we considered
both the equal covariance and unequal covariance mixture models (8); for the former, we
considered the unpenalized method (λ1 = 0) corresponding to no variable selection and
penalized method using BIC to select λ; similarly, for the latter we considered five cases
corresponding to fixing or selecting one or two of (λ1, λ2): no variable selection with (λ1, λ2)
= (0, 0), penalizing only mean parameters with (λ1, λ2) = (λ̂1, 0), penalizing only variance
parameters with (λ1, λ2) = (0, λ̂2), and our proposed two methods of penalizing both mean and
variance parameters with (λ1, λ2) = (λ̂1, λ̂2). We also compared the numbers of predicted noise
variables among the true 21 informative (z1) and 279 noise variables (z2).

The frequencies of selecting g = 1 to 3 based on 100 simulated datasets are shown in Table 1.
First, our proposed methods performed best, in general, in terms of selecting both the correct
number of clusters and relevant variables. For example, it selected fewest noise variables and
most informative variables. Second, no variable selection (i.e. no penalization) led to
incorrectly selecting g = 1 for the three non-null set-ups. Third, penalizing only the mean
parameters could not distinguish the two clusters differing only in variance as in set-up 3.
Fourth, between the two regularization schemes for the variance parameters, based on both
cluster detection and sample assignment (Table 2), the two gave comparable results, though
scheme two with log-variance performed slightly better.

The results for adaptive penalty for set-up 3 are detailed in row 3(adapt) of Table 1, which are
similar to that of using the L1-norm penalty in terms of both variable and cluster number
selection. Since the performance of adaptive penalty might heavily depend on the choice of
weights (or initial estimates), we expect improved performance if better weights can be used.

3.1.2. Case II—We considered a more practical scenario that combined clusters’ differences
in means or variances or both for informative variables. As before, for each dataset, n = 100
observations were divided into two clusters with 80 and 20 observations respectively; among
the K = 300 variables, only 3K1 were informative while the remaining K − 3K1 were noises;
The first, second and third K1 informative variables were distributed as i) N(0, 1) for cluster 1
versus N(1.5, 1) for cluster 2, ii) N(0, 1) versus N(0, 2), iii) N(0, 1) versus N(1.5, 2), respectively;
any noise variable was distributed N(0, 1). We considered K1 = 5, 7, and 10.

The results are shown in Table 3. Again it is clear that our proposed method worked best: it
most frequently selected the correct number of clusters (g = 2), and used most informative
variables while being able to weed out most noise variables. As expected, using noise variables,
as in non-penalized methods without variable selection, tended to mask out the existence of
the two clusters.
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3.2. Grouping variables
We grouped variables for each simulated data under case II. We used correct groupings: the
informative variables were grouped together, and so were the noise variables; the group sizes
were 5, 7 and 5 for K1 = 5, 7 and 10 respectively. Table 4 displays the results for grouped
variables. Compared to Table 1, it is clear that grouping variables improved the performance
over non-grouped one in terms of more frequently selecting the correct number g = 2 of the
clusters as well as better selecting relevant variables. Furthermore, grouping both means and
variances performed better than grouping means alone.

4. Example
4.1. Data

A leukemia gene expression dataset (Golub et al. 1999 [15]) was used to demonstrate the utility
of our proposed method and to compare with other methods. The (training) data contained 38
patients, among which 11 were AML (acute myeloid leukemia) while the remaining were ALL
(acute lymphoblastic leukemia) samples; ALL samples consisted of two subtypes: 8 T-cell and
19 B-cell samples. For each sample, the expression levels of 7129 genes were measured by an
A3ymetrix microarray. Following Dudoit et al. (2002) [7], we pre-processed the data in the
following steps: 1) truncation: any expression level xjk was truncated below at 1 if xjk < 1, and
above at 16,000 if xjk > 16, 000; 2) filtering: any gene was excluded if its max/min ≤ 5 and
max − min ≤ 500, where max and min were the maximum and minimum expression levels of
the gene across all the samples. Finally, as a preliminary gene screening, we selected the top
2000 genes with the largest sample variances across the 38 samples.

