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Abstract
Background: We present a biosegmentation benchmark that includes infrastructure, datasets
with associated ground truth, and validation methods for biological image analysis. The primary
motivation for creating this resource comes from the fact that it is very difficult, if not impossible,
for an end-user to choose from a wide range of segmentation methods available in the literature
for a particular bioimaging problem. No single algorithm is likely to be equally effective on diverse
set of images and each method has its own strengths and limitations. We hope that our benchmark
resource would be of considerable help to both the bioimaging researchers looking for novel image
processing methods and image processing researchers exploring application of their methods to
biology.

Results: Our benchmark consists of different classes of images and ground truth data, ranging in
scale from subcellular, cellular to tissue level, each of which pose their own set of challenges to
image analysis. The associated ground truth data can be used to evaluate the effectiveness of different
methods, to improve methods and to compare results. Standard evaluation methods and some
analysis tools are integrated into a database framework that is available online at http://
bioimage.ucsb.edu/biosegmentation/.

Conclusion: This online benchmark will facilitate integration and comparison of image analysis
methods for bioimages. While the primary focus is on biological images, we believe that the dataset
and infrastructure will be of interest to researchers and developers working with biological image
analysis, image segmentation and object tracking in general.

Background
Quantitative measures derived from microscopy images
are basic to enhancing our understanding of biological
processes. With the rapid growth in emerging imaging
technologies and high throughput bioimaging, robust

image processing methods are critically needed in such
quantitative analysis. While there is a large amount of lit-
erature concerning basic image processing methods, there
exists currently no proper guidance for an end-user to
choose a small subset of methods that are likely to be
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effective in a given application scenario. This is particu-
larly true for segmentation and tracking, where literally
hundreds of new methods are proposed each year. In
most of these cases experimental results are provided on a
very limited set of data, often coming from different
domains, making it more difficult to judge their usability.
The lack of well defined data sets that allow a fair compar-
ison of different basic methods is a major bottleneck for
progress in bioimage analysis. This is the main motivation
in building the biosegmentation benchmark infrastruc-
ture and dataset collection for biological image analysis
applications. In particular, we have collected datasets of
different modalities and scales and carefully generated
manual ground truth that could be of significant help not
only to researchers in biological image analysis but also to
the image processing community in general. By having a
standardized set of data with associated ground truth, we
believe that rapid progress can be made not only in iden-
tifying the appropriate methods for a particular task but
also in facilitating the development of new and more
robust methods.

In this paper we focus specifically on a benchmark dataset
for image segmentation and tracking. Typical challenges
in developing robust bioimage analysis methods include
low signal to noise ratio, complex changes in object mor-
phology and the diversity of imaging techniques (such as
confocal, bright-field, electron microscopy, phase contrast
imaging). Given this diversity in imaging methods and
bioimage samples, it is now well recognized that there is
a clear need for validating new image analysis methods,
see for example [1,2].

Benchmarks can be invaluable tools for both image
processing specialists and scientists. The developers of the
algorithms can use such benchmarks to evaluate the per-
formance, reliability and accuracy of newly developed
methods. The benchmark provides them with a well
established problem set. Further, the workload involved
in validation can be reduced significantly by providing
access to other analysis and evaluation methods [1].

There have been several successful benchmarking efforts
in image analysis and computer vision, such as the face
recognition dataset [3], the Berkeley (University of Cali-
fornia Berkeley) segmentation dataset for natural images
[4] and the object Caltech (California Institute of Tech-
nology) 101 dataset [5]. In medicine, databases with
macrobiological structures such as mammogram and
Magnetic Resonance images [6], and clinical data [7] have
also been developed. In biology, there have been some
efforts in creating microbiological image databases such
as the Cell Centered Database [8] and the Mouse Retina
Database [9]. The Protein Classification Benchmark Col-
lection [10] was created in order to collect a standard data-

sets on which the performance of machine learning
methods can be compared. Finally, the Broad Bioimage
Benchmark Collection [11] consists of microscopy image
sets with associated ground truth, such as cell counts, fore-
ground/background and object outlines.

