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Abstract

Background: The broad range in growth observed in response to growth hormone (GH) treatment is mainly caused
by individual variations in both GH secretion and GH sensitivity. Individual GH responsiveness can be estimated using
evidence-based models that predict the response to GH treatment; however, these models can be improved. High-
throughput proteomics techniques can be used to identify proteins that may potentially be used as variables in such
models in order to improve their predictive ability. Previously we have reported that proteomic analyses can identify
biomarkers that discriminate between short prepubertal children with idiopathic short stature (ISS) who show good or
poor growth in response to GH treatment. In this study we used a pharmaco-proteomic approach to identify novel
factors that correlate with the growth response to GH treatment in prepubertal children who are short due to GH
deficiency or ISS. The study included 128 short prepubertal children receiving GH treatment, of whom 39 were GH-
deficient and 89 had ISS. Serum protein expression profiles at study start and after | year of GH treatment were analyzed
using SELDI-TOF. Cross-validated regression and random permutation analyses were performed to identify significant
correlations between protein expression patterns and the 2-year growth response to GH treatment.

Results: At start of treatment we identified a combination of seven protein peaks that correlated with the 2-year growth
response in the GH-deficient group (R2 = 0.73). After | year of treatment, a combination of four peaks in the GH-
deficient group (R2 = 0.64), eight peaks in the ISS group R2 = 0.47) and eight peaks in the total study group correlated
with the 2-year growth response R2= 0.38).

The peaks identified corresponded to apolipoproteins A-l, A-ll, C-I, C-Ill, transthyretin and serum amyloid A 4, which
are all part of the high-density lipoprotein.
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Conclusion: Using a proteomic approach we identified biomarkers related to the lipoprotein profile that could be used
to predict growth response to GH treatment in prepubertal children who are short as a result of GH-deficiency or who

have ISS.

These results support our previous findings that apolipoproteins and transthyretin may have a role in GH sensitivity.

Background

Growth during childhood depends, among other things,
on the balance between the level of endogenously
secreted growth hormone (GH) and the responsiveness of
the target tissue to GH. Furthermore, a broad range of
serum GH levels has been observed in children with sim-
ilar growth rates [1] and it is known that GH exerts its
stimulatory effect on growth in children during childhood
in a dose-dependent way [2]. There is also considerable
intra-individual variability in growth in response to GH
treatment among children who are GH-deficient and
among those who have idiopathic short stature (ISS) [3-
6]. To deal with this complexity, we and others have con-
structed evidence-based models for predicting growth in
response to GH treatment [7-11]. These models provide
an indirect measurement of individual responsiveness to
GH [12]. The best models available today explain up to
80% of the growth in response to GH. Early growth data,
auxological data of the child and the parents and the level
of spontaneous GH secretion over 24 h are important var-
iables in these models [7-11]. Because some of these
parameters, such as early growth data and parental auxo-
logical data, are not always readily available, there is a
need to develop a model that includes only parameters
that can be obtained at the start of the growth investiga-
tion at the pediatric unit. To achieve this it is necessary to
change the focus from single marker studies toward a
broader search for multiple markers of growth response
using high-throughput techniques.

We have previously used surface-enhanced laser desorp-
tion/ionization time-of-flight mass spectrometry (SELDI-
TOF MS) to identify biomarkers that discriminate
between good and poor responders to GH treatment
among a group of children with ISS [13]. We showed that
information on the change in peak intensities of apolipo-
protein (Apo) A-II and transthyretin (TTR) during the first
year of GH treatment could be used to correct classify 82%
of children receiving GH as good or poor treatment
responders, respectively [13].

In this study we used the same technique to search for
biomarkers that correlated with growth response to GH
treatment in short prepubertal children, who were either
GH-deficient or of ISS. Serum samples taken at the start of
a clinical trial of GH and after 1 year of treatment from
children with a broad range of levels of GH secretion at

start were analyzed. We found that serum markers related
to nutrition and fat transport in the body correlated with
the 2-year growth response.

Subjects and Methods

Ethical consideration

The protocol was approved by the ethical boards of the
Universities of Gothenburg (for patients from Gothen-
burg and Halmstad), Umed, Uppsala and Malmo and the
Medical Product Agency of Sweden. Written informed
consent was obtained from all parents and from children
if old enough. The trial was performed in accordance with
the Declaration of Helsinki and Good Clinical Practice
guidelines.

