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background: Early prenatal androgenization (PA) accelerates follicle differentiation and impairs embryogenesis in adult female rhesus
monkeys (Macaca mulatta) undergoing FSH therapy for IVF. To determine whether androgen excess in utero affects follicle development over
time, this study examines whether PA exposure, beginning at gestational days 40–44 (early treated) or 100–115 (late treated), alters the
decline in serum anti-Mullerian hormone (AMH) levels with age in adult female rhesus monkeys and perturbs their ovarian response to
recombinant human FSH (rhFSH) therapy for IVF.

methods: Thirteen normal (control), 11 early-treated and 6 late-treated PA adult female monkeys had serum AMH levels measured at
random times of the menstrual cycle or anovulatory period. Using some of the same animals, basal serum AMH, gonadotrophins and steroids
were also measured in six normal, five early-treated and three late-treated PA female monkeys undergoing FSH therapy for IVF during late-
reproductive life (.17 years); serum AMH also was measured on day of HCG administration and at oocyte retrieval.

results: Serum AMH levels in early-treated PA females declined with age to levels that were significantly lower than those of normal
(P � 0.05) and late-treated PA females (P � 0.025) by late-reproductive life. Serum AMH levels positively predicted numbers of total/
mature oocytes retrieved, with early-treated PA females having the lowest serum AMH levels, fewest oocytes retrieved and lowest percen-
tage of females with fertilized oocytes that cleaved.

conclusions: Based on these animals, early PA appears to program an exaggerated decline in ovarian reserve with age, suggesting that
epigenetically induced hormonal factors during fetal development may influence the cohort size of ovarian follicles after birth.
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Introduction
Emerging data implicate critical times during fetal development when
steroids permanently alter, or program, the physiology of the fetus to
modify its reproductive function after birth. Most notably, experimentally
induced prenatal testosterone excess in early gestation programs LH
hypersecretion in the late-gestational fetus and newborn female rhesus
monkey (Macaca mulatta), leading to hyperandrogenism after birth
(Abbott et al., 2008, 2009). In adulthood, such early prenatal
testosterone-treated female monkeys show LH hypersecretion, resulting
from reduced hypothalamic sensitivity to steroid negative feedback
(Dumesic et al., 2007; Abbott et al., 2008) which, serving as a component
of ovarian hyperandrogenism, promotes ovulatory dysfunction and for-
mation of polycystic ovaries (Eisneret al., 2002; Abbott et al., 2005, 2007).

In their mid- to late-reproductive years, adult female monkeys with
early prenatal testosterone treatment also show accelerated follicle
differentiation and impaired embryo development during FSH
therapy for IVF (Dumesic et al., 2002), resembling that of IVF patients
with diminished ovarian reserve (Foong et al., 2005). Therefore, a clini-
cally relevant research question is whether androgen excess during a
critical time of fetal development alters ovarian follicular differen-
tiation, leading to decreased numbers of ovarian follicles and dimin-
ished ovarian reserve after birth. If so, androgen excess in utero also
should affect the production of anti-Mullerian hormone (AMH), a
transforming growth factor-b-related protein produced by granulosa
cells of growing pre-antral/small antral follicles and positively corre-
lated with ovarian follicle cohort size or ovarian reserve (Weenen
et al., 2004; Seifer and MacLaughlin, 2007). Because serum AMH
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levels positively predict ovarian follicular activity (young women:
Nelson et al., 2007; young adult female cynomolgus monkeys: Appt
et al., 2009) and progressively decrease with age to reach barely
detectable levels at menopause (women: Burger et al., 2007; female
rhesus monkeys: Downs and Urbanski. 2006), the present study
examines whether early prenatal androgenization (PA) alters the
decline in serum AMH levels with age in adult female rhesus
monkeys and perturbs their ovarian response to FSH therapy for IVF.