In addition to the above datasets, there have been few
organized competitions in computer vision. These
include the Face Recognition Grand Challenge (FRGC)
[12], Face Recognition Vendor Test (FRVT) 2006 [13], and
the Iris Challenge Evaluation 2006 [14]. Data and evalua-
tion results of Iris Recognition competition are available
in [15] and Benchmarking Change Analysis Algorithms in
Lung CT in [16]. Results from FRGC and FRVT 2006 chal-
lenges documented two orders of magnitude improve-
ment in the performance of face recognition under full-
frontal, controlled conditions over the last 14 years. Sim-
ilarly, researchers have reported a significant improve-
ment in object recognition performance over the Caltech
101 and Caltech 256 datasets over the last few years. This
further supports our earlier observation that good bench-
mark datasets with ground truth information can act as
catalysts in the development of robust image analysis
methods.

A preliminary version of this dataset was presented in a
conference publication at the International Conference
Image Processing'08 [17]. This work expands on [17] by
providing detailed descriptions on segmentation algo-
rithms and performance metrics. In addition a new 3D
image dataset is included. Also, we describe a web-accessi-
ble infrastructure that we have developed recently for test-
ing the algorithms. A flexible metadata model (see Section
Availability and Requirements and Appendix) is described
that is used to exchange data and results for performance
evaluation. This infrastructure lowers the burden of
choosing datasets for testing algorithms, re-implementing
analysis methods and developing evaluation metrics for
comparison.

In the following, we describe both our benchmark infra-
structure and comprehensive benchmark datasets for eval-
uating microscopy image analysis methods. The
benchmark includes images with well defined ground
truth. We provide representative datasets of microbiologi-
cal structures whose scales range from the subcellular level
(nm) to the tissue level (μm). The collections are obtained
through collaborations with domain scientists in molecu-
lar, cellular, and developmental biology and in medicine.
The datasets highlight some of the current challenges at
these varying spatial scales for image analysis (Figure 1).
For each of the datasets, we refer the reader to associated
analysis methods that are currently integrated or available
at our website [18]. We also suggest performance metrics
that are used to evaluate the analysis. Finally, we also
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describe our online benchmark infrastructure [19] which
can be used to download the data, upload and analyze the
performance of different methods, and software that can
be downloaded by researchers for self-evaluation of the
analysis methods.

Results and Discussion
Our biosegmentation benchmark [19] consists of:

• image datasets at different scales;

• ground truth, manually verified results (e.g. segmen-
tation, cell counting, tracking data);

• analysis methods, mostly segmentation methods, cell
counting and tracking algorithms;

• evaluation methods, image analysis performance
measurement;

• web-accessible infrastructure.

Identifiable objects in the image datasets range from
nanometers to microns: images at subcellular, cellular and
tissue level are available (see Tables 1, 2 and 3). At the sub-
cellular level, we focus on microtubules. At the cellular level,
we provide a wide range of data. At the tissue level, many

retinal images have been collected. Ground truth is
extracted from part of the datasets and is manually veri-
fied by domain experts. To guarantee a fair comparison of
algorithm performance, we split the ground truth into
training and testing datasets.

Example implementations of image analysis tools are
included for comparing newly developed algorithms.
These include detection and tracking at subcellular level;

DatasetFigure 1
Dataset. Example datasets provided in the benchmark are of different scales and modalities.

Table 1: Subcellular level. Datasets and ground truth in the 
benchmark at subcellular level.