Study population

The per-protocol study population from the GH dose clin-
ical trial (TRN 98-0198-003) consists of 128 short prepu-
bertal children of Caucasian origin receiving GH
treatment; see [5] for more detailed information. Study
patients were randomized either to a group receiving an
individualized (two-thirds of patients) or a standard GH
dose (one-third of patients). The standard GH dose was
43 pg/kg/day. The individualized GH dose comprised one
of six different doses (mean 49, range 17-100 pg/kg/day),
calculated using a prediction model that considered esti-
mated GH sensitivity and the difference between the cur-
rent height of the child and mid-parental height (MPH),
as previously described [12].

The maximum peak GH secretion (GH,,,,) = 32 mU/L on
an arginine-insulin tolerance test (AITT) or of the sponta-
neous GH secretion over a 24 h period was used to classify
the patients as having either ISS (n = 89) or short stature
due to GH deficiency (n = 39). Clinical data for the patient
groups are presented in Table 1.

Study design

Fasting blood samples were taken at the start of the study
and after 1 year on GH treatment. Samples were stored at
-70°C and were not thawed until the time of analysis. No
sample was stored for more than 8 years before analysis.

Hormone evaluation

Published reference values were used to assess the results
of analyses of GH [14], insulin-like growth factor I (IGF-I)
[15] and IGF-binding protein 3 (IGFBP-3) [16], which
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Table I: Auxiological data for the study groups
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A) Total group (n = 128; 38 girls, 90 boys)

B) ISS (n = 89, 25 girls, 64 boys)  C) GHD (n = 39, 13 girls, 26 boys)

Variables Median Min Max Median Min Max Median Min Max
At birth
Gestational age (weeks) 39 33 42 39 33 42 39 36 42
Height SDS -0,66 -2,52 1,68 -0,74 -2,52 1,68 -0,70 -2,52 1,68
At GH start
Age (yrs) 727 3,05 10,95 7,32 3,24 10,95 7,14 3,05 10,94
Height SDS -2,64 4,10  -1,77 -2,64 -4,10 -1,77 -2,59 -3,65 -1,98
Weight SDS -2,24 -431 0,26 -2,39 -4,31 -0,45 -2,03 -3,80 0,26
BMI SDS -0,47 2335 211 -0,55 -3,35 1,88 -0,20 -1,80 2,11
GH, . AITT (mU/L) 16,95 1,10 62,90 19,60 1,10 62,90 15,10 1,60 22,30
GH, .« 24 h (mU/L) 24,85 080 58,10 28,10 12,70 58,10 14,70 0,80 22,10
Diff MPHSDS -1,73 -3,53  -061 -1,72 -3,53 -0,61 -1,77 -2,45 -0,78
HDL (mg/L) 1,44 064 2,70 1,44 0,64 2,70 1,44 0,91 2,24
IGF-1 SDS -1,10 -5,17 2,25 -1,19 -3,84 2,25 -1,06 -5,17 0,91
GH dose (ug/kg/day) 44,20 17,00 102,00 44,20 17,00 102,00 44,20 17,00 68,00
After 2 yrs of treatment
Height SDS -1,45 -3,00 0,20 -1,45 -3,00 0,20 -1,45 -2,42 0,05
Delta height SDS 2 yrs 1,26 023 2,69 1,22 0,23 2,69 1,31 0,51 2,39
BMI SDS -0,24 -3,10 2,03 -0,05 -3,10 1,88 -0,08 2,14 2,03
HDL (mg/L) 1,36 0,76 2,06 1,37 0,76 2,06 1,28 0,94 1,97
IGF-1 SDS 1,57 -1,48 421 1,49 -0,65 3,82 1,57 -1,48 4,21

AITT, arginine--insulin tolerance test; GH

max’

maximum peak of GH secretion; IGF-|, insulin-like growth factor I; GHD, GH deficient; MPH, mid-

parental height; diffMPHSDS, difference in height SDS of the child versus its mid-parental height SDS
0.1 U GH/kg/day = 33 ng/kg/day
The reference values used for SDS calculations were obtained from [18] for height and weight and [15] for IGF-I.

were performed at the GP-GRC laboratory (Swedac

accredited no 1899) at the University of Gothenburg.
High-density lipoprotein (HDL) was measured at the

Department of Clinical Chemistry, Sahlgrenska University

Hospital (accredited according to the international stand-

ard ISO/IEC 17025).

