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Abstract
Background: The study of functional subfamilies of protein domain families and the identification
of the residues which determine substrate specificity is an important question in the analysis of
protein domains. One way to address this question is the use of clustering methods for protein
sequence data and approaches to predict functional residues based on such clusterings. The
locations of putative functional residues in known protein structures provide insights into how
different substrate specificities are reflected on the protein structure level.

Results: We have developed an extension of the context-specific independence mixture model
clustering framework which allows for the integration of experimental data. As these are usually
known only for a few proteins, our algorithm implements a partially-supervised learning approach.
We discover domain subfamilies and predict functional residues for four protein domain families:
phosphatases, pyridoxal dependent decarboxylases, WW and SH3 domains to demonstrate the
usefulness of our approach.

Conclusion: The partially-supervised clustering revealed biologically meaningful subfamilies even
for highly heterogeneous domains and the predicted functional residues provide insights into the
basis of the different substrate specificities.

Background
Protein families frequently can be divided into sub-
families of similar but distinct function. The study of these
subfamilies and the residues which control the functional
specificity is an important step in the analysis of these
families.

Many previous studies have focused on the question of
how to find the functional residues for a given protein

family when proteins already have been assigned to sub-
families. These methods include approaches based on
information-theoretical measures such as relative entropy
[1,2] or mutual information [3], template-based similar-
ity scores to known functional residues [4], approaches
which contrast position-specific conservation in ortho-
logues and paralogues [5] or superfamilies [6] and com-
parisons to known reference 3D structures to find
discriminatory surface residues [7]. The opposite of this so
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called supervised problem, is the unsupervised setup, where
subfamily assignments are unknown and have to be
inferred from the data. In the unsupervised case, clustering
approaches for protein data can be applied to obtain sub-
families from set of protein sequences. For protein sub-
family clustering most methods rely on the construction
of a phylogenetic tree. These methods can be further sub-
divided into pure clustering methods [8-10] and
approaches which include functional residue prediction
[11-14]. Tree-based methods perform well in the presence
of abundant data but might suffer from instability in the
inferred topology for small data sets with strongly diver-
gent sequences. For this type of data sets a stable phylog-
eny often cannot be inferred. In the worst case, a substrate
specificity evolved multiple times independently leading
to functional clusters which are not monophyletic. Here,
any tree-based approach is assured to fail. Such data sets
for instance arise from detailed molecular studies, where
individual proteins are examined for their substrate spe-
cificity [15,16] and each experiment requires considerable
effort. For such data sets a method, which is not based on
a phylogenetic tree is advantageous. In a typical biological
scenario, one is usually in between the supervised and
unsupervised setting. A few members of a family have been
characterized experimentally, but no functional informa-
tion is known for the majority of the domain family. In
these partially-supervised learning problems the classifica-
tion error can be greatly reduced by making use of the
annotated (labeled) proteins, even when only a small
number of high quality labels is available [17]. In addi-
tion, the integration of a limited amount of expert knowl-
edge can help to focus the clustering on subfamilies which
are of relevance for a particular research question. In [18],
we presented a method based on the context-specific inde-
pendence (CSI) mixture framework for clustering of pro-
tein sequences and simultaneous prediction of functional
residues.

The novel contribution of this work is as follows. First, the
method has been extended and augmented with a par-
tially-supervised learning setup, which allows the integra-
tion of prior knowledge into the clustering procedure.
This extension allows the integration of experimental data
for a few characterized proteins mimicking closely the typ-
ical biological scenario. Secondly, we simultaneously dis-
cover subfamilies and predict functional residues in four
data sets of protein domain families. The results not only
underline the relevance of our method but also allow
insights into the sequence level basis of different ligand
specificities. Thirdly, we contrast the clustering perform-
ance of our method with state-of-the-art tree-based
approaches.

Methods
Mixture models
The general problem addressed in this work is visualized
in Fig. 1. Given a multiple sequence alignment (MSA) of
protein sequences (top), we discover subfamilies of
sequences with different functional specificities (C1, C2)
and simultaneously predict residue positions which are
causal for these functional differences. This is indicated by
the differently colored columns (bottom). Generally
speaking, there is an increased subfamily-specific
sequence conservation at positions which are relevant
with respect to the distinct functions of the subfamilies.
These positions are highly informative for the characteri-
zation of the clusters. Conversely, positions which are not
relevant for the functional characterization of the sub-
families may show very little variability between sub-
families. Such positions are very weakly informative for
the clustering and are best modeled by the same set of
parameters in all subfamilies, instead of separate sets of
parameters for each cluster. This notion of adaptation of
model complexity to the position-specific degree of
sequence variability observed in the data is formalized in
the CSI mixture models, which are defined as follows:

Let X1, ..., Xp be discrete random variables over the 20
amino acids and a gap symbol representing rows of a mul-

Example method input and outputFigure 1
Example method input and output. Top: The input to 
the method is a MSA of protein sequences. Bottom: The 
output is a clustering into subfamilies (C1, C2) and annota-
tion of putative functional residues (colored columns)
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tiple sequence alignment (MSA) with p positions. For a
given data set with N samples D = x1, ..., xN, a conven-
tional mixture model is defined as

where π = (π1, ..., πK) are the non-negative mixture weights

which sum to one, . That is, the data is mod-

eled as a convex combination of K component distribu-
tions. As component distributions we employ a product
distribution over the p features of the data set, the well
known naive Bayes model [19],