4.2. No grouping
4.2.1. Model-based clustering methods—Table 5 displays the clustering results: the two
penalized methods selected 4 and 11 clusters, respectively, while the two standard methods
chose 2 and 3 clusters, respectively. For the new penalized method, we show the results for
scheme one of regularizing the variance parameters; the other scheme and the adaptive
penalization both gave similar results, and hence are skipped. In terms of discriminating
between the luekemia subtypes, obviously the new penalized method performed best: only one
ALL B-cell sample was mixed into the AML group, while others formed homogeneous groups.
In contrast, with a large number of clusters, the L1 method with an equal covariance still
misclassified 4 ALL B-cell samples as AML. The two standard methods perhaps under-
selected the number of clusters, resulting in 11 and 10 mis-classified samples, respectively.
Unsurprisingly, based on the Rand index (Rand 1971 [42]) (or adjusted Rand index (Hubert
and Arabie 1985 [22])), the new method was a winner with the largest value at 0.85 (0.65),
compared to 0.73 (0.46), 0.70 (0.37) and 0.70 (0.25) of the other three methods. In addition,
judged by BIC, the new penalized method also outperformed the other methods with the
smallest BIC value of 52198. Finally, the new penalized method used only 1728 genes, while
penalizing only means with a common covariance matrix used 1821 genes; the other two
standard methods used all 2000 genes.

Figure 1 displays the estimated means and variances of the genes in different clusters. Panels
a)–c) clearly show that the genes may have different variance estimates across the clusters,
though many of them were shrunk to be exactly to be one, as expected. Note that, due to the
standardization of the data yielding an overall sample variance one for each gene, we do not
observe any gene with the variance estimates more than one in two or more clusters. Panels
d)–f) confirmed that there appears a monotonic relationship between the mean and variance,
as well-known in the microarray literature (e.g. Huang and Pan 2002 [19]); the Pearson
correlation coefficients were estimated to be 0.64, 0.69, 0.65 and 0.63 for the four clusters
respectively. Hence, it lends an indirect support for the use of cluster-specific covariance
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matrices: if it is accepted that the genes have varying mean parameters across clusters, then
their variance parameters are expected to change too.

Next we examine a few genes in more details. CST3 (cystatin c, M23197) and ZYX (zyxin,
X95735) were in the top 50 genes ranked by Golub et al. (1999) [15], and two of the 17 genes
selected by Antonov et al. (2004) [2] to discriminate between the AML/ALL subtypes. In
addition, the two genes, together with MAL (X76223), were also identified among the top 20
genes used in the classifier by Liao et al. (2007) [28] to predict leukemia subtypes. Bardi et al.
(2004) [4] used CST3 to assess glomerular function among children with leukemia and solid
tumors and found that CST3 was a suitable marker. Koo et al. (2006) [26] reviewed the
literature showing the relevance of MAL to T-cell ALL and concluded that it might play an
important role in T-cell activations. Baker et al. (2006) [3] and Wang et al. (2005) [49] identified
ZYX as the most significant gene for classifying AML/ALL subtypes. Tycko et al. (1991)
[48] found that LCK (M26692) was related to activated T cells and thus it might contribute to
the formation of human cancer. Wright et al. (1994) [51] studied the mutation of LCK and
concluded that it probably played a role in some human T-cell leukemia.

In Figure 2, panels c)–d) are the zoom-in versions of the left bottom of a)–b), the plots of gene
pair CST3 and MAL for all samples for the two penalized methods respectively, while e)–f)
are for gene pair LCK and ZYX with all samples. Given two genes, their observed expression
levels, along with the 95% confidence region of the center for each cluster, were plotted. The
penalized method with an equal covariance found 11 clusters, among which 5 clusters had only
one sample, and the remaining 6 clusters had more than 2 samples; for clarity, we only plotted
the confidence regions of the centers of the six largest clusters. Panels a) and e) clearly show
evidence of varying variances, and thus cluster-specific covariance matrices: for example,
MAL was highly expressed with a large dispersion for ALL-T samples, so was CST3 for AML
samples, in contrast to the low expression of both genes for ALL-B samples, suggesting varying
cluster sizes. It also clearly illustrates why there were so many clusters if an equal covariance
model was used: the large number of the equally-sized clusters were used to approximate the
three or four size-varying true clusters. Panel c) also suggests an explanation to the use of two
clusters for ALL-B samples by the new penalized method: the expression levels of MAL and
CST3 were positively correlated, giving a cluster not parallel with either coordinate; on the
other hand, use of a diagonal covariance matrix in the penalized method implied a cluster
parallel to one of the two coordinates. Hence, two coordinate-parallel clusters were needed to
approximate the non-coordinate-parallel true cluster; a non-diagonal covariance matrix might
give a more parsimonious model (i.e. with fewer clusters).