Growth evaluation

The childhood component [17] of the Swedish popula-
tion-based growth reference values was used for the
height-related inclusion criteria and to express the height,
weight [18] and body mass index [19] of the patients and
their parents. Reference standards of newborns were used
for standard deviation score (SDS) at birth [20].
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Surface-enhanced laser desorption/lonization time-of-
flight mass spectrometry (SELDI-TOF MS) serum protein
profiling

Serum samples were thawed, denatured and fractionated
using anion-exchange beads in a serum fractionation kit
(Bio-Rad Laboratories, Hercules, CA) according to proto-
cols provided by Bio-Rad Laboratories. Based on results
from a previous study [13], serum fraction 5 and 6 (pH 3
and organic solvent) were analyzed together using weak
anion-exchange (CM10) arrays, fraction 1 (flow through)
was analyzed by immobilized metal-affinity capture
(IMAC30) arrays and fraction 4 (pH 4) was analyzed
using reversed-phase (H50) arrays. CM10 arrays were
equilibrated twice with 150 pl binding buffer (100 mM
NaAcetate, pH 4.0). IMAC30 arrays were charged using 50
pl 0.1 M CuSO4, 10 min, washed with 150 ul H,O, 1 min,
neutralized with 150 pl 0.1 M NaAc pH 4.0, 5 min,
washed with 150 ul H,O, 1 min, equilibrated twice with
150 pl binding buffer (0.1 M Na3PO4, 0.5 M NaCl, pH
7.0). H50 arrays were washed with 200 pl 50% ace-
tonitrile (ACN) (Merck, Darmstadt, Germany) 2 x 5 min,
equilibrated twice with 150 ul binding buffer (10% ACN,
0.1% trifluoroacetic acid (Merck)). After equilibration, a
10 pl sample and 90 pl binding buffer were applied to
duplicate samples on the arrays and mixed at room tem-
perature using a DPC MicroMix 4 for 1 h (CM10 and
IMAC30) or 1.5 h (H50). After protein binding, the arrays
were washed three times with 150 pl binding buffer,
rinsed twice with 150 ul 1 mM HEPES, and air-dried.
Afterwards, 0.6 ul of a 50% solution of sinapinic acid
(SPA) (Bio-Rad Laboratories) in 0.5% trifluoroacetic acid
and 50% ACN were applied twice to each spot as a matrix.

Time-of-flight spectra were generated using a PBS Ilc Pro-
teinChip reader (Bio-Rad Laboratories). Instrument set-
tings for the analysis were optimized in the mass range of
2.3-20.0 kDa and data were averaged from 180 transients
for each protocol. To minimize experimental variation, all
samples were randomized and analyzed concurrently
within 1 week by the same operator. In addition, one ref-
erence serum sample was randomly applied on each array
and evaluated. The mass accuracy was calibrated in the
molecular range of 5-18 kDa using external calibrators
from Bio-Rad Laboratories. The same calibration equation
was used for all samples.

Data preprocessing

Data handling was performed using ProteinChip Data
Manager (Bio-Rad Laboratories). All spectra were base-
line-subtracted and normalized according to total ion cur-
rent. Settings for peak identification and clustering of
peaks across multiple spectra were first pass signal-to-
noise ratio (S/N) > 3 in 15% of all spectra and second pass
S/N > 2, with a cluster mass window of 0.3% of the mass.

http://www.proteomesci.com/content/7/1/40

Spectra were visually inspected and patients were
excluded from further data analysis if profiles clearly dif-
fered between the duplicate samples or if the overall qual-
ity was low in one or both of the spectra (i.e. high noise,
overall low peak intensity or an abnormal normalization
factor in combination with visually deviating spectra).
This process resulted in the identification of 147 wvalid
peaks for CM10 (n = 67), IMAC30 (n = 46) and H50 (n =
34) in the mass/charge (m/z) area between 2.3 and 30.0
kDa. The average coefficient of variations (CV) for the
peaks detected in all of the reference samples was 30.1%
for CM10, 34.1% for IMAC30 and 32.8% for H50.

Only patients for whom there were two high-quality mass
spectra for the relevant array and time point were included
in further statistical analysis. This resulted in a study pop-
ulation of 128 children for the CM10 analyses at all time
points. For analyses of peak data from the three different
arrays merged together, the study populations were 121
children at the start of the study, 124 children after 1 year
and 120 children for the change between baseline and 1
year (delta 0-1 year).

