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Abstract

Brain-Derived Neurotrophic Factor (BDNF) is a central nervous system modulator of nociception.
In animal models of chronic pain, BDNF exerts its effects on nociceptive processing by binding to
the full-length receptor tropomyosin-related kinase B (trkB.FL) and transducing intracellular
signaling to produce nocifensive behaviors. In addition to trkB.FL, the trkB locus also produces a
widely-expressed alternatively-spliced truncated isoform, trkB.T 1. TrkB.T | binds BDNF with high
affinity; however the unique | | amino acid intracellular cytoplasmic tail lacks the kinase domain of
trkB.FL. Recently, trkB.T| was shown to be specifically up-regulated in a model of HIV-associated
neuropathic pain, potentially implicating trkB.T| as a modulator of nociception. Here, we report
that trkB.T| mRNA and protein is up-regulated in the spinal dorsal horn at times following
antiretroviral drug treatment and hind paw inflammation in which nocifensive behaviors develop.
While genetic depletion of trkB.T| did not affect baseline mechanical and thermal thresholds, the
absence of trkB.T| resulted in significant attenuation of inflammation- and antiretroviral-induced
nocifensive behaviors. Our results suggest that trkB.T| up-regulation following antiretroviral
treatment and tissue inflammation participates in the development and maintenance of nocifensive
behavior and may represent a novel therapeutic target for pain treatment.

opment of tissue- and nerve injury-induced thermal and
mechanical hypersensitivity [14].

Findings
BDNF is a potent modulator of pain processing in the
CNS [[1,2]; for review see [3,4]]. BDNF exerts effects on

nociception by binding to trkB.FL and initiating intracel-
lular signaling cascades that lead to transcriptional
changes. Noxious stimulation increases BDNF and trkB.FL
production in the spinal dorsal horn [5-9] and brainstem
[10,11], leading to hyperalgesia and the formation of
nocifensive behaviors. Interfering with trkB.FL signaling
via trkB.FL-specific exogenous antibody administration
[12] or by blocking receptor activation in the chemical-
genetic transgenic (rkBF616A mice [13] prevents the devel-

In addition to trkB.FL, the Ntrk2 (trkB) locus encodes for
several alternatively-spliced isoforms of the receptor [15],
including trkB.T1, the predominant isoform expressed in
the adult mammalian nervous system. The extracellular
domain of trkB.T1 is identical to the full-length isoform,
which enables high-affinity BDNF binding [15,16]. How-
ever, the 11 amino acid intracellular portion of trkB.T1
lacks the kinase activation domain necessary to activate
classical signal transduction pathways. Since trkB.T1 het-
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erodimerization with trkB.FL inhibits trans-autophospho-
rylation of the trkB.FL kinase domain, studies support a
model in which trkB.T1 functions to reduce BDNF signal-
ing [17-22]. However, we [23,24] and others [25-31] have
demonstrated evidence that trkB.T1 may signal independ-
ently.

TrkB.T1 is up-regulated in pathological states including
human Alzheimer's disease [32] and it is the mechanism
underlying premature hippocampal cell death in a mouse
model of Down Syndrome [23,33]. Moreover, altered
trkB.T1 expression can affect synaptic plasticity. Over-
expression of trkB.T1 in hippocampal neurons leads to
the inhibition of synaptic potentiation [34] and over-
expressing trkB.T1 at neuromuscular synapses results in
disassembly of acetylcholine receptor clustering [18].
Recently, trkB.T1 specifically was shown to be signifi-
cantly up-regulated in dorsal root ganglion neurons in a
rodent model of HIV-associated neuropathic pain [35].
Thus, it is reasonable to hypothesize that trkB.T1 up-regu-
lation might have a specific role in pain processing.