Finally, we show the effects of shrinkage and thresholding for the parameter estimates by the
new penalized method. Figure 3 depicts the penalized mean estimates (panel a) and variance
estimates (panel b) versus the sample means and variances respectively for cluster one. It is
confirmed that the penalized mean estimates were shrunk towards 0, some of which were
exactly 0, while the penalized variance estimates were shrunk towards 1, and can be exactly
1.

4.2.2. Other clustering methods—Previous studies (e.g. Thalamuthu et al. 2006 [44])
have established model-based clustering as one of the best performers for gene expression data.
Although it is not our main goal here, as a comparison in passing, we show the results of other
three widely used methods as applied to the same data with the top 2000 genes: hierarchical
clustering, partitioning around medoids (PAM) and K-means clustering.

It is challenging to determine the number of clusters for PAM and K-means. Here we consider
two proposals. First, we used the silhouette width (Kaufman and Rousseeuw 1990 [24]) to
select the number of clusters. Two and six clusters were chosen for PAM and K-means
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respectively; neither gave a good separation among the three leukemia subtypes (Table 6).
Second, to sidestep the issue, we applied the two methods with three and four clusters because
those numbers seemed to work best for model-based clustering. Nevertheless, PAM worked
poorly, while K-means with 4 clusters gave a reasonable result, albeit not as good as that of
the new penalized model-based clustering, as judged by an eye-ball examination or the
(adjusted) Rand index.

Figure 4 gives the results of hierarchical clustering with all three ways of defining a cluster-
to-cluster distance: average linkage, single linkage and complete linkage. The average linkage
clustering gave the best separation among the three leukemia subtypes: all 8 T-cell samples,
except sample 7, were grouped together; there were 10 B-cell samples in a group; all other
ALL samples seemed to appear in the AML group. On the other hand, the average linkage
clustering identified about six outlying samples, which were samples 7, 18, 19, 21, 22 and 27
respectively; this finding was consistent with that of the penalized model-based clustering with
an equal covariance matrix, which detected the same five outliers except sample 19.

4.2.3. Other comparisons—Although mainly studied in the context of supervised learning,
with several existing studies, Golub’s data may serve as a test bed to compare various clustering
methods. Golub et al. (1999) [15] applied self-organizing maps (SOM): first, with two clusters,
SOM mis-classified one AML and 3 ALL samples; second, with four clusters, similar to the
result of our new penalized method, AML and ALL-T each formed a cluster while ALL-B
formed two clusters, in which one ALL-B and one AML samples were mis-classified. They
did not discuss why or how g = 2 or g = 4 clusters were chosen. In Bayesian model-based
clustering by Liu et al. (2003) [30], two clusters were chosen with one AML and one ALL mis-
assigned; they did not discuss classification with ALL subtypes.

In a very recent study by Kim et al. (2006) [25], with two clustering algorithms and two choices
of a prior parameter, they presented four sets of clustering results. In general, ALL samples
formed one cluster while AML samples formed 5 to 6 clusters, giving 0–3 mis-assigned ALL
samples; although not discuss explicitly, because either all or almost all the ALL samples fell
into one cluster, their method obviously could not distinguish the two subtypes of ALL.
Furthermore, their result on the multiple clusters of AML was in contrast to ours and Golub’s
on the homogeneity of AML samples. Because Kim et al. used different data pre-processing
with 3571 genes as input to their method, for a fair comparison, we applied the same dataset
to our new penalized method, yielding five clusters: only one ALL-B was mis-assigned to a
cluster containing 10 AML samples, one cluster was consisted of one ALL-B and AML
samples, while the other three clusters contained 8 ALL-T, 10 ALL-B and 7 ALL-B
respectively. For this dataset, our method seemed to work better.