Type Microtubule tracking

# images 9 stacks

size (pixel) 512 × 600 × 30

format .tiff .stk

channels Rhodamine

condition Taxol/Docetaxel treated

species hamster, human (HUVEC)

ground truth 1374 traces of microtubules
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cell counting and segmentation to quantify cellular struc-
tures at cellular level and layer segmentation at the tissue
level. Researchers can compare the performance of their
algorithms through established evaluation metrics such as
precision and recall measures. Furthermore, scientists can
use this benchmark as a resource for finding the best anal-
ysis methods available. All these data and tools are avail-
able through a web accessible infrastructure [19].

Subcellular level
At the subcellular level, the structures within a cell have a
typical size of less than 1 μm. Cells consist of organelles
that are adapted and/or specialized for carrying out one or
more vital functions and large assemblies of macromole-
cules that carry out particular and specialized functions.
Such cell structures, which are not formally organelles,
include microtubules. Our example dataset at subcellular

level consists of time sequence images of microtubules
under different experimental conditions. The image anal-
ysis challenges at this scale and with the fluorescence
imaging acquisition method are typical for in-vivo subcel-
lular imaging in that the analysis methods need to cope
with high clutter and low signal to noise ratio.

Microtubule dataset
Microtubules are a core component of the cellular
cytoskeleton and can function as conveyer belts inside the
cells. Researchers believe microtubules play an important
role in the study of Alzheimer's and in certain cancers
[20]. They move vesicles, granules, organelles like mito-
chondria, and chromosomes via special attachment pro-
teins. Structurally they are linear polymers of tubulin
which is a globular protein. Microtubule growth and
shortening, otherwise known as microtubule dynamics,

Table 2: Cellular level. Datasets and ground truth in the benchmark at cellular level.

Type Cat retinal photoreceptors Arabidopsis and cat retinal 
3D cells

Breast cancer cells COS1 kidney cells

# images 29 images 10 stacks 58 images 190 images

size (pixel) 512 × 512 (also 768 × 512) 512 × 521 × 50 up to 1056 × 
1056 × 30

896 × 768 (also 768 × 512) 1024 × 1024

format .tiff .tiff (Flouview),.lsm .jpg .tiff

channels TOPRO nuclear and membrane stains H & E stain Calcein AM (green-alive) 
Propidium iodide (red-dead) 
Hoechst (nuclear stain-blue)

condition normal normal malignant/benignant 2, 6, 12,

species cat plant, cat human monkey

ground truth cell count and centroid cell centroid 58 binary masks 5 binary masks

Table 3: Tissue level. Datasets and ground truthin the benchmark at tissue level.

Type Retina layer detection

# images 343 images

size (pixel) 300 × 200

format .bmp .tiff

channels Rod photoreceptors (αRod opsin) Muller cells (αGFAP) Microglia (isolectin B4)

condition normal, 1-day, 3-day 7-day, 28-day detached

species cat

ground truth 91 layer masks 108 boundary masks
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are studied extensively by biologists [21]. Understanding
the dynamics of the microtubules under different experi-
mental conditions is important in the study of the above
mentioned conditions. Traditionally, microtubule
dynamics are obtained by manual microtubule tracking
[20,22] (as shown in red in Figure 2). The tracking of the
microtubule free ends (tips) allows biologists to compute
the growth and shortening statistics which in turn are
related to the presence of key proteins such as Tau and its
interaction with various drugs.

The microtubule dataset (Table 1) is obtained by trans-
mitted light microscopy at the Feinstein/Wilson Labora-
tory at University of California, Santa Barbara (UCSB).
The microtubule dataset includes 1374 traces which con-
sists of ground truth for both microtubule tip location and
microtubule bodies.

Microtubule tracking
The manual measurements of these microtubules are very
labor intensive and time consuming. To obtain an auto-
matic quantitative description of behavior under different
experimental conditions, tracing algorithms have been
implemented. Due to the limitations in biological sample
preparation and inconsistent staining, typical images in
live cell studies are noisy and cluttered, making automatic
microtubule tracing difficult. Our benchmark implemen-
tation includes an automatic method that employs arc-
emission Hidden Markov Model for extracting curvilinear
structures from live cell fluorescence images [23].