First, we examined trkB.T1 mRNA expression in the spinal
dorsal horn of a mouse model of antiretroviral-associated
neuropathic pain [36], a model in which significant
mechanical hypersensitivity occurs one day after tail vein
injection with stavudine (d4T) [37]. Since behavioral
changes occur soon after treatment [37], we examined
early time points and found that trkB.T1 mRNA was sig-
nificantly up-regulated at 3 hours after tail vein injection
of d4T compared with mice injected with an equivalent
volume of saline vehicle (Figure 1A). At later time points
(6 h, 12 h, 18 h, 3 d) trkB.T1 mRNA levels returned to
saline control levels (data not shown). Next, we asked
whether trkB.T1 protein was regulated in the dorsal horn
after treatment. In Figure 1B, we demonstrate that trkB.T1
protein is significantly up-regulated one day after d4T
injection compared with saline control-injected animals.
By three days after d4T treatment, trkB.T1 levels returned
to saline control levels, a result consistent with our mRNA
data. We next asked whether trkB.T1 was up-regulated in
the dorsal horn of mice with hind paw inflammation. As
demonstrated in Figures 1C and 1D, both trkB.T1 mRNA
and protein are significantly up-regulated in CFA-treated
mice compared with mice receiving a saline control-
injected hind paw. These results raise the possibility that
the trkB.T1 receptor is involved in nociception in these
two pain models.

If trkB.T1 is up-regulated in the dorsal horn following
noxious stimulation, then genetic depletion of trkB.T1
[23] would be expected to mitigate nocifensive behaviors
in these models. We first tested this hypothesis in the
antiretroviral model (i.e. stavudine) of mechanical hyper-
sensitivity [37]. There were no differences in mechanical

http://www.molecularpain.com/content/5/1/61

threshold (g) in naive trkB.T1 null mice at baseline (Fig-
ure 2A). Genetic deletion of trkB.T1 provided significant
attenuation of mechanical hypersensitivity throughout
the testing period (Figure 2A). Similarly, in the well-estab-
lished CFA model of inflammation although we found no
difference in thermal paw withdrawal latency (s) in
trkB.T1 KO mice at baseline, the absence of trkB.T1 in vivo
significantly attenuated thermal hypersensitivity (Figure
2B). In Figure 2C, we show that there were no differences
in the degree of hind paw thickness secondary to CFA
injection. As this is an indirect measure of inflammation
we conclude that there was no difference in the inflamma-
tory response in the trkB.T1 knockout mice. Next, we
asked whether genetic deletion of trkB.T1 would provide
a benefit for mice treated with capsaicin, an agonist of
TRPV1 receptors that are expressed in BDNF-immunore-
active nociceptors. Similar to results in our previous two
models, the absence of trkB.T1 provided significant atten-
uation of the latency to lick, number of licking bouts and
duration of licking after capsaicin treatment. Thus, we
conclude that the absence of trkB.T1 provides significant
protection against the development of thermal and
mechanical hypersensitivity.

BDNF signaling modulates nociceptive processing across
a variety of pre-clinical models of pain (for review, [38]).
Most studies have focused on trkB.FL as the receptor
responsible for BDNF-mediated nociception, since anti-
bodies specific for trkB.FL [12] and abrogation of trkB.FL
activation using the trkBF616A transgenic mouse [14] atten-
uate thermal and mechanical hypersensitivity. Few stud-
ies, however, have examined a specific role for trkB.T1.
Yajima et al. [12] concluded that trkB.T1 did not have a
role in nociception since repeated intrathecal injections
with anti-trkB.T1 did not produce changes in nerve injury-
induced thermal hyperalgesia. However, we (Dorsey and
Renn, unpublished) and others (Dr. Rita Balice-Gordon,
University of Pennsylvania, personal communication)
have shown that the trkB.T1 antibody used in the Yajima
et al. [12] study cross-reacts with other epitopes in vivo.
Moreover, as acknowledged in Wang et al. [14], indirect
methods of targeting receptor activation, for example via
exogenous antibody administration, can be inconclusive.
In support of a role for trkB.T1 in nociception, a recent
microarray study in a model of HIV-associated neuro-
pathic pain found that trkB.T1, but not trkB.FL or trkB.T2
(a second truncated isoform), was up-regulated in dorsal
root ganglion neurons [35].

Since trkB.T1 and trkB.FL are presumably regulated by a
common promoter, we also undertook a careful examina-
tion of spinal dorsal horn trkB.FL. mRNA and protein reg-
ulation in the antiretroviral and inflammatory models in
both wildtype and trkB.T1 knockout animals. As demon-
strated in Additional File 1, we detected no significant reg-
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Figure | (see previous page)