It was somewhat surprising that there were about 1800 genes remaining for the penalized
methods, though previous studies showed that there were a large number of the genes
differentially expressed between ALL and AML; in particular, Golub et al. (1999) [15] stated
that “roughly 1100 genes were more highly correlated with the AML-ALL class distinction
than would be expected by chance”; see also Pan and Shen (2007) [39] and references therein.
For a simple evaluation, we applied the elastic net (Zou and Hastie 2005 [58]) to the same data
with top 2000 genes; the elastic net is a state-of-the-art supervised learning method specifically
designed for variable selection for high-dimensional data and is implemented in R package
elasticnet. Five-fold cross-validation was used for tuning parameter selection. As usual,
we decomposed the three-class problem into two binary classifiers, ALL-T vs AML, and ALL-
B vs ALL, respectively. The two classifiers eliminated 395 and 870 noise genes, respectively,
with a common set of 227 genes. Hence the elastic net used 1773 genes, a number comparable
to those selected by the penalized clustering methods.
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4.3. Grouping genes
The 2000 genes were grouped according to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathway database (Kanehisa and Goto 2000 [23]). About 43 percent of the 2000 genes
belonged to at least one of 126 KEGG pathways. If a gene was in more than one pathway, it
was randomly assigned to one of the pathways to which it belonged. Each genes un-annotated
in any pathway was treated as an individual group with size 1. Among the 126 KEGG pathways,
the largest pathway size was 44, the smallest one was 1 and the median size was 4; about three
quarters of the pathways had sizes less than 8.

The clustering results with the grouped mean and variance penalization were exactly the same
as that of UnequalCov and kept 1795 genes. Among the 205 identified noise genes, 23 genes
were from 17 KEGG pathways: all contained only one genes except only three pathways, each
containing 2, 3 and 4 genes respectively.

To further evaluate the above gene selection results, we searched a Leukemia Gene Database
containing about 70 genes that were previously identified in the literature as leukemia-related
(www.bioinformatics.org/legend/leuk_db.htm). Among these informative genes, 58 were
related to 21 leukemia subtypes, among which only 47 and 36 genes appeared in the whole
Golub’s data and the 3337 genes after preprocessing respectively. Among the top 2000 genes
being used for clustering, there were only 30 genes in the Leukemia Gene Database, most of
which were not in any KEGG pathways; only 7 genes appeared in KEGG pathways: GMPS,
ETS1, NOTCH3, MLL3, MYC, NFKB2 and KIT. Table 7 lists the genes that were selected
in and deleted from the final model. Among the 205 noise genes selected by our group penalized
method, five of them were annotated in the Leukemia Gene Database, among which one was
related to AML.

Because most of the known leukemia genes were not in any KEGG pathways, reflecting
perhaps the current lack of prior knowledge, the grouped method could not be established as
a clear winner over the none-grouped method in terms of leukemia gene selection in the above
example. To confirm the potential gain with a better use of prior knowledge, we did two
additional experiments. First, in addition to the KEGG pathways, we grouped all the 19
leukemia genes not in any KEGG pathways into a separate group: the samples were clustered
as before; among the 200 genes removed from the final model, there were only two leukemia
gene, ETS1, which was related to human monocytic leukemia, neither AML nor ALL, and
NOTCH3, related to T-cell ALL. Second, in addition to the KEGG pathways, we grouped the
AML (“acute myeloid leukemia” in Table 7) or ALL (“acute lymphoblastic leukemia” and “T-
cell acute lymphoblastic leukemia”) genes into two corresponding groups while treating the
other leukemia genes individually: again the samples were clustered as before; among the 216
genes removed from the final model, ETS1, RGS2, EVI2B, PBX2, TRA@ were the four
leukemia genes and there was no single gene related to AML or ALL. These two experiments
demonstrated the effectiveness of grouping genes based on biological knowledge, and that, as
expected, the quality of the prior knowledge would influence performance. Nevertheless, our
work here is just a first step, and more research is necessary to establish the practical use of
grouping genes for microarray data.

5. Discussion
We have proposed a new penalized likelihood method for variable selection in model-based
clustering, permitting cluster-dependent diagonal covariance matrices. A major novelty is the
development of a new L1 penalty involving both mean and variance parameters. The penalized
mixture model can be fitted easily using an EM algorithm. Our numerical studies demonstrate
the utility of the proposed method and its superior performance over other methods. In
particular, it is confirmed that for high-dimensional data such as arising from microarray
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experiments, variable selection is necessary: without variable selection, the presence of a large
number of noise variables can mask the clustering structure underlying the data. Furthermore,
we have also studied penalties for grouped variables to incorporate prior knowledge into
clustering analysis, which, as expected, improves performance if the prior knowledge being
used is indeed informative.