Evaluation
We propose the following three measurements to evaluate
microtubule tracing (see Figure 3):

• microtubule tip distance, εt: tip distance error is the
Euclidean distance between the ground truth tip to the
analysis trace tip,

• microtubule trace body distance, εd: trace distance
error is the average distance from all the points on the
ground truth to all the points on the trace,

• microtubule length errors, εl: length difference is
simply the difference between the length of the ground
truth and the trace.

Tracking failure occurs when the above errors are larger
than corresponding thresholds:

where the thresholds τt, τb and τl, are empirically set by
biologists.

For our tracing algorithm described in [23] the failures
rate is on average less than 9%. Examples of failure and
successful tracking are shown in Figure 4.

Cellular level
The cell is the structural and functional unit of all known
living organisms. A typical cell size is 10 μm. Image
processing challenges at the cellular level include large
variations in cell phenotype, staining intensity variation
within and across the images, and occlusions. Cells can
grow, reproduce, move and die during many processes,
such as wound healing, the immune response and cancer

| | .εt t m  > ≡τ 0 792 (1)

| | .εb b m  > ≡τ 0 792 (2)

| | .εl l m  > ≡τ 0 396 (3)

Microtubule imageFigure 2
Microtubule image. Microtubule image acquired through 
light microscopy, an enlarged region shows manually tracked 
microtubule body.

Microtubule tracing evaluationFigure 3
Microtubule tracing evaluation. Microtubule tracing 
evaluation. The blue traces are automatically obtained and 
the red lines are ground truth traces. Tip distance error εt, 
trace body distance εd and length error εl.
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metastasis. One of the common tasks is to count the
number of cells or nuclei, particularly in histological sec-
tions, and characterize various cell attributes, such as cell
density, morphology, size and smoothness of the bound-
ary. In our example datasets, we use cell counting as a fea-
ture for estimating cell density in 2D retinal and 3D
Arabidopsis images, and cell segmentation for studying cell
morphology in breast cancer and kidney histopathologi-
cal images.

Photoreceptors in Retinal Images
The vertebrate retina is a light sensitive part inside the
inner layer of the eye. The photoreceptor cells, rods and
cones, receive light and transform it into image-forming
signals which are transmitted through the optic nerve to
the brain. The vertebrate retina is a highly structured tissue
and consists of distinct layers as depicted in the cross sec-
tion Figure 5. The decreasing number of photoreceptor
nuclei in the outer nuclear layer (ONL) is one of the char-
acteristics of retina degeneration. The number of photore-
ceptors in the ONL can decrease due to injury or disease
and this may eve result in blindness. The number of pho-

toreceptors in a given section is often used as a measure of
effectiveness of a treatment following retinal detachment
[24]. Images are typically collected using a laser scanning
confocal microscope from tissue sections.

The retinal dataset (see Table 2 for details) is collected at
the Fisher's Laboratory at UCSB to study retinal degenera-
tion and our benchmark data consists of 29 laser scanning
confocal images of normal and 3-day detached feline ret-
inas (9 normal and 20 3-day detached). For each image,
the ground truth consists of an ONL binary mask and the
corresponding manual cell count in the ONL layer pro-
vided by three different experts for the same image as
depicted in Figure 6.

2D cell nuclei detection
As mentioned above, of particular interest to this collec-
tion is detection of cell nuclei. We have implemented in
the benchmark system a 2D nuclei detector based on a
Laplacian of Gaussian blob detector, see [25] for more
details on the method itself.

Microtubule tracing examplesFigure 4
Microtubule tracing examples. Microtubule tracing examples. The blue traces are automatically obtained by the algorithm 
proposed in [23] and the red lines are ground truth traces.
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Evaluation
Common ways of evaluating cell/nuclei counting take
into account the mismatched counts between detected
and ground truth nuclei, and/or the displacement of
detected nuclei. In 2D analysis evaluation only the counts
are available in the ground truth.