Materials and Methods

Experimental animals
The general care and housing of rhesus monkeys (Macaca mulatta) at the
National Primate Research Center (NPRC), University of Wisconsin,
Madison have been described previously (Goy and Robinson, 1982; Goy
and Kemnitz, 1983). The Center is fully accredited by the Association
for Assessment and Accreditation of Laboratory Animal Care, as part of
the University of Wisconsin Graduate School. Animal protocols and
experiments were approved by the Graduate School Animal Care and
Use Committee of the University of Wisconsin, Madison. The animals
were maintained according to recommendations of the Guide for the
Care and Use of Laboratory Animals and the Animal Welfare Act with
its subsequent amendments. All animals were studied between September
and May in order to avoid seasonal effects on menstrual cyclicity (Dailey
and Neill, 1981; Nusser et al., 2001).

The study comprised 30 sexually mature female rhesus monkeys
between 8.7 and 24.6 years of age. The control group consisted of
13 normal adult females; the PA study group comprised 17 females
exposed in utero to testosterone propionate (TP). A detailed description
of study design and methodology has been reported previously (Goy
and Robinson, 1982). Briefly, females with PA were produced by injecting
(s.c.) pregnant rhesus monkeys carrying female fetuses with 10–15 mg TP
for 15–35 days, starting on either days 40–44 (early treated, n ¼ 11) or
days 100–115 (late treated, n ¼ 6) postconception (total gestation,
165 days). This TP dosing schedule elevated circulating testosterone
levels in fetal females to those normally found in fetal males during
either the beginning of neuroendocrine development and target tissue
differentiation, including the functional acquisition of hypothalamic sensi-
tivity to hormone negative feedback (early treated), or ovarian follicle
development (late treated) (Resko and Ellinwood, 1984; Resko et al.,
1987; Abbott et al., 2008). Prenatal TP treatment completed by day 84
postconception in rhesus monkeys induced external genital masculinization
and obliteration of the external vaginal orifice (Thornton et al., 2009) while
female offspring exposed to TP beginning after day 110 postconception
showed no genital virilization, except for clitoromegaly.

Serum AMH determinations
Forty-seven blood samples were collected at random times of the men-
strual cycle or anovulatory period from these 30 adult female rhesus
monkeys, between 8.7 and 24.6 years of age, with some females contri-
buting more than one blood sample as they aged. In addition, blood
samples collected from four normal, five early-treated and three late-
treated PA perimenopausal females [22–25 years (menopause, 26–28
years)] participating in a dietary restriction study were used to determine
nadir levels of AMH during the perimenopause.

Gonadotrophin stimulation for IVF
Owing mostly to age-related mortality typical for this species in captivity
(Colman and Anderson, in press), only six normal, five early-treated and

three late-treated PA females (total females, n ¼ 14) also underwent
ovarian stimulation for IVF during late-reproductive life (age .17 years,
Study 2). All five surviving early-treated PA females contributed data, in
contrast to only three out of four late-treated PA females. Attempting
to balance number, age and BMI of normal females to those of both early-
treated and late-treated PA female groups, final normal female group size
of six was attained, with three controls also excluded due to IVF cycle can-
cellation. Each female received twice-daily i.m. injections of 30–45 IU
recombinant human (rh) FSH (Follistim: Schering-Plough Pharmaceuticals,
Kenilworth, NJ, USA), beginning on days 1–3 of the menstrual cycle [day
1 ¼ the first day of menses (Dumesic et al., 2002, 2003)], or beginning
during a period of anovulation. Serial blood samples (5 ml) were drawn
from the saphenous vein during rhFSH therapy to quantify changes in cir-
culating estradiol (E2) levels. rhFSH was administered until at least one fol-
licle measuring �5 mm in diameter was detected using transabdominal
ultrasonography (7.5 MHz convex probe; Aloka SSD-1400 scxanner; Wall-
ingford, CT, USA). Recombinant HCG [rHCG, 1000 IU, i.m. (Ares
Serono, NJ, USA)] was administered 1 day later to induce oocyte matu-
ration, and laparoscopic oocyte retrieval was performed 27 h after
rHCG. Blood samples taken on the day of rHCG administration confirmed
that no animal experienced a spontaneous LH surge. Blood samples (5 ml)
drawn before rhFSH treatment were used to quantify basal FSH, LH,
AMH, E2, progesterone, 17-hydroxyprogesterone (17-OHP4), androste-
nedione (A4), testosterone and dihydrotestosterone (DHT) levels;
additional blood samples drawn on the day of HCG administration and
at oocyte retrieval were used to measure AMH and E2.