TrkB.T1 expression in the spinal dorsal horn of d4T and CFA-treated mice A. Quantification of trkB.T1 mRNA
expression in the dorsal horn of wildtype mice 3 hours after receiving a saline tail injection (black bar; n = 6) or an injection of
d4T [50 mg/kg] (blue bar; n = 6). B. TrkB.T| protein expression in the dorsal horn in the antiretroviral model was assayed via
western blot. The top panel shows a representative western blot of trkB.T | following saline or d4T injection at Id and 3d.
Below the panel the results from saline treated (black bar; n = 6) and 1d (blue bar; n = 6) or 3d (red bar; n = 6) after d4T treat-
ment are quantified. *indicates p < 0.05 by ANOVA with Tukey post-hoc testing. C. Quantification of trkB.T| mRNA expres-
sion in the dorsal horn of wildtype mice 3 days after receiving a saline hind paw injection (black bar; n = 6) or an injection of
CFA (blue bar; n = 6). D. TrkB.T| protein expression in the dorsal horn in the CFA model was assayed via western blot. The
top panel shows a representative western blot of trkB.T| following a saline or CFA hind paw injection at 3d. Below the panel

the results from saline treated (black bar; n = 6) and 3d CFA (blue bar; n = 6) are quantified. *indicates p < 0.05 by t-test.

ulation of trkB.FL mRNA (panels A-D) following
antiretroviral or inflammatory treatment compared with
vehicle controls in either genotype. Similar results were
found for protein levels (panels E-H), although trkB.FL
was down-regulated approximately 25% in wildtype CFA-
treated animals. Thus, we conclude that the up-regulation
of trkB.T1 following noxious stimulation is specific for
this isoform.

Here, we demonstrate that trkB.T1 mRNA and protein are
both significantly up-regulated in the spinal dorsal horn
following systemic antiretroviral drug administration and
hind paw inflammation (Figure 1). We show that in vivo
deletion of trkB.T1 did not affect acute nociceptive
processing, since baseline mechanical and thermal thresh-
olds were not significantly different from wildtype strain-
matched controls (Figure 2). However, following antiret-
roviral administration or hind paw inflammation via CFA
injection or capsaicin treatment, animals lacking trkB.T1
were significantly protected against the development of
mechanical and thermal hypersensitivity (Figure 2A, B,
D). These results suggest that trkB.T1 participates in the
development and maintenance of mechanical and ther-
mal hypersensitivity, and that upregulation specifically
contributes to the degree of thermal and mechanical
hypersensitivity since the null mutant demonstrates atten-
uated hypersensitivity to our noxious stimulation para-
digms.

The expression of trkB.FL and trkB.T1 is conserved across
species and throughout evolution, and trkB isoform
expression is regulated during development when the
dominant trkB isoform expression in the brain switches
from trkB.FL to trkB.T1 [39]. Receptor expression is cell
specific and not all cells express both isoforms. For exam-
ple, neurons express both isoforms [33] while astrocytes
only express trkB.T1 [23,40]. The prevailing view has been
that trkB.T1 expression leads to dominant negative inhibi-
tion of full-length trkB signaling and a reduction in the
activation of downstream signaling molecules [17-23,33].
If trkB.T1 were functioning solely as a dominant negative
inhibitor of signaling in the dorsal horn, the prediction

would be that deletion of trkB.T1 would result in more,
not less pain. However, in the animal models of pain
tested in this study, genetic depletion of trkB.T1 results in
attenuation of pain. Several studies have provided evi-
dence to suggest that trkB.T1 can signal independently,
however the precise nature and functional relevance of
this signal has been less clear. The available evidence
regarding trkB.T1 signaling suggests that BDNF binding to
trkB.T1 causes increased intracellular calcium release [28].
We have shown that neurons from a mouse model of neu-
rodegeneration over-express trkB.T1, resulting in a signif-
icant increase in resting intracellular calcium; reducing
trkB.T1 expression in those neurons reduced intracellular
calcium to wildtype levels [23]. In a rodent model of
antiretroviral-induced neuropathy, intrathecal injection
of TMB-8, a drug that buffers calcium, provided near com-
plete abrogation of mechanical hypersensitivity [36].
Thus, our results demonstrating attenuation in thermal
and mechanical sensitivity in the absence of trkB.T1 could
be because increased trkB.T1 expression induces increased
intracellular calcium signaling which promotes hypersen-
sitivity.

Our results support the idea that trkB signaling is com-
plex, and that trkB.T1 participates in the development and
maintenance of persistent pain. Genetic deletion of
trkB.T1 provides significant protection from the develop-
ment of thermal and mechanical hypersensitivity follow-
ing noxious stimulation. Thus, we conclude that while
previous studies have demonstrated a specific role for
BDNF-mediated trkB.FL signaling in nociception, our
results support a role for trkB.T1 in nociception that has
not been previously described.