Protein identification

ACN precipitation was performed, as previously described
[21], on the pooled fraction 5 and 6 to remove high
molecular weight proteins. The precipitate was subjected
to SDS page and Coomassie blue staining to visualize the
proteins. The protein bands with molecular weights corre-
sponding to the biomarkers of interest were cut out and
passive elution was performed. First the excized gel pieces
were washed with 50% ACN/50 mM Ambic for 3 x 15
min or until the gel pieces were destained. The gel pieces
were dehydrated with 100% ACN, heated to 50°C for 5
min and thereafter dried in a Speed-Vac. 100 pl of 45%
formic acid, 30% ACN and 10% isopropanol was added.
The tubes were sonicated for 30 min in a water bath at
room temperature and incubated at room temperature for
approximately 4 h. One microliter of each sample was
analyzed on a NP20 ProteinChip array with saturated
SPA. The remainder of the sample obtained from passive
elution was incubated overnight and sonicated the next
morning. Each supernatant was transferred to a new tube
and dried in a Speed-Vac. Depletion experiments and in-
gel digestions were performed as previously described
[13]. Protein identification by nanoflow LC-MS/MS was
performed on a hybrid linear ion-trap Fourier transform
ion cyclotron resonance (FTICR) mass spectrometer
(LTQ-FT, Thermo Electron, Bremen, Germany), as previ-
ously described [13].

Statistics
For all analyses the 2-year growth response (delta height
SDS 0-2 years) [7] was used as the outcome variable. All
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peaks (n = 147) detected on the different surfaces were
merged and analyzed together. In addition, each surface
was analyzed individually. The peak intensity data were
analyzed both directly after pre-processing and after trans-
formation to a logarithmic scale. Serum protein profiles
were analyzed before and after 1 year of treatment, and in
terms of the change in profiles over 1 year of treatment.

Multivariate statistics

Multivariate data analysis was performed with Matlab
software (version 7.7.0 R2008b, The Mathworks) on the
mean intensity levels of the duplicate samples. Cross-val-
idated stepwise regression was computed to find subsets
of peaks that correlated with the delta height SDS 0-2
years. Final selection of reliable subsets of predictive peaks
was based on a random permutation test. The identified
peaks were analyzed thereafter using multidimensional
scaling (MDS) to explore the relationships between the
peaks.

Between-duplicate variation

To estimate the reliability of the peaks compared with
their biological range, the ratio of the between-duplicate
variation and the total variation was computed, giving the
proportion of variance explained by duplicates. A low
value for a certain peak meant that there was relatively lit-
tle variation between the duplicates compared with the
total expected biological and instrumental variation.

Cross-validated stepwise regression

Using stepwise regression, subsets of peaks were selected
with leave-one-out cross-validation to examine the corre-
lation of the peaks with delta height SDS 0-2 years. Sets of
potential regression models were generated using
between 1 and a maximum of 15 peaks.

Random permutation tests
To study the robustness of the data analyses, random per-
mutation tests were performed on the complete stepwise

http://www.proteomesci.com/content/7/1/40

regression procedure described above including the selec-
tion of subsets of peaks based on the highest cross-vali-
dated R2. For each number of peaks, we tested for 999
permutations if the permuted cross-validated R2 was equal
to or above 90% of the calculated true cross-validated R2.
In other words, we assessed if there was a significant gap
(10%) between the calculated true cross-validated Rz and
the distribution of all permuted cross-validated R2. Ran-
dom permutation tests resulting in a p-value < 0.05 were
considered significant. For each number of peaks, the best
regression model was selected based on a significant p-
value in the permutation tests, in combination with a rel-
atively low number of peaks in the regression model and
a relative high cross-validated R2.

Analysis of systematic errors

Stepwise regression was used to analyze the impact of sys-
tematic errors on the results. No systematic errors were
found.

Results

Protein expression pattern

Data from the spectra generated were analyzed both as
merged peak data from all analyzed surfaces and in terms
of each individual surface. Best results, with respect to the
lowest permutation test p-value in combination with high
cross-validated R?, were obtained using data from only
CM10 on pooled fractions 5 and 6. All data were analyzed
for the GH-deficient group, the ISS group and for the total
group.