The present approach involves only diagonal covariance matrices. It is argued that for “high
dimension but small sample size” settings as arising in genomic studies, the working
independence assumption is effective, as suggested by Fraley and Raftery (2006) [12], as well
as demonstrated by the popular use of a diagonal covariance matrix in the naive Bayes and
other discriminant analyses due to its good performance (Bickel and Levina 2004 [5]; Dudoit
et al. 2002 [7]; Tibshirani et al. 2003 [47]). Nevertheless, it is worthwhile to generalize the
proposed approach to other non-diagonal covariance matrices, possibly built on the novel idea
of shrinking variance components as proposed here. However, this task is much more
challenging; a main difficulty is how to guarantee a shrunk covariance matrix to be positive
definite, as evidenced by the challenge in a simpler context of penalized estimation of a single
covariance matrix (Huang et al. 2006 [21]; Yuan and Lin 2007 [55]). An alternative approach
is to have a model intermediate between the independent and unrestricted models. For example,
in a mixture of factor analyzers (McLachlan et al. 2003 [35]), local dimension reduction within
each component is realized through some latent factors, which are also used to explain the
correlations among the variables. Nevertheless, because the latent factors are assumed to be
shared by all the variables while in fact they may only be related to a small subset of informative
variables, variable selection may still be necessary; however, how to do so is an open question.
Finally, although our proposed penalty for grouped variables provides a general framework to
consider a group of genes, e.g. in a relevant biological pathway or functional group, for their
either “all in” or “all out” property in clustering, there remain some practical questions, such
as how to choose pathways and how to handle genes in multiple pathways. These interesting
topics remain to be studied.
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Appendix A: Composite Absolute Penalties (CAP)
We generalize our proposed group penalization, including the two regularization schemes on
variance parameters, to the Composite Absolute Penalties (CAP) of Zhao et al. (2006) [56],
which covers the group penalty of Yuan and Lin (2006) [54] as a special case.

For grouping mean parameters, the following penalty function is used for the mean parameters:

(26)

where , γm > 1 and ||v||γm is the Lγm norm of vector v. Accordingly, we adopt

(27)

or

(28)

as a penalty for grouped variance parameters. To achieve sparcity, as usual, we use γ0 = 1.

The E-step of the EM yields QP with the same form as (2). Next we derive the updating formulas
for the mean and variance parameters in the M-step.

A.1. Grouping mean parameters
If the CAP penalty function (26) for grouped means is used, we can derive the following
Theorem:

Theorem 6

The sufficient and necessary conditions for , i = 1, 2, …, g and m = 1, 2, …, M, to be
a unique maximizer of QP are

(29)

and
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(30)

yielding

(31)

where , and  is the usual MLE.

Proof—Consider two cases

i. . First, by definition and using the Hölder’s inequality, we can prove that the
Lγm norm is convex, thus the penalty function for grouped means is convex in .
Second, treating QP as the Lagrange multiplier for a constrained optimization problem
with the penalty as the inequality constraint, and considering that both minus the
objective function and the penalty function are convex, by the Karush-Kuhn-Tucker
(KKT) condition, we have the following sufficient and necessary condition

from which we can easily get (29).

ii. . By definition, we have

Notice  as . By the Hölder’s

inequality, we have , and the ” = ”
can be attained. Thus the above inequality is equivalent to (30).

It is clear that, if λ1 is large enough,  will be exactly 0 due to thresholding. Since  depends
on , we use (31) iteratively to update .
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A.2. Grouping variance parameters
A.2.1. Scheme 1

If the penalty function (27) for grouped variances is used, we have the following theorem:

Theorem 7—The sufficient and necessary conditions for , i = 1, 2, …, g, and m = 1,
2, …, M, to be a local maximizer of QP are

(32)

The necessary condition for  to be a local maximizer of QP is

(33)

Proof: If  is a local maximum, by definition, we have the following sufficient and
necessary condition

Thus,

Using Taylor’s expansion, we have
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for some constant vector c. After dividing both sides by  and using the same argument

as before, we obtain (32) as the sufficient and necessary condition for  to be a local
maximizer of QP.

Setting the first-order derivative of QP equal to 0, we have (33), the necessary condition for

 to be a local maximizer of QP.

It is clear that we have  when, for example, λ2 is large enough. It is also easy to verify
that the above conditions reduce to the same ones for  for non-grouped variables when
km = 1 and reduce to (24) and (25) for grouped variables when .