A simple object count evaluation method was proposed in
[25]. The error E in the cell count is measured as the ratio
between manual counts (obtained by several experts, con-
sidered as ground truth) and the result of automated detec-
tor:

where N is the number of images in the dataset, NDi and

 are the number of nuclei automatically detected and

the average of manual counting, respectively.

Our nuclei detector [25] applied to the 2D retina dataset
gives an error of 3.52% for the nuclei count within the
ONL retina layer.

Cell Nuclei in 3D Plant Images (Arabidopsis)
In plants, meristems are regions of cells capable of divi-
sion and growth. The live 3D imaging of the Arabidopsis
meristem has been recently applied in order to analyze the
cell lineage and the cell fate during active growth of the
shoot meristem [26]. This technique helps to understand
the genetic control of the meristem size. Again, cell counts
are often used to quantify this process. However, this is an
extremely time consuming and laborious task given that a
3D stack consists of approximately 1700 cells.

Currently we have 10 stacks of images and one annotated
Arabidopsis laser scanning confocal microscope image gen-
erously provided by Meyerwitz's Laboratory at Caltech.
The annotated image contains 2 channels with nuclear
and membrane stains and is shown in Figure 7(a). The
ground truth consists of manually detected nuclei centroids
as shown in Figure 7(b).

3D cell nuclei detection
The 3D nuclei detection [27] extends our earlier work on
2D detection based on a Laplacian of Gaussian blob
detector and it is also integrated into our benchmark. Fig-
ure 7(b) shows Arabidopsis's nuclei automatically detected
in the selected region of the image shown in Figure 7(a).

Evaluation
In 3D, the ground truth contains both counts and positions
of the nuclei centroids. Thus, we include in this evaluation

E
N

NDi GTi
GTii

N

= −

=
∑1

1

| | (4)

GTi

Retinal layersFigure 5
Retinal layers. Retinal layers. Confocal microscopy of a 
vertical section through a cat retina. Each layer has a different 
structure which consists of the group of cell bodies or synap-
tic terminals. The photoreceptor cell bodies comprise the 
ONL. Center top image shows the ONL at higher magnifica-
tion (boxed area in center image).

� � � � � � � � � � � � � �

3D plant imagesFigure 7
3D plant images. 3D laser scanning confocal microscope 
image of the Arabidopsis shoot meristem and its 3D visualiza-
tion (a). Centroids of detected nuclei of Arabidopsis observed 
in the selected region (b).

(a)             (b)
Example of cell counting in 2D retinal imagesFigure 6
Example of cell counting in 2D retinal images. Exam-
ple of cell counting in 2D retinal images. On the left the orig-
inal image and on the right the white region denotes the 
outer nuclear layer (ONL) where the photoreceptor nuclei 
are located.

Original image ONL mask
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metric also the nuclei positions available in the 3D ground
truth. We take into consideration the distance of the
detected nuclei from the ground truth. The distance error,
Ed, normalizes the detection error and gives the overall
error (G3D) as:

where false positives (fp) are objects detected in the test

image but not present in the ground truth, false negatives
(fn) are objects that were not detected in the test image but

are present in the ground truth. GT and ND denote, respec-
tively, the ground truth (human computed) and automati-

cally detected nuclei coumt. The mean distance ( ) is the
mean of all the distances between the detected nuclei loca-

tions and their corresponding ground truth locations, (σd)

is the standard deviation of these distances, and dmax is the

max of all the distances. Note that G3D is normalized to [0,

1] and 1 represents the worst case. To quantify the per-
formance of our automatic 3D nuclei detection algorithm
[27], we compared its output with ground truth manually
annotated by two experts and obtained a G3D of 0.1605.

When we compared one expert ground truth to the other
one we obtained a G3D of 0.1260.