Laparoscopic ovarian retrieval
All large follicles (5–7 mm) on each ovary were aspirated individually into
separate collection tubes with 200 ml protein-free TL-Hepes medium con-
taining 0.1 mg/ml polyvinyl alcohol, as previously described (Dumesic
et al., 2002, 2003). Oocytes from each of these large follicles were cul-
tured separately in individual culture drops of modified CMRL medium
containing 20% bovine calf serum so that their meiotic and developmental
competence could be directly examined.

IVF and embryo culture
Oocytes were examined for nuclear maturation every 2 h and then inse-
minated approximately 2–4 h following extrusion of the first polar body
(Dumesic et al., 2002, 2003). Metaphase II oocytes possessed one polar
body in the perivitelline space and no visible nuclear structure in the cyto-
plasm. Metaphase I oocytes displayed no polar body in the perivitelline
space and no visible nuclear structure in the cytoplasm. Prophase I
oocytes displayed no polar body in the perivitelline space and a germinal
vesicle (GV) in the cytoplasm. Spermatozoa collected by penile electroe-
jaculation were co-incubated with mature oocytes for 12–16 h at 378C in
a humidified atmosphere of 5% CO2 in air, after which oocytes were
examined for fertilization. All diploid zygotes were cultured in G1/G2
medium (Gardner and Lane, 1997) in 5% CO2, 5% O2 and 90% N2 at
378C for up to 11 days, and were examined daily using Nomarski optics
(�200–400 magnification) on a Nikon Eclipse TE300 inverted microscope
with a heated (378C) environmental control chamber (Bavister et al.,
1983).

Hormone assays
All AMH, gonadotrophin and steroid assays were performed in the NPRC
Hormone Assay Services Laboratory, as previously described (Foong et al.,
2006; Dumesic et al., 2009). AMH was measured by enzyme immunoassay
(Diagnostic Systems Laboratories, Minneapolis, MN, USA) and the intra-
and inter-assay coefficients of variation (CVs) for AMH were 6.2 and
5.3%, respectively. The lower level of AMH detection was 0.2 pmol/l.
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The AMH enzyme immunoassay measures total AMH since both its
capture and detection antibodies recognize epitopes in the pro-region of
the AMH molecule (Al-Qahtani et al., 2005). Progesterone, testosterone
and DHT also were measured by enzyme immunoassay. The intra-assay
CVs were: progesterone, 10.0%; testosterone, 4.3% and DHT, 8.8%.
The inter-assay CVs were: progesterone, 17.3%; testosterone, 16.9%
and DHT, 20.1%. FSH, E2, 17OHP4 and A4 were measured by radio-
immunoassay. The intra-assay CVs were: FSH, 4.5%; E2, 4.3%; 17OHP4,
5.6% and A4, 4.7%. The inter-assay CVs were: FSH, 10.8%; E2, 6.6%;
17OHP4, 9.8% and A4, 6.7%. Bioactive LH (bioLH) was measured by
the mouse Leydig cell bioassay using the rhLH-RP1 reference preparation.
The intra- and inter-assay CVs for LH were 9.1 and 18.1%, respectively.