At start of GH treatment

In the GH-deficient group of children we identified a spe-
cific protein expression pattern of seven peaks that corre-
lated with the delta height SDS 0-2 years (R2= 0.73, p =
0.032) (Table 2). The correlation between the predicted
and the observed delta height SDS 0-2 years is shown in
Figure 1. No significant correlations between the protein
expression pattern and the delta height SDS 0-2 years were

Table 2: The most predictive peaks for delta heightgng 0-2 year identified by regression analysis

Group Patients (n=) Peaks (n=) R? Cross-validated R?

p-value Peak m/z value (kDa)

0,032 3.160, 3.318, 8.767 (Apo A-ll), 9.135, 9.642, 12.872 (TTR),

17.390 (Apo A-ll)

GHD 39 7 0,73 0,6l
GHD 39 4 0,64 0,53
ISS 89 8 0,47 0,35
Total 128 8 0,38 0,28
GHD 39 4 0,59 0,48
Total 128 8 0,35 0,24

0017  4.408 (Apo A-ll), 8.696 (Apo A-ll), 9.019 (Apo A-ll),
17.146 (Apo A-ll)

0015  3.160, 4.470, 6.857 (Apo C-I), 8.767 (Apo A-ll), 8.875 (Apo A-ll),
9.425 (Apo C-lll), 12.607 (SAA4), 12.872 (TTR)

0,003  4.628,4.470, 4793, 8.817, 8.875,9.019, 12.872, 17.146

0026  4.138,8.817 (Apo A-ll), 9.019 (Apo A-ll), 17.262 (Apo A-ll)

0,003  4.138,8.636 (Apo A-ll), 8.875 (Apo A-ll), 9.135, 9.425

(Apo C-lll), 14.055 (TTR), 28.090 (Apo A-l), 29.003

GHD, GH-deficient; ISS, idiopathic short stature.

The most predictive peaks identified by regression analysis at start, after | year, and during the first year of GH treatment. For each model, the R2-

value and cross-validated R2are presented.
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Protein peaks at treatment start that were predic-
tive of 2-year growth response in GH-deficient chil-
dren. The figure shows the correlation between the
observed delta height SDS 0--2 year (y-axis) and the pre-
dicted delta height SDS 0--2 year (x-axis), using the combined
intensities of the predictors with M/Z values --9135, +3318,
+17390 (Apo A-ll), +8767 (Apo A-ll), +12872 (SAA 4),
+9642 (Apo C-lll), +3160 (r = 0.73, p = 0.032), in the GH-
deficient children (GHD) at start of treatment. A positive
sign indicates a positive correlation with the outcome varia-
ble whereas a negative sign indicates a negative correlation
with the outcome variable.

identified for the total group of patients or the ISS group
at start of treatment.

After | year of GH treatment

In the GH-deficient group, a protein expression pattern of
four peaks correlated with the delta height SDS 0-2 years
(R2 = 0.64, p = 0.017) (Table 2, Figure 2A). In the ISS
group, a protein expression pattern of eight peaks corre-
lated with the delta height SDS 0-2 years (R2=0.47, p =
0.015) (Table 2, Figure 2B). In the total group of children,
the expression pattern of eight peaks correlated with the
delta height SDS 0-2 years (R2=0.38, p = 0.003) (Table 2,
Figure 2C).

During | year of GH treatment

Finally we assessed correlations between changes in peaks
intensities during the first year of GH treatment and the
growth response after 2 years of treatment. In the GH-defi-
cient group, the change in expression pattern of four spe-
cific peaks correlated with delta height SDS 0-2 years (R2
=0.59, p =0.026) (Table 2, Figure 3A). There were no sig-
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nificant correlations found involving the ISS group. For
the total group, the change in expression pattern of eight
specific peaks correlated with delta height SDS 0-2 years
(R2=0.35, p=0.003) (Table 2, Figure 3B).

Peak identification

The protein expression patterns that provided the best
predictive peaks for the 2-year growth response in the GH-
deficient group, the ISS group and the total group,
included a total of 23 unique peaks (Table 2). To identify
the proteins corresponding to the peaks of interest we
used the consistency of the peak pattern in the spectra, MS
identification and serum depletion experiments.