Breast Cancer Cells
The utility of determining nuclear features for correct can-
cer diagnosis has been well established in medical studies.
Scientists extract a variety of features from nuclei in his-
topathology imagery of cancer specimens, including size,
shape, radiometric properties, texture, and chromatin-
specific features. Histopathological images are stained
since most cells are essentially transparent, with little or
no intrinsic pigment. Certain special stains, which bind
selectively to particular components, are used to identify
biological structures such as cells. Routine histology uses
the stain combination of hematoxylin and eosin, com-
monly referred to as H&E. In those images, the first step is
manual cell segmentation for subsequent classification
into benign and malignant cells.

In our benchmark dataset there are 58 H&E stained his-
topathology images used in breast cancer cell detection
from David Rimm's Laboratory at Yale. The ground truth is
obtained for 50 images including both benign and malig-
nant cells and is described in Table 2.

Breast cancer cell segmentation
In [28] a system has been developed which extracts nuclei
in histopathology imagery of breast cancer specimens (see
Figure 8) based on watershed using as initial condition

the results of the 2D cell nuclei detection method men-
tioned earlier [25].

Evaluation
The following metric is defined for the segmentation eval-
uation of cell nuclei [29]. For the cell segmentation, the
size of regions missed, of extraneous regions and their
shape are penalized, assuming roughly elliptical shapes
for the cells. The metric is given by:

where N is the number of ground truth nuclei; ND is the
number of nuclei detected by the segmentation algorithm;
the weight α1 can be thought of as the penalty for an over-
segmented nucleus; SR is the number of segmented
regions overlapping the ground truth nucleus; δSR = 1 is the
upper limit for number of segmented regions; PM is the
number of pixels missing; GT is the number of pixels in
the ground truth; QSPM is the "quadrant sum" of the pixels
missed; α2 can be thought of as the penalty regions of pix-
els missed, penalizing both size and shape; EP the number
of excess pixel; α3 is thus the penalty for size and shape of
excess pixel regions, and is related to the degree of under-
segmentation of the nucleus; QSEP is "quadrant sum" of
the excess pixels; the term with α4 = 1 is simply the detec-
tion rate; ER as the number of excess segmented regions

G
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E E

d d
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Breast cancer cell segmentationFigure 8
Breast cancer cell segmentation. Breast cancer cell seg-
mentation. The original image and its binary mask: a seg-
mented portion of benign cells zoomed on the right.
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and δER is the fraction of total ground truth nuclei that we
will allow as excess regions; α5 is the penalty for excess seg-
mented regions. The metric takes value P ⊂ [0, 1] and 1
represents the worst segmentation scenario. For a detailed
explanation of the metric the reader is referred to [28,29].
Our cell segmenter using the seeds from the 2D cell nuclei
segmentation gets a score of P = 0.25.

Additional dataset
In addition to the above dataset we also have images of
kidney cells and ground truth corresponding to kidney cell
segmentation, but we do not have any associated analysis
or evaluation methods for this data. This data was col-
lected by Feinsten's Lab at UCSB to study Alzheimer's dis-
ease. Usually manual segmentation provides a reliable
alive/dead cell ratio which will test the hypothesis that tau
(which is a protein) confers an acute hypersensitivity of
microtubules to soluble, oligomeric amyloid-beta and
that Taxol, a microtubule-stabilizing drug, provides neu-
roprotective effects. Because tau is not endogenously
expressed, tau effects are easier to study in kidney cancer
cells. Kidney cells can easily be transfected with tau. To
quantify this phenomenon, COS1 cells (immortalized
African monkey kidney cells) are collected through confo-
cal microscopy imaging at the Feinsten's Lab at UCSB.

In the dataset (see Table 2) the images are of both wild-
type COS1 cells (non-transfected) and tau transfected
COS1 cells and these cells are imaged at 7 different time
points after treatment (2 hrs, 6 hrs, 12 hrs, 48 hrs, 72, hrs,
and 120 hrs). Ground truth has also been collected for 5
images of this dataset and is represented by binary masks.