Statistical analysis
Log-transformation of the hormonal data and arcsine transformation of the
oocyte/embryo proportional data were performed to achieve homogen-
eity of variance and to increase linearity (Sokal and Rohlf, 1995).
Regression models with estimation by generalized estimating equations
(GEE) used female age and female type (i.e. experimental group) to
predict serum AMH levels during adult life, while adjusting for intra-subject
correlations due to more than one serum AMH determination per animal.
A backward elimination procedure was used to select the final GEE
models. Two-way analysis of variance (ANOVA) was used to examine
the serum AMH levels, using female type and IVF cycle phase as factors
to determine the independent effects of these variables and their possible
interaction. One-way ANOVA was used to compare female type differ-
ences in IVF cycle characteristics, oocyte fertilization and embryo develop-
ment, and serum hormone concentrations. Kruskal–Wallis one-way
ANOVA was performed when data were not normally distributed.
Linear regression was used to compare serum AMH levels basally, after
rhFSH therapy and at oocyte retrieval with numbers of total and mature
oocytes retrieved. All hormonal and oocyte/embryo proportional data
are expressed as mean+ SE, back-transformed log10 mean (95% confi-
dence intervals) or median (25, 75%ile), as appropriate. A P , 0.05
value was considered significant.

Results

Study 1: Effect of female age and type
on serum AMH level
Within the age ranges observed, inverse linear relationships between
log(AMH) and age were not dissimilar for normal females
[log(AMH) ¼ 2.019 2 0.097(AGE)] and late-treated PA females
[log(AMH) ¼ 2.279 2 0.100(AGE)] (Fig. 1). Since there were no sig-
nificant differences between normal and late-treated PA females in
the vertical shift in serum AMH levels (P ¼ 0.8) or the slopes of the
inverse linear relationships between log(AMH) and age (P ¼ 0.9),
data from these two female types were combined for statistical analy-
sis. In contrast, the inverse linear relationship between log(AMH) and
age for early-treated PA females [log(AMH) ¼ 3.926 – 0.216(AGE)]
showed a steeper negative slope with age. As a result, the age-related
decline in serum AMH level over the 8.7 –24.6 year age range (age
effect, P , 0.001, Fig. 1) was greater in early-treated PA compared
with the other two female types (female type effect, P , 0.02). The
negative slope of the regression line for serum AMH level versus
female age in early-treated PA females crossed those of normal and
late-treated PA females during mid-reproductive age (age-female
type interaction, P ¼ 0.006). By perimenopause (22–25 years),

serum AMH levels in four normal, five early-treated PA and three
late-treated PA females had reached the same nadir values, without
a female type effect (normal, 3.6+ 0.7; early-treated PA, 2.9+0.7;
late-treated PA, 2.9+ 1.4 pmol/l females; P . 0.6).

Study 2: Effect of female type on IVF during
late reproduction
Animal characteristics
Normal and early-treated PA females undergoing rhFSH treatment for
IVF were similar in age (P ¼ 0.2), as were normal and late-treated PA
females (P ¼ 0.1, Table I). Late-treated PA females were younger than
early-treated PA females (P , 0.025). Normal, early-treated and late-
treated PA females were comparable in BMI (P ¼ 0.06). Ten animals
were ovulatory, based on two serum progesterone levels above
1 ng/ml within 15 days of menses (Goy and Robinson, 1982), while
two early-treated and two late-treated PA females were
oligo-ovulatory.

Serum hormone levels
Basal serum levels of FSH, bioLH, progesterone, 17-OHP4, A4, testos-
terone and DHT were comparable between normal and both early-
treated and late-treated PA females (FSH, P ¼ 0.4; bioLH, P ¼ 0.9;
progesterone, P ¼ 0.4; 17-OHP4, P ¼ 0.6; A4, P ¼ 0.07; testosterone,
P ¼ 0.5; DHT, P ¼ 0.8, Table I). Basal E2 levels were lower in both PA
female groups than in normal females (P , 0.01 for both).