A.2.2. Scheme 2
If we use the CAP penalty function (28) for grouped variances, then the following theorem can
be obtained by a similar argument as before:

Theorem 8—The sufficient and necessary conditions for , i = 1, 2, …, g and m = 1, 2,
…, M, to be a local maximizer of QP are

(34)

The necessary condition for  to be a local maximizer of QP is

(35)

Appendix B: Proofs

B.1. Derivation of Theorem 1
Since QP is differentiable with respect to μik when μik ≠ 0, while non-differentiable at μik = 0,
we consider the following two cases:

i. If μik ≠ 0 is a maximum, given that QP is concave and differentiable, then the sufficient
and necessary condition for μik to be the global maximum of QP is

from which we have (10).
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ii. If μik = 0 is a maximum, we compare QP (0,.) with QP (Δμik,.), values of QP at μik =
0 μik = Delta;μik respectively (while other components of μi are fixed at its maximum).
By definition, we have

It is obvious that from (10) we have , thus

which, in combination with (11), yields (12).

B.2. Derivation of Theorem 2

Since QP is differentiable with respect to  when , we know a local maximum  must
satisfy the following conditions

(36)

where. in QP (1,.) represents all parameters in QP except .

Notice that , where C1, C2

and C3 are constants with respect to . Therefore the first equation of (36) becomes

from which we can easily get (13).

Starting from the second equation of (36), we have
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and thus

Using Taylor’s expansion, we have

leading to

letting , we obtain (14).

B.3. Derivation of  in section 2.3.1

Note that from (13) we have . Define f(x) = aikx2 + bix −
cik = 0.

First, we consider the case with |bi − cik| ≤ λ2.

i. When , and

 if .
On the other hand, limx→1+ f(x) = λ2 + bi − cik ≥ 0, since |bi − cik| ≤ λ2; and f(x) = −
λ2x2 + bix − cik < − λ2x2 + bi − cik < 0 if x < 1. Thus, based on the signs of f(x), QP

has a unique local maximum at .

ii. When , we have , and

 if ; limx→1− f(x) = −λ2 + bi −

cik ≤; and f(x) = λ2x2 + bix − ci > λ2 + bi − ci > 0 if x > 1. However, for , f(x)
=− λ2x2 + bix − cik is a continuous and quadratic function, which may have two roots

If bi − cik <λ2, then limx→1− f(x) < 0, implying that, according to the signs of f(x) around x =
1, x = 1 is a local maximum of QP, and the smaller of x1,2 is also a local maximum (if it exists);
on the other hand, if bi − cik = λ2, then limx→1− f(x) = 0, implying that either x = 1, the smaller

root of x1,2 if , or x = cik/λ2, the larger root of x1,2 if , is the unique maximum.
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Second, we claim that, if |bi − cik| > λ2, there exists a unique local maximizer  for QP

and it must lie between 1 and , the usual MLE without penalty. This can be shown
in the following way.

i. When , and

 if .
On the other hand, limx→1+ f(x) = λ2 + bi − cik < 0, since bi − cik < − λ2; and f(x) = −
λ2x2 + bix − cik < − λ2x2 + bi − cik < 0 if x < 1. Thus f(x) has a unique root

.

ii. When , similarly we have , and

 if ; limx→1 − f(x) = −λ2 + bi −
cik > 0; and f(x) = λ2x2 + bix − ci > bi − ci > 0 if x > 1. Thus f(x) has a unique root

.

Based on the signs of f(x) around , it is easy to see that  is indeed a local maximizer.

Third, (13) can be expressed as

(37)

From the first equation of (37), we get . Since

 and that bi − cik > λ2

implies  while  must be between  and 1, we only have one solution

. From the second equation, similarly we

get . Combining the two cases, we obtain (15).

Note that the expression inside the square root of (15) is non-negative. To prove it, we only
need to show that for . Consider two cases:

i. When cik − bi > λ2 ≥ 0,

ii. When cik − bi < −λ2 ≤0,
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B.4. Derivation of Theorem 3
We prove the necessary conditions below, while the sufficiency is proved as a side-product in
Appendix B.5.

Since QP is differentiable with respect to  when , we know a local maximum  must
satisfy the following conditions

(38)

where. in QP (1,.) represents all parameters in QP except .

Notice that , where C1, C2

and C3 are constants with respect to . Therefore the first equation of (38) becomes

from which we can easily get (17).

Starting from the second equation of (38), we have

and thus

Using Taylor’s expansion, we have

leading to
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letting , we obtain (18).

B.5. Derivation of  in section 2.3.2

Let , where f(x) is defined as

. Thus (17) is equivalent to . First, we consider the
case with |bi − cik| ≤ λ2, the necessary condition of .

i. When  if x > 1.