Materials and methods

Western blots

Procedures have been described elsewhere [23,33]. Pri-
mary antibodies included anti-trkB.T1 (Santa Cruz TrkB
(C-13) sc-119), anti-trkB out (generous gift from David
Kaplan, Hospital for Sick Kids, Toronto, Canada) and
anti-actin (Sigma A2547). Secondary antibodies conju-
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Figure 2 (see previous page)

Nocifensive behavior in trkB.T 1 wildtype and knockout mice. A. Mice were baseline tested for mechanical threshold
and then randomized within genotype (wildtype, knockout; n = 12 per genotype) to receive a saline (n = 6 per genotype) or
d4T (n = 6 per genotype) tail vein injection. Following tail vein injection, mice were tested at I, 7, 14, 21 and 28d for the pres-
ence of mechanical sensitivity. * indicates T| WT (blue circles) and T1 KO (green triangles) significantly different from saline
controls; p < 0.05 by Repeated Measures ANOVA with Tukey post-hoc testing. B. Mice were baseline tested for thermal
threshold and then randomized within genotype (wildtype, knockout; n = |2 per genotype); to receive saline (n = 6 per geno-
type) or CFA (n = 6 per genotype) hind paw injection. Following hind paw injection, mice were testing for thermal sensitivity at
3hand 1,3,7, 14,21, 28 and 35d.* indicates T| WT (blue circles) and T| KO (green triangles) significantly different than saline
controls; p < 0.05 by Repeated Measures ANOVA with Tukey post-hoc testing. C. The hind paws from mice in each group
tested in B. were measured using calipers and the thickness recorded in mm. D. Latency to licking, number of licking bouts and
duration of licking following capsaicin administration were recorded and the mean and s.e.m. presented for each genotype (n =

6). *indicates p < 0.05 by t-test.

gated to peroxidase included anti-mouse IgG and anti-
rabbit IgG (Amersham Pharmacia Biotech).

qPCR

Methods for RNA extraction and qPCR techniques have
been previously described (Dorsey et al., 2009). Primers
specific for trkB.T1 included forward: 5'-TGG TGA TGT
TGC TCC TGC TCA AGT-3'; reverse: 5'-CCC ATC CAG
TGG GAT CTT ATG AAA C-3'. Primers specific for trkB.FL
included forward: 5'-ACT TTG GCA TCA CCA ACA GTC
AGC-3'; reverse: 5'-AGG TTG TAG CAC TCG GCA AGG
AAA-3'. The B-actin gene was used as the reference gene
with specific primers: forward: 5'-TGT GGT GCC AGA TCT
TCT CCATGT-3'; reverse: 5'-TGT GGT GCC AGATCT TCT
CCA TCT-3' (Integrated DNA Technologies).

Generation of trkB.T | wildtype and knockout mice

Mice were generated as previously described [23].
Wildtype and knockout experimental animals were the
progeny of heterozygous trkB.T1 matings from animals at
N13 generation.

Nocifensive behavior

All experiments were approved by the University of Mary-
land Baltimore Institutional Animal Care and Use Com-
mittee and were performed following the guidelines of the
International Association for the Study of Pain. All exper-
iments were performed with the tester blind to the geno-
type of the mice and the treatment that they received. All
mice tested were adult male mice (2-6 months of age
weighing approximately 30 g. Details regarding the pro-
duction of the inflammatory model using Complete Fre-
und's adjuvant (CFA) can be found in Renn et al. [11] and
the antiretroviral model methods are detailed in Dorsey et
al. [37]. For capsaicin experiments, capsaicin (Sigma, St.
Louis, MO) was dissolved in 100% dimethylsulfoxide
(DMSO) followed by dilution with 0.9% saline to a con-
centration of 0.08 pg/pl. Using a 50 pl Hamilton syringe
with a 1/2" 30-gauge needle attached, each mouse was
given a 20 pl subcutaneous injection of capsaicin (1.6 pg/