Figure 1 Regression model using female age and treatment type to
predict serum AMH values. The inverse linear relationships between
age and serum AMH level for normal (closed circles) and late-treated
PA (open triangles) females were not dissimilar so that data from
these two female types were combined. The age-related decline in
serum AMH level over the 8.7–24.6 year age range (age effect,
P � 0.001) was greater in early-treated PA (EPA, open squares)
versus the other female types (female type effect, P � 0.02). Conse-
quently, the negative slope of the regression line for serum AMH level
versus female age in early-treated PA females (large dashed line)
crossed those of normal females (solid line) and late-treated PA
females (LPA small dashed line) during mid-reproductive age (age-
female type interaction, P , 0.006).
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There was a significant female type effect (P � 0.025) on serum AMH
levels. Basal serum AMH levels in early-treated PA females of
late-reproductive age were significantly lower than those of normal
(P � 0.05) and late-treated PA females (P � 0.025, Table II). Serum
AMH levels in early-treated PA females on the day of hCG administration
and at oocyte retrieval remained significantly below those of normal (P �
0.05, both days) and late-treated PA (P � 0.025, both days) females.
Although serum AMH levels tended to increase after rhFSH therapy
(IVF cycle phase effect, P ¼ 0.054; female type/IVF cycle phase inter-
action, P ¼ 0.3), only four of six normal (67%), two of five early-treated
PA (40%) and two of three late-treated PA females (67%) showed a rise

in serum AMH levels on the day of rHCG administration compared with
basal levels (Fig. 2). The rise of serum E2 during rhFSH therapy was highly
variable among females so that maximal serum E2 levels on the day of
rHCG administration were not significantly different between normal
(3.28+0.59), early-treated PA (1.24+0.65) and late-treated PA
(2.31+0.84 nmol/l, P ¼ 0.1) females.

IVF cycle characteristics
The amount of rhFSH administered and the duration of rhFSH treat-
ment were similar in all three groups (P ¼ 0.4, both variables,
Table II). Despite comparable amounts of rhFSH administered,

.............................................................................................................................................................................................

Table I Characteristics and basal hormone levels of normal (control) rhesus monkeys (Macaca mulatta) and monkeys that
underwent PA and recombinant human FSH (rhFSH) therapy for IVFa

Females Normal (n 5 6) Early-treated PA (n 5 5) Late-treated PA (n 5 3)

Age (years)* 21.6+0.7 23.3+0.8 19.2+1.1b

BMI (kg/m2)* 43.0+2.1 34.7+2.3 38.4+2.9

Serum FSH (ng/ml)** 3.2 (2.3, 4.3) 2.4 (1.6, 3.5) 2.4 (1.5, 3.6)

Serum bioactive LH (ng/ml)** 0.3 (0.2, 0.6) 0.3 (0.2, 0.5) 0.3 (0.1, 0.6)

Serum E2 (nmol/l)** 0.72 (0.39, 1.35) 0.14 (0.07, 0.27)c 0.10 (0.04, 0.26)c

Serum progesterone (nmol/l)** 0.64 (0.32, 0.95) 0.32 (0.32, 0.64) 0.32 (0.32, 0.64)

Serum 17OHP4 (nmol/l)** 0.30 (0.30, 0.91) 0.61 (0.30, 1.21) 0.61 (0.30, 2.42)

Serum A4 (nmol/l)* 0.69+0.11 0.99+0.12 1.16+0.15

Serum testosterone (nmol/l)* 0.68+0.14 0.91+0.15 0.85+0.19

Serum DHT (nmol/l)* 0.51+0.10 0.45+0.11 0.56+0.14

17OHP4: 17-hydroxyprogesterone, DHT: dihydrotestosterone, A4: androstenedione, E2: estradiol, early-treated PA: starting PA on days 40–44 postconception (total gestation,
165 days), late treated PA: starting PA on days 100–115 postconception.
aMean+ SE*, back-transformed log10 mean (95% CI)**.
bP , 0.025 versus early-treated PA females.
cP , 0.01 versus normal females.