Consistency of peak pattern in spectra

From the consistency of the peak patterns in the spectra,
the peaks with m/z values around 14 kDa were recognized
as different post-translational modified forms of TTR; the
14.055 kDa peak was recognized as the cysteinylated form
and the 12.872 kDa peak as a truncated form. The 17.146,
17.262 and 17.390 kDa peaks were recognized as dimers
of Apo A-II, and the 8.636 and 4.408 kDa peaks were rec-
ognized as truncated forms of Apo A-II. The 28.090 peak
was recognized as Apo A-I.

MS protein identification

All peaks of interest were analyzed using MS protein iden-
tification. MS protein identification verified that the 4.408
and 4.470 kDa peak represented Apo A-II. In addition, the
cluster of peaks between 8.636 and 9.019 kDa were iden-
tified as Apo A-II. The 6.857 kDa peak was identified as
Apo C-1. The MS identification result for the 9.425 kDa
peak indicated that this sample was not pure. However,
based on the Mascot search result score (score: 2073,
number of assigned peptides 51), this peak most likely
represented Apo C-III. However Apo A-1 was also present
in the sample, but with a lower Mascot search result score
(score 352, number of assigned peptides 29). The 12.607
kDa peak was identified as serum amyloid A 4 (SAA 4).
The identity of the remaining peaks could not be deter-
mined accurately using MS.

Depletion experiments

To verify the identities obtained from MS analyses of the
proteins, depletion experiments using specific antibodies
were performed. The depletion experiments using anti-
Apo C-I and anti-Apo C-III antibodies (Abnova, Taipei
City, Taiwan) confirmed that the 6.857 peak represented
Apo C-I (Figure 4A) and the 9.425 kDa peak represented
Apo C-IIT (Figure 4B). The 14.055 kDa peak has previ-
ously been confirmed to represent TTR [13].

Peak intensity changes
The change in absolute peak intensities during the first
year of GH treatment for the Apo A-I, Apo A-II, Apo C-I,
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Figure 2

Protein peaks at | year of treatment that were predictive of 2-year growth response. The figure shows the corre-
lation between the observed delta height SDS 0--2 year (y-axis) and the predicted delta height SDS 0--2 year (x-axis), using the
combined intensities of the predictors with M/Z values A) --17146 (Apo A-ll), +8696 (Apo A-ll), --9019 (Apo A-Il), +4408 (Apo
A-ll) (r = 0.64, p = 0.017). B) +4470 (Apo A-ll), --8767 (Apo A-Il), --12872 (TTR), --12607 (SAA 4), +8875 (Apo A-Il), +9425
(Apo C-lll), --3160, --6857 (Apo C-l) (r = 0.47, p = 0.015). C) --4628, +4470 (Apo A-ll), +8817 (Apo A-ll), +4793, --17146
(Apo A-ll), --12872 (TTR), --9019 (Apo A-Il), +8875 (Apo A-ll) (r = 0.38, p = 0.003) after | year of treatment in (A) GH-defi-
cient children (GHD), (B) children with idiopathic short stature (ISS), and (C) the total group. A positive sign indicates a posi-
tive correlation with the outcome variable whereas a negative sign indicates a negative correlation with the outcome variable.

Apo C-III, TTR and SAA 4 proteins found in this study
were fairly small. Apo A-II and SAA4 are significantly
decreased (p= < 0.00001 and p = 0.039, respectively)
while Apo C-I and Apo C-III are significantly increased (p
= 0.025 and p = 0.001, respectively). Apo A-l1 and TTR
remained unchanged.

Discussion

In this study we have identified serum protein profiles
that correlated with the 2-year growth response to GH
treatment in prepubertal children with GH deficiency and
ISS. By using a combination of the specific peak patterns
within the spectra, MS identification, and serum deple-
tion experiments, proteins representing a subset of peaks
within the profiles were identified. The majority of the
proteins identified represent different apolipoproteins;
Apo A-1, Apo A-II, Apo C-1 and Apo C-III. Other proteins
identified were TTR and SAA 4. These results support pre-
vious data suggesting that Apo A-II and TTR may have a
role in determining GH sensitivity. The change in inten-
sity of these peaks has been shown to allow the classifica-
tion of children with ISS as good or poor responders to
GH treatment [13].