20 pl) into the plantar surface of the left hind paw. The
mice were placed in individual Plexiglas cubicles and
allowed to acclimate for approximately one hour before
the injection of capsaicin. Licking induced by the capsai-
cin injection was used to indicate a nocifensive response.
Each mouse was examined for a period of 5 minutes fol-
lowing the capsaicin injection by a blinded observer. The
time (in seconds) to onset of licking, total accumulated
time (in seconds) spent licking and the number of bouts
of licking the capsaicin-injected paw was measured. Ther-
mal Hyperalgesia: The Paw Thermal Stimulator (PTS,
UARDG, Department of Anesthesiology, University of
California, San Diego; attn George Ozaki) was used to
assess thermal sensitivity. Mice were placed in individual
Plexiglas cubicles on a glass surface maintained at a con-
stant temperature of 30°C + 0.1°C, and allowed to accli-
mate for approximately one hour prior to testing. Paw
withdrawal latencies were defined as the time in seconds
required from the onset of the stimulus to the point of a
brisk withdrawal of the hind paw from the stimulus. An
automatic 20-second cut-off was used to avoid tissue
injury from prolonged exposure to the thermal stimulus.
Each hind paw was tested three times and the response
latency was the average of the three tests. Approximately
10 minutes elapsed between repeat test exposures of each
hind paw to avoid tissue injury from the repeated applica-
tions of the thermal stimulus. Mechanical Allodynia: The
nocifensive behavior of paw withdrawal from a mechani-
cal stimulus was used to assess the development of
mechanical allodynia. The mice were placed in individual
Plexiglas cubicles on a wire mesh platform, and allowed
to acclimate for approximately one hour. A series of von
Frey filaments (Touch Test Sensory Evaluator Kit, myNeu-
rolab.com, St. Louis, MO), with bending forces that
ranged from 0.04 g to 1.40 g, was used to deliver the
mechanical stimuli. Each filament was applied to the left
hind paw until the filament just bent and was held in
place for 5 seconds or until the mouse withdrew his paw.
Each filament was tested 5 times on the left hind paw,
with a period of 3-5 minutes elapsing between trials. A
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positive response to the stimulus was defined as a brisk
withdrawal, with or without shaking or licking, of the
hind paw during or immediately upon removal of the fil-
ament application. Using a procedure modified after Ren
[41], the mechanical stimuli were applied to the plantar
surface of the left hind paw, starting with the 0.4 g fila-
ment. If the 0.4 g filament elicited 3 positive responses out
of 5 trials, then the mouse was tested moving downward
through the series to the 0.04 g filament and the number
of withdrawals was recorded for each filament. If the 0.4 g
filament did not elicit 3 positive responses, then the
mouse was tested moving upward through the series to
the 1.4 g filament and the number of withdrawals was
recorded for each filament. Threshold was defined as the
filament with the lowest bending force that elicited at
least 3 positive responses out of 5 trials.
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Additional material

Additional file 1

trkB.FL mRNA and protein expression in the antiretroviral and
inflammatory models in trkB.T1 WT and KO animals. A and B.
Quantification of trkB.FL mRNA expression in the dorsal horn of trkB.T1
wildtype mice (A) and trkB.T1 knockout mice (B) after receiving a saline
tail injection (black bar; n = 3) or 1d (blue bar; n = 3) or 3d (red bar; n
= 3) after an injection of d4T [50 mg/kg]. C and D. Quantification of
trkB.FL mRNA expression in the dorsal horn of trkB.T1 wildtype mice (C)
and trkB.T1 knockout mice (D) after receiving a saline hind paw injec-
tion (black bar; n = 3) or a hind paw injection of CFA (blue bar; n = 3).
E and F. TrkB.FL protein expression in the dorsal horn of trkB.T1
wildtype (E) and trkB.T1 knockout (F) mice in the antiretroviral model
was assayed via western blot. The top panels shows a representative west-
ern blot of trkB.FL following saline or d4T injection at 1d and 3d. Blots
were stripped and re-probed with anti-actin to control for protein loading
(shown in lower panel). Below the panel the results from saline treated
(black bar; n = 3) and 1d (blue bar; n = 3) or 3d (red bar; n = 3) after
d4T treatment are quantified. G and H. E and F. TrkB.FL protein expres-
sion in the dorsal horn in trkB.T1 wildtype (G) and trkB.T1 knockout (H)
mice in the CFA model was assayed via western blot. The top panel shows
a representative western blot of trkB.FL following a saline or CFA hind
paw injection at 3d. Blots were stripped and re-probed with anti-actin to
control for protein loading (shown in lower panel). Below the panel the
results from saline treated (black bar; n = 3) and 3d CFA (blue bar; n =
3) are quantified.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1744-
8069-5-61-S1.pdf]
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