.............................................................................................................................................................................................

Table II AMH levels and IVF cycle characteristics in PA and normal rhesus monkeysa

Females Normal (n 5 6) Early-treated PA (n 5 5) Late-treated PA (n 5 3)

Serum AMH (pmol/l)

Basal* 5.7 (3.6, 10.0) 2.1 (1.4, 3.6)b 8.6 (4.3, 17.8)c

Day of HCG* 6.4 (3.6, 12.9) 2.1 (0.7, 4.3)b 14.3 (5.7, 37.1)c

At oocyte retrieval* 5.7 (2.9, 11.4) 1.4 (0.7, 3.6)b 8.6 (3.6, 23.6)c

Administered rhFSH (IU)** 750 (450, 795) 990 (585, 1080) 795 (698, 848)

Duration of rhFSH (days)** 9.5 (5.0, 10.0) 11.0 (6.8, 12.0) 10.0 (10.0, 10.0)

Total oocytes retrieved** 7.5 (4.0, 14.0) 2.0 (1.0, 4.5)b 11.0 (8.5, 12.5)c

MII oocytes retrieved** 4.5 (4.0, 8.0) 1.0 (0.0, 2.5)d 7.0 (5.5, 8.0)e

Proportion MII oocytes* 95 (75, 100) 92 (63, 100)f 81 (36, 100)

Incidence of fertilization* 81 (53, 97) 97 (71, 100)g 55 (4, 90)

% females with fertilized oocytes that cleaved 100 25b 67

MII: metaphase II.
aBack-transformed log10 mean [95% confidence limits (CI)]*, median (25, 75%ile)**.
bP , 0.05 versus normal.
cP , 0.025 versus early-treated PA.
dP , 0.025 versus normal.
eP , 0.05 versus early-treated PA.
fn ¼ 4, one female failed to produce oocytes.
gn ¼ 3, one female failed to produce oocytes; another produced only two GV oocytes.
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however, fewer numbers of total and mature (metaphase II) oocytes
were retrieved from early-treated PA females than from normal and
late-treated PA females (total oocytes: P � 0.05 versus normal, P �
0.025 versus late-treated PA; mature oocytes: P � 0.025 versus
normal, P � 0.05 versus late-treated PA). Serum AMH levels basally,
after rhFSH therapy and at oocyte retrieval positively correlated
with numbers of total oocytes (basally: r2 ¼ 0.81, P � 2 � 1025;
after rhFSH: r2 ¼ 0.80, P � 4 � 1025; at oocyte retrieval: r2 ¼ 0.77,
P � 8 � 1025) and mature oocytes retrieved (basally: r2 ¼ 0.77, P �
5 � 1025; after rhFSH: r2 ¼ 0.80, P � 5 � 10 �1025; at oocyte
retrieval: r2 ¼ 0.84, P � 1 � 10 �1025, Fig. 2).

The proportion of oocytes completing meiotic maturation (P ¼ 0.7)
and the incidence of fertilization (P ¼ 0.2) were comparable among
the three groups (Table II). One early-treated PA female failed to
produce oocytes at laparoscopic oocyte retrieval; another produced
only two GV oocytes that did not further mature. Consequently,
early-treated PA females received significantly higher amounts of
rhFSH per mature oocyte retrieved (343+ 73, n ¼ 3) than late-
treated PA (67+73, n ¼ 3) or normal (79+51 IU/mature oocyte,
n ¼ 6) females (P , 0.05 versus both female groups). Moreover, the
percentage of early-treated PA females having fertilized oocytes that
cleaved was significantly lower than that of normal females (P , 0.05).