All proteins identified in the current study are part of the
HDL [22-24], but Apo A-1I, Apo C-1, Apo C-III and SAA 4
have also been found in very low-density lipoproteins and
low-density lipoproteins (LDLs) [24,25]. HDL is some-
times called 'good' cholesterol as it binds cholesterol and
transports it to the liver. It is believed that HDL can
remove cholesterol from atheroma within arteries and

transport it back to the liver for excretion or re-utilization
[26]. Cholesterol contained in HDL particles, unlike cho-
lesterol within LDL particles, is considered beneficial for
maintaining cardiovascular health. Today, not much is
known about the effects of GH on either the apolipopro-
teins or on TTR and SAA 4. There are contradictory results
regarding the effects of GH treatment given as daily subcu-
taneous injection on the HDL which carries these proteins
[27-29]. In the present study we found that HDL slightly
but significantly decreased during the first year of treat-
ment (data not shown) in contrast to one study that
shows increased levels of HDL in only the prepubertal
group of boys of whom one third went into puberty dur-
ing the third year follow-up period [28] Two studies
showed almost unchanged levels, one in pubertal GH-
deficient patients [27] and one in young adults [29]. In
adults, it has been shown that a frequent low GH dose,
which gave rise to an almost constant level of plasma GH
[30], increased HDL. In contrast, an HDL-lowering effect
was seen with a high single GH dose which created a GH
plasma profile with an high peak after the GH injection
that gradually decreased towards the next daily injection
[29,31]. This may partly explain the decrease in HDL seen
in our study because the children were given a single daily
dose of subcutaneous GH resulting in a plasma pattern of
GH with an initial peak and undetectably low levels of GH
before next injection [32]. This pattern is more similar to
the male GH secretion pattern with a high peak during the
night, than the female secretion pattern with uniform GH
secretion during both the day and night [33] It is well
known that this gender specific secretion pattern is the sig-
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Protein peaks during the first treatment year that were predictive of 2-year growth response. The figure shows
the correlation between the observed delta height SDS 0--2 year (y-axis) and the predicted delta height SDS 0--2 year (x-axis)
in (A) GH-deficient children (GHD) and (B) the total group, using the combined changes in intensities of the predictors with M/
Z values A) +Dy8817 (Apo A-ll), +Dy4138, --Dy9019, --Dy 17262 (Apo A-ll) (r = 0.59, p = 0.026). B) +Dy4138, --Dy28090
(Apo A-l), +Dy14055 (TTR), +Dy8875 (Apo A-ll), +Dy9135, +Dy29003, --Dy9425 (Apo C-lll), --Dy8636 (Apo A-l) (r = 0.35,
p = 0.003). A positive sign indicates a positive correlation with the outcome variable whereas a negative sign indicates a nega-

tive correlation with the outcome variable.

nal for different growth [34] and metabolic effects, not
least in the liver, in male and female rats [35,36]. Further-
more, GH affects lipolysis in the body [34] and by doing
so probably shifts the energy balance in the body to a
more optimal one for longitudinal growth.

From this study it is not possible to draw conclusions as
to whether the markers identified are actually involved in
the regulation of longitudinal growth or if they are indi-
rect markers of the effects of GH on HDL levels during
treatment. The different levels of the identified proteins
may be a consequence of the altered levels of HDL and
changes in the homeostasis of the lipoproteins. Interpre-
tation of the results is also complicated by the presence of
different regulated isoforms and cleavage products of Apo
A-II as described in the legends to Figures 1, 2 and 3. The
physiological significance of the presence of this variety of
isoforms/cleavage products should be investigated in
future studies.

On the target tissue level one can say that both the GH-
deficient and the ISS child are GH-deficient; the deficient
one due to low levels of secreted GH, and the idiopathic

short child due to GH insensitivity in the target tissue,
which often can be overcome by a higher dose of GH
treatment [3]. The underlying reason for the tissue insen-
sitivity can vary, giving rise to different phenotypes,
whereas the GH-deficient children are of a more similar
phenotype. However, there is no clear cut-off for GH
secretion between these groups. In this study, different
protein patterns were found to correlate with growth in
response to treatment for the GH-deficient children and
the children with ISS. At the start of treatment, we could
only identify specific serum profiles correlating with
growth response in the GH-deficient group of patients.
There were strong correlations between the 1- and 2-year
growth responses in all groups. Interestingly, there was no
overlap between the peaks included in the models for the
GH-deficient and the ISS groups. In the model for the
total group, peaks from both the GH-deficient and the ISS
models were found, suggesting that they still have differ-
ent phenotypes after 1 year of treatment, even if the phe-
notypes of the two groups have become more similar than
they were before the start of GH treatment. Thus, we iden-
tified protein profiles correlating with the 2-year growth
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Depletion experiment identifying (A) apolipoprotein C-I, and (B) apolipoprotein C-IIl. (A) Anti-apolipoprotein C-I
antibody depleted the 6.6 and 6.8 kDa peaks. (B) Anti-apolipoprotein C-lll antibody depleted the 9.4 kDa peak. In both parts of
the figure, the top panel shows the depleted serum and the bottom panel shows the original serum.

response when data from both children with GH defi-
ciency and ISS were included in the analysis.