Tissue level
Our tissue level benchmark dataset comes from retinal
cross-sections. As discussed in the previous section confo-
cal microscope images of retinas taken during detachment
experiments are critical components for understanding
the structural and cellular changes of a retina in response
to disease or injury. During retinal detachment, layers
undergo several changes in morphology. Thus, it is crucial
to have a reliable map of the retinal layers. Four major lay-
ers of the retina are usually segmented manually to quan-
tify the number of cells in them: the ganglion cell layer
(GCL), the inner nuclear layer (INL), the outer nuclear
layer (ONL), and the outer segments (OS), as depicted in
Figure 9. Hundreds of retinal images [24] and layer ground
truth are part of the benchmark, see Table 3. Retinal layer
segmentation is a challenging problem due to the hetero-
geneity in retinal images stained with different antibodies.

Retinal layer segmentation
Three automatic retinal layer segmentation methods are
integrated into the benchmark. One is a variational seg-
mentation approach based on pairwise pixel similarities
[30]. This method exploits prior information (reference

image) and a dissimilarity measure between the pixels of
the reference image and the pixels of the image to be seg-
mented. The second segmentation algorithm uses para-
metric active contour to detect the boundaries between
layers [31]. The third method [32] is a segmentation based
on non rigid registration using thin plate splines, which
assumes a non rigid transformation of the layer bounda-
ries of a training retinal image in order to segment the test
image. An example of the segmentation results and ground
truth are respectively shown in Figures 10(a), (b) and
10(c).

Evaluation
For boundary evaluation, the distance between the ground
truth boundary pixels and computed boundaries for each
layer is computed. For layer evaluation, several measures
are implemented: precision (p) is the ratio between true
positive and automatically detected pixels; recall or sensi-
tivity (r) is the ratio between true positive pixels and
ground truth; F-measure (F) is the harmonic mean between
precision and recall for each layer defined as:

the weighted F-measure (Fw) is the sum of the F-measure
scores for each layer i in proportion to their area Ai of the
total area Atot:

F
p r
p r

= ⋅
+

; (7)

F
Fi Ai
Atot

w

i

= ⋅∑ . (8)

Retinal layer segmentation exampleFigure 9
Retinal layer segmentation example. Retinal layer seg-
mentation example: the multilayer (ML), the outer nuclear 
layer (ONL), the inner segments (IS) and the outer segments 
(OS).
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This modified F measure allows for weighting more seg-
mentation errors in larger layers.

Our best performing method [30] gives a F-measure
around 88% when applied on the dataset. The average dis-
tance between boundary pixels in the computed and
ground truth data using the boundary detection method
from [31], averaged over all experimental conditions, is
9.52 pixels.

Conclusion
Benchmark datasets often have a strong positive effect in
advancing the state of the art of image analysis algorithms.

The benefits of benchmarking include a stronger consen-
sus on the research goals, collaboration between laborato-
ries, transparency of research results, and rapid technical
progress. Our benchmark provides unique, publicly avail-
able datasets as well as image analysis tools and evalua-
tion methods. The benchmark infrastructure avoids the
burden of choosing datasets for testing algorithms, reim-
plementing analysis methods and evaluation metrics for
comparison.

We hope that our benchmark will help researchers to val-
idate, test and improve their algorithms, as well as provide
biologists a guidance of algorithms' limitations and capa-
bilities. The benchmark datasets and methods are availa-
ble online [19]. Analysis results can be uploaded directly
and automatically evaluated. The benchmark data that we
describe is by no means complete, given the complexity
and diversity of the bio-samples and imaging modalities.
By making this infrastructure easily accessible to the com-
munity, we hope that the collections and analysis methids
will grow over time. Users are encouraged to submit data-
sets, associated ground truth, and analysis results for evalu-
ation. Moreover, user contributed analysis (e.g.
segmentation) algorithms and evaluation methods will
be integrated upon request.