Discussion
The present study demonstrates that an exaggerated decline in AMH
production with age occurs in early-treated PA adult female rhesus

monkeys and accompanies diminished ovarian reserve following
rhFSH therapy for IVF during late-reproductive life. These data suggest
that epigenetically induced hormonal factors during fetal development
influence the cohort size of ovarian follicles after birth. Our findings
also confirm the value of AMH as an endocrine marker of ovarian follicu-
lar activity (Lee et al., 1996; Knight and Glister, 2003; Weenen et al.,
2004; Burger et al., 2007; Seifer and MacLaughlin, 2007), given its nega-
tive interaction with female age in predicting ovarian responsiveness in
IVF patients (Nelson et al., 2007) and its strong positive value in predict-
ing ovarian follicle number in female cynomolgus monkeys (Appt et al.,
2009). Importantly, rhFSH was administered alone, and in specified
amounts, because FSH therapy lowers AMH production in some
normal patients (Eldar-Geva et al., 2005) and patients with polycystic
ovary syndrome (PCOS) (Eldar-Geva et al., 2005; Catteau-Jonard
et al., 2007), but not in all individuals with PCOS (Laven et al., 2004),
while LH/HCG may stimulate AMH secretion in some patients with
PCOS as well (Laven et al., 2004). In addition, here we matched
normal and PA female monkeys for BMI because AMH production in
normal women and patients with PCOS is both negatively (Chen
et al., 2008; Piouka et al., 2008) and positively correlated with insulin
resistance (Piltonen et al., 2005; Crisosto et al., 2007).

Given that circulating AMH levels decline with age in adult female
rhesus monkeys (Downs and Urbanski, 2006), our observation of
an exaggerated age-related decline of AMH production in early-
treated PA females has clinical implications. Specifically, serum AMH
levels before and throughout rhFSH therapy were significantly
reduced in early- versus late-treated PA females and versus controls
during late-reproductive age when the early-treated PA females also
showed decreased ovarian responsiveness to FSH. At all stages of
IVF, serum AMH levels positively predicted the numbers of total
and mature oocytes retrieved, with early-treated PA females having
both the lowest serum AMH levels and the fewest oocytes retrieved.
In early-treated PA females, decreased serum AMH levels and dimin-
ished ovarian reserve accompanied normal basal serum FSH levels,
agreeing with clinical IVF studies showing serum AMH levels superior
to those of FSH in predicting oocyte numbers (Ebner et al., 2006;
Nelson et al., 2007).

Early PA programs LH hypersecretion owing to reduced hypothala-
mic sensitivity to steroid negative feedback (Dumesic et al., 2007;
Abbott et al., 2008), with epigenetically induced neuroendocrine dys-
function more pronounced than intrinsic theca cell hyperandrogenism
(Norman et al., 2007; Abbott et al., 2009). In terms of the endocrin-
ology of ovarian aging, therefore, early PA closely resembles congenital
adrenal hyperplasia resulting from 21-hydroxylase deficiency and viri-
lizing tumors, in which androgen excess in utero entrains LH hyperse-
cretion, causing secondary ovarian hyperandrogenism (Barnes et al.,
1994; Merke and Cutler, 2001; Stikkelbroeck et al., 2003). Conse-
quently, early PA may enhance follicle recruitment in utero, uninhibited
by AMH, which first appears in the primate ovary at the end of fetal
life (Rajpert-De Meyts et al., 1999). After birth, such programmed
development of ovarian function may then predispose to polyfollicular
ovaries (Abbott et al., 1998, 2002), followed by an exaggerated
decline of AMH production with age and diminished ovarian
reserve. Such a mechanism differs from AMH overproduction in
PCOS (Eldar-Geva et al., 2005; Piltonen et al., 2005; Pigny et al.,
2006; Pellatt et al., 2007), perhaps because PA adult female rhesus
monkeys do not exhibit the same degree of robust theca cell