The optimal time period needed to detect changes in pat-
terns of protein peaks that may be of utility in predicting
long term growth is likely to be different for different var-
iables and in different subset of the population. Previ-
ously we have shown that growth over the first year of
treatment is a good predictor of long-term growth in
response to GH (1-7 years) in prepubertal children [12].
However, it would be of interest to analyze protein expres-
sion profiles in relation to growth response to treatment
after a period shorter than 1 year. SELDI-TOF was recently
used to show that the intensity of several peaks was
changed in peripheral blood leukocytes from healthy
adults after 4 weeks of GH treatment. However for the
majority of the peaks the intensities were reverted to base-
line levels after additional 4 weeks of treatment and [37].

Currently, the best models for predicting growth in
response to GH treatment are based on early growth data,
auxological data of the child and the parents, and hor-
mone levels during the pretreatment year [7,8,11]. How-
ever, the data required by such models are not always
readily available. Data on early growth in the child, for
example, are seldom available. Similarly, growth during
the pre-treatment year and/or information on the height
of the parents can not always be obtained. In addition,
spontaneous GH profiles may not have been assessed,
even though it has been shown that a full 24 h GH profile

is not necessary [38]. These difficulties highlight the need
for improved models that are based only on data that is
always available at start of therapy.

During the last decade there has been growing interest in
proteomics and systems biology in general. A main focus
has been exploring the use of new technology to study
complex multigenetic diseases, to predict drug response,
to individualize treatment and to discriminate between
healthy and diseased individuals [39-41]. We have used
SELDI-TOF, a high-throughput technique which is suita-
ble for analyzing large numbers of samples, in order to
identify specific protein profiles that are correlated with
growth in response to treatment, and to get more insight
into GH-dependent regulation of longitudinal growth.
The challenge in proteomic analyses of serum is the broad
range of expression levels between proteins with low and
high abundance [42-44]. In order to partly overcome this
problem, we used fractionated serum that was analyzed
on different array surfaces in order to detect proteins in a
larger area of the proteome.

The reproducibility and reliability of the SELDI-TOF pro-
teomic system have been discussed [45-47]. Concerns
about using samples from retrospective studies have been
raised as transit time, storage conditions, clotting time
and tube type can affect protein profiles [48,49]. How-
ever, proper handling of samples can minimize these
shortcomings [50]. Our group has established a well-
defined protocol for handling and running of samples in
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proteomic studies [13]. No systematic errors correlated
with non-GH-dependent factors or experimental biases
such as array or spot number biases were detected. In this
study we ran samples on three different surfaces and using
three different fractions to cover a larger part of the pro-
teome compared with a single surface and fraction, and in
general the most reliable results were found using only the
CM10 surfaces. In agreement with other reports, we found
a greater number of peaks on the CM10 surface. Moreo-
ver, there was a partial overlap between the peaks detected
on CM10, IMAC30 and H50, respectively.

Much effort has been put into creating a robust and relia-
ble strategy for the statistical analysis of peak data. Com-
binations of between-duplicate variation ratio, cross-
validated stepwise regression and random permutation
tests were performed in order to make certain that the
results obtained were robust and reliable.

Conclusion

In summary, analysis of serum protein expression pat-
terns can be used to identify markers of growth response
in short prepubertal children with either GH-deficiency or
ISS receiving GH treatment. Our results support previous
findings that apolipoproteins and TTR may have a role in
GH sensitivity and could be used to predict growth in
response to GH treatment in short prepubertal children.
The next step will be to test whether or not the incorpora-
tion of information on these peaks (either in addition to
or in place of existing variables) in our prediction models
for prepubertal growth [7,8] will have an additive predic-
tive value in explaining the response to GH treatment.
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