Availability and Requirements
It is generally acknowledged that making fair comparisons
between different methods is quite difficult, particularly
in the absence of well established datasets. In addition,
even if such datasets are available, often the researchers
are left to implement other methods on their own in order
to make such comparisons. Newly developed algorithms
are often tested against relatively limited datasets. Keeping
these limitations in mind, we have been developing the
UCSB Bisque infrastructure [18,33] whose primary goal is
to facilitate a tighter integration of datasets and analysis
methods.

In the following, we outline the Bisque [33] components
that are relevant to the benchmarking effort. All of the
working modules and datasets are available from our bio-
image informatics website [19]. From the website users
can download the different datasets discussed in this
paper and associated ground truth data. Each dataset
includes a complete set of original images to process, a
document in XML format and an example of ground truth.
The xml structure follows Bisque standards [18] and
examples for metadata and graphical annotations are pre-
sented in the Appendix. A complete description and for-
matting of metadata for each dataset is given in [19].

Examples of layer segmentationFigure 10
Examples of layer segmentation. Examples of layer seg-
mentation results compared to ground truth for feline retinal 
images normal condition. (a) ONL segmentation: white 
boundaries detected by [30]'s method compared to black 
one (ground truth); (b) layer segmentation: blue boundaries 
detected by [31]'s method compared to red one (ground 
truth); (c) INL + GCL, ONL, OS layers segmented by [32] 's 
method compared to black one (ground truth).

(a)

GCL OSINL ONL

bg/GCL GCL/ INL INL/ONL ONL/OS OS/bg

(b)

(c)
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Two evaluation options are available to the users (the
evaluation procedures implement the scoring methods
discussed in the previous sections for the different data-
sets):

• Matlab code for evaluation is available for down-
load. Users can download this code and self evaluate
the performance of the analysis methods. The evalua-
tion requires that the results are stored in a certain for-
mat and a detailed description of the file formats are
also provided on Bisque,

• users can also evaluate the performance using our
web-based evaluation module. In order to use the
web-based evaluation the users must first register into
Bisque. They need to first upload their results, one
image at the time in the correct format to the web-
based evaluator and the evaluation results will be
automatically displayed on the web site. This option
will also allow the result to be stored on our bench-
mark website and made available to the registered
users.
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Appendix
Flexible data model: The benchmark uses a flexible meta-
data model based on tag documents to store and process
ground truth and resultant data. A tag is a named field with
an associated value. The tags themselves may be nested,
and include values that are strings, numbers, other docu-
ments or list. For example, the 3D cell counting document
has:

<benchmark type="3D nuclei"> <image name="1. tiff "
src ="1. tiff ">

<gobject name="my_algorithm "
type="NucleiDetector3D_automatic">

<gobject name="1" type="point">

<vertex x="0" y="1020" z="0"/>

</gobject >

<gobject name="2" type="point">

<vertex x="1048" y="941" z="4"/>

</gobject >

<gobject name="3" type="point">

<vertex x="871" y="1046" z="2"/>

</gobject >

...

</gobject >

</image> </benchmark>

The benchmark uses also an extensible metadata format
for graphical annotations that has a number of graphical
primitives and can be extended by new object types and
object properties. Graphical annotations are termed gob
ject s and are used, to represent ground truth objects in
the dataset. The following is an example gobject
description for microtubules:

<gobject name="gt " type="mt_gt" >

<tag name="expert " value="expert_name"/>

<tag name="tube_id " value ="1"/>

<polyline type="polyline " name="polyline">

<vertex x="235.503009" y="170.699054" index="0" t
="0.000000"/>

<vertex x="246.143594" y="174.614789" index="1" t
="0.000000"/>

</polyline >
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<polyline type="polylin e " name="polyline">

<vertex x="235.503009" y="170.699054" index="0" t
="1.000000"/>

<vertex x="250.144454" y="175.891660" index="1" t
="1.000000"/>

</polyline >

...
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