Figure 2 Correlations between serum AMH levels and numbers of
total and mature oocytes retrieved for six normal, five early-treated
and three late-treated PA female monkeys that underwent ovarian
stimulation for IVF during late-reproductive life (.17 years). Serum
AMH levels basally, after recombinant human FSH therapy (day of
HCG) and at oocyte retrieval positively correlated with numbers of
total oocytes (basally: r2 ¼ 0.81, P � 2 � 1025; after rhFSH:
r2 ¼ 0.80, P � 4 � 1025; at oocyte retrieval: r2 ¼ 0.77,
P � 8 � 1025) and mature oocytes retrieved (basally: r2 ¼ 0.77,
P � 5 � 1025; after rhFSH: r2 ¼ 0.80, P � 5 � 1025; at oocyte
retrieval: r2 ¼ 0.84, P � 1 � 1025).
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hyperandrogenism found in PCOS (Abbott et al., 2009) resulting from
obvious augmented expression of several steroidogenic enzymes
(Nelson et al., 1999, 2001).

An important study limitation is the small number of adult female
monkeys in each group. Therefore, we combined data in Study 1
from normal and late-treated PA female groups because their
inverse linear relationships between serum AMH levels and age
were not dissimilar and an automated backwards statistical model of
serum AMH levels and age eliminated both age (late-treated PA
versus normal females, P ¼ 0.9) and age/female type interaction (late-
treated PA versus normal females, P ¼ 0.9) as predictors. Sensitivity
analyses comparing data between early-treated PA females and
normal females alone (excluding late-treated PA females), and restrict-
ing analysis to females aged less than 20 years, did not alter data
interpretation, with linear associations between serum AMH values
and age maintained in each female group within this age range.

In addition, only three of the presently reported females (two early-
treated PA, one normal) had stored sera available from their previous
IVF cycle performed 4 years earlier (Dumesic et al., 2002), with serum
AMH levels in the two early-treated PA females only 39% (4.3,
5.7 pmol/l) of normal (12.9 pmol/l) at this younger age. Therefore,
diminished ovarian reserve already existed in these females during
their earlier IVF cycle, and was unlikely to have been exaggerated by
the greater numbers of previous IVF cycles performed in early-treated
PA [3.0 (2.0, 3.5)] than in normal [1.0 (1.0, 1.0), P , 0.01] or late-
treated PA [1.0 (0.5, 1.5), median (25, 75%ile), P , 0.05] females
(Elder et al., 2008). Nor did our study examine fecundity of PA
females, or granulosa cell-derived paracrine factors, although
reduced inhibin production from ovarian aging (Elting et al., 2003)
may have advanced follicle selection (Klein and Soules, 1998) in
normal monkeys, thus increasing basal E2 levels.

An important question is how early PA exaggerates the age-related
loss of ovarian response to FSH. In adult female rhesus monkeys,
androgens promote follicle recruitment and granulosa cell proliferation
via up-regulation of genes for FSH receptor, insulin-like growth factor I
(IGF-I) receptor and IGF-I in granulosa cells and for IGF-I receptor and
IGF-I in primordial follicle oocytes (Vendola et al., 1998, 1999a, b;
Weil et al., 1998, 1999). Through this mechanism, early PA in
monkeys could hasten depletion of the primordial follicle pool. As a
more complex effect of PA on early follicle growth, PA in sheep
increases follicle recruitment, while decreasing total follicle numbers
in the fetal ovary (Steckler et al., 2005). In this regard, enhanced follicle
recruitment in AMH null mice followed by pre-antral oocyte degener-
ation and early follicle atresia accompanies an exaggerated age-related
loss of ovarian response to FSH (Visser et al., 2007). Therefore, early
PA in female rhesus monkeys may alter the balance of follicle growth
and atresia to reduce AMH in late-reproductive life and thereby exag-
gerate an age-related loss of ovarian response to FSH and oocyte
quality (Ebner et al., 2006). These findings may be relevant to
women with congenital adrenal 21-hydroxylase deficiency who often
postpone conception and experience age-related menstrual dysfunc-
tion (Hagenfeldt et al., 2008).
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