On the other hand,  if

. Thus, based on the signs of f(x), QP has a unique local maximum at .

ii. When , we have cik/bi < 1, thus 0 < bi − cik < λ2.

 if x > 1. On the other hand,

 if 0 < x < 1.
Thus, based on the signs of f(x), QP has a unique local maximum at .

i) and ii) indicates that |bi − cik| ≤ λ2 is also the sufficient condition of 

Second, we claim that, if |bi − cik| > λ2, there exists a unique local maximizer  for QP

and it must lie between 1 and , the usual MLE without penalty. This can be shown
in the following way.

i. When , we have bi < cik, and further cik − bi > λ2. Notice

 if 0< x <1. Thus the possible root of f

(x) = 0 should be larger than 1. For x > 1,  is a linear function

of x. , and . Thus

f(x) = 0 has a unique root .

ii. When , we have bi > cik, and further bi − cik > λ2. Notice

 if x >1. Thus the possible root of f(x) = 0

should be smaller than 1. For x < 1,  is a linear function of x.

 and . Thus

f(x) = 0 has a unique root .

Based on the signs of f(x) around , it is easy to see that  is indeed a local maximizer.

And 
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B.6. Derivation of Theorem 4
Consider two cases:

i. . First, by definition and using the Cauchy-Schwarz inequality, we can prove
that the L2 norm is convex, thus the penalty function for grouped means is convex in

. Second, treating QP as the Lagrange multiplier for a constrained optimization
problem with the penalty as the inequality constraint, and considering that both minus
the objective function and the penalty function are convex, by the Karush-Kuhn-
Tucker (KKT) condition, we have the following sufficient and necessary condition

from which we can easily get (21).

ii. . By definition, we have

Plugging-in  and letting α → 0, we obtain (22) from the above inequality.
On the other hand, by the Cauchy-Schwarz inequality, we have

, and because  is positive definite, we
obtain the above inequality from (22).

B.7. Derivation of Theorem 5

If  is a local maximum, by definition, we have the following sufficient and necessary
condition

Thus,
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Using Taylor’s expansion, we have

for some constant vector c. After dividing both sides by  and using the same argument

as before, we obtain (24) as the sufficient and necessary condition for  to be a local
maximizer of QP.

B.8. Characterization of solutions to (25)

Consider any component k′, , of . Equation (25) corresponds to

where , and bik′ and cimk′ are the k′th components of bi and cim

respectively. If λ2 = 0, then , the usual MLE without penalization; if λ2 ≠=
0 and we treat aim as a constant (i.e. by plugging-in a current estimate of ), the above equation
becomes a cubic equation of ,

where a = −1, b = bik′/aim, c = − cimk′/aim.

Now we consider the following two cases:

i.
When , we have , f(x)

< 0 for ∀x < 1, and f(x) > 0 for . Therefore, the real roots of this equation must

be between 1 and . Recall the fact that an odd-order equation has at least one real
root, and the sum of all three roots of this equation equals −a = 1, the equation must

have only one real root . Because , based on the
signs of f(x) near , we know that  is a local maximizer.
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ii.
When , we have , f(x)

> 0 for ∀x > 1, and f(x) < 0 for . Therefore, the real roots of this equation must

be between  and 1. By factorization, we have

where x1 is a root of f(x) = 0. Thus, if we use a bisection search to find the first root x1, the
other two (real or complex) roots of f(x) = 0 are

If there is more than one real root, we choose the one maximizing QP as the new estimate
.

Appendix C: Simulation

C.1. Comparison of the two regularization schemes
We investigated the performance of the two regularization schemes for the variance parameters
for set-up 3 in simulation case I. There were 36 (or 5) out of 100 datsets which were identified
with 2 (or 3) clusters by both (var-1) and log(var) methods. Table 8 summarizes the numbers
of the genes with their penalized variance estimates as exactly one by either regularization
scheme. For ĝ = 3, the two schemes gave exactly the same number of the genes for each cluster
and discovered the same genes with their variances estimated as one across all 3 clusters. For
ĝ = 2, the results of the two schemes were also similar, though scheme one (i.e. penalizing
var-1) identified slightly more genes with their variances estimated to be one for each cluster
and more genes across both the clusters than did scheme two.

Figure 5 compares the variance parameter estimates by the two regularization schemes and the
sample variance estimates based on the estimated sample assignments for the estimated ĝ = 2
clusters for one simulated dataset in set-up 3. Due to the construction of the simulation data
and standardization, the true cluster with 80 samples always had sample variances smaller than
1 for informative variables, while the other cluster with 20 samples always had sample
variances larger than 1 for those informative variables. Compared to the sample variance
estimates, the penalized estimates from both schemes were clearly shrunken towards 1, and
could be exactly 1. Between the two schemes, they gave similar estimates for cluster 2, but
scheme 1 in general shrank many variance parameters more than scheme 2, which was in
agreement with and explained the results in Table 8.

Appendix D: Golub’s data

D.1. Comparison of the two regularization schemes
Figure 6 compares the MPLEs of the variance parameters given by the two regularization
schemes for Golub’s data with the top 2000 genes. Although the two schemes in general gave
similar MPLEs, scheme 1 seemed to shrink more than did scheme 2, especially if σ ̂2 > 1.
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Figures 7–8 compare the MPLEs from the two schemes with the sample variances based on
the final clusters. The effects of shrinkage to and thresholding at 1 by the two regularization
schemes were striking. In particular, there was a clear thresholding in MPLE when the sample
variances were less than and close to 1 for scheme 1 (Figure 7). To provide an explanation, we

examined expression (15) given in the paper. We notice that if  (in the form of the usual
MLE) is less than 1, and λ2 is large enough, then the MPLE

. Therefore,  did have a ceiling at 2(1 − λ2/bi).

D.2. Comparison with Kim et al. (2006)’s method
We applied our penalized clustering methods to the Golub’s data that were pre-processed as
in Kim et al. (2006) [25], resulting in 3571 genes; see Table 9. The standard methods without
variable selection under-selected the number of clusters at 2, failing to distinguish between
ALL-T and ALL-B, even between ALL and AML (for the equal covariance model), in
agreement with our simulation results. Our proposed new penalized method could largely
separate the AML samples and the two ALL subtypes; only two samples were mis-assigned.
In contrast, Kim et al’s method could not separate the two subtypes of ALL samples.

Xie et al. Page 32

Electron J Stat. Author manuscript; available in PMC 2009 November 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 1.
Scatter plots of the estimated means and variances by the new penalized method. Panels a)–c)
are scatter plots of the estimated variances in cluster 1 versus those in cluster 2, 3 and 4,
respectively; panels d)–g) are the scatter plots of the estimated means versus estimated
variances for the four clusters respectively.
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Fig 2.
Observed expression levels of two pairs of genes and the corresponding clusters found by the
two penalized methods.
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Fig 3.
Penalized mean and variance estimates for cluster one containing the 11 ALL B-cell samples
by the new penalized method.
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Fig 4.
Agglomerative hierarchical clustering results for the 38 leukemia samples: the first 8 samples
were T-cell ALL; samples 9–27 were B-cell ALL; the remaining ones were AML.
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Fig 5.
Comparison of the two regularization schemes on the variance parameters for one dataset of
set-up 3. σ̂is is MPLE for cluster i by scheme s.
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Fig 6.
Comparison of the two regularization schemes on the variance parameters for Golub’s data
with the top 2000 genes. X-axis and y-axis give the MPLEs by scheme 1 and scheme 2
respectively.
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Fig 7.
Comparison of the penalized variance estimates by regularization scheme 1 and the sample
variances for Golub’s data with the top 2000 genes.
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Fig 8.
Comparison of the penalized variance estimates by regularization scheme 2 and the sample
variances for Golub’s data with the top 2000 genes.
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Table 7

The genes in the Leukemia Gene Database that were retained in or removed from the final model for the grouped
method. The six genes in italic font were annotated in KEGG pathways

Leukemia Subtype Gene Name

Retained

Acute Lymphoblastic Leukemia MYC, ZNFN1A1
Acute Myelogenous Leukemia IRF1, GMPS
Acute Myeloid Leukemia CBFB, NUP214, HOXA9, FUS, RUNX1
Acute Promyelocytic Leukemia PML
Acute Undifferentiated Leukemia SET
B-cell Chronic Lymphocytic Leukemia BCL3, BTG1
Myeloid Leukemia CLC
pre B-cell Leukemia PBX1, PBX3
T-cell Leukemia TCL6
T-cell Acute Lymphoblastic Leukemia NOTCH3, LYL1, LMO2, TAL2
Cutaneous T-cell Leukemia NFKB2
Human Monocytic Leukemia ETS1
Mast cell Leukemia KIT
Mixed Linkage Leukemia MLL3

Removed

Acute Myeloid Leukemia LCP1
Acute Myelogenous Leukemia RGS2
Murine Myeloid Leukemia EVI2B
pre B-cell Leukemia PBX2
T-cell Leukemia TRA@
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