The complete set of parameters of the mixture M is then
given by Θ = (π, θ1, ...,θk). This adoption of the naive Bayes
model as component distributions implies the assump-
tion of conditional independence between features given
the mixture component. Moreover the standard assump-
tion of independence between samples is made, which
means that the probability of D under the mixture P(D|Θ)
decomposes into the product over the probabilities of the
individual samples,

The context-specific independence (CSI) extension to the
conventional mixture framework is based on the observa-
tion, that in the latter, a separate set of parameters has to
be estimated from the data for each component and each
feature. This situation is visualized in the left matrix in Fig.
2. The example shows a five component mixture C1, ...,C5
over four features X1, ..., X4. Each cell in the matrix repre-
sents a separate set of parameters θkj in the mixture. Now,
the CSI framework is based on the insight that for many
data sets it will be unnecessary to have a separate θkj for all
components in each feature. Rather, components should
share parameters based on the feature-specific degree of
variability observed in the data. An example of a CSI struc-
ture is shown on the right in Fig. 2. Again each cell of the
matrix represents a set of parameters, and cells spanning
multiple rows represent shared sets of parameters
between components. For instance, components C4 and
C5 share a parameterization for feature X1 and all compo-
nents share parameters for feature X4.

In the following we introduce the CSI mixture model for-
mally. Given the set of K component indexes C = {1, ...,
K} and random variables (RVs) X1, ..., Xp let G = {gj}(j =

1,...,p) be the CSI structure of the model M. Then gj = (gj1,

...gjZj) where Zj gives the number of subgroups for Xj and

each gjr, r = 1, ..., Zj is a subset of component indexes from

. Therefore, each gj is a partition of  into disjunct sub-

sets, such that each gjr represents a subgroup of compo-

nents with the same distribution for Xj. The CSI mixture

distribution is then obtained by replacing fkj(xij|θkj) with

fkj(xij|θgj(k)j) in (2) where gj(k) = r such that k ∈ gjr. Accord-

ingly,  is the full model param-

eterization and  denotes the different parameter

sets in the structure for feature j. The complete CSI model

M is then given by M = (G, Θ).

Finally, the ranking of positions in the MSA for prediction
of functional residues was carried out using the relative
entropy score based on the CSI structure and the model
parameters described in [18]. Essentially, this score con-
trasts the amino acid distribution within a subgroup with
the distribution observed for all other subgroups. It can be
seen as an extension of the score applied in [1] to the soft
subgroup assignments inherent to the probabilistic mix-
ture framework.

Partially supervised learning
When clustering a given data set D, we need to infer the
mixture parameters Θ and the CSI structure G. The stand-
ard technique for arriving at estimates for Θ is the Expecta-
tion Maximization (EM) algorithm [20]. The structure
learning of G is carried out by applying the structural EM
framework [21,22]. The central quantity of both of these
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Example mixture model structuresFigure 2
Example mixture model structures. a) Model structure 
for a conventional mixture with 5 components and four RVs. 
Each cell of the matrix represents a set of parameters θkj in 
the mixture and every RV has an unique distribution in each 
component. b) CSI model structure. Multiple components 
may share the same set of parameters for a RV as indicated 
by the matrix cells spanning multiple rows. In example C2, C3 
and C4 share the same set of parameters for X2.
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algorithms is the posterior distribution of component
membership

Here τki gives the probability that a sample xi was gener-
ated by component k. This posterior not only gives the
solution to the conditional expectation of the hidden data
(i.e. the assignment of samples to components) in the EM
framework, it also gives rise to the expected sufficient sta-
tistics required for the structural EM algorithm (see [22]
for details).

A different interpretation of the component membership
posterior is as the uncertainty in the cluster assignment of
a sample. In fact, the entropy of this posterior can be used
to identify samples where no clear classification is possi-
ble (e.g. [23]). In the partially-supervised setting, the com-
ponent assignment of the labeled samples is known a
priori. This means that for a labeled sample xi with label l,
τki = 1 for k = l and τki = 0 for all k ≠ l. Therefore, all samples
with the same labels are constrained to be assigned to the
same cluster, and therefore to different clusters if the
labels are different. Fig. 3 shows an example for the con-
straints implicit in the labeling of data samples. Red edges
between points represent must-link constraints, where
each red edge stands for a different label, blue dashed
edges must-not-link constraints. This setup can also be
thought of as a point in the continuum between supervised
(complete data) and unsupervised (incomplete data) learn-

ing tasks. For the former, the assignment of samples to
components is known (i.e. the posterior takes the form
given above). For the latter, the assignment of samples to
components is unknown and the EM algorithm needs to
be used to arrive at estimates for Θ. The partially super-
vised approach, then, is a situation, where there is com-
plete data for a subset of samples in the data set. The same
modification to the posterior for the labeled samples that
defines the partially supervised EM, also gives the adap-
tion of the CSI structure learning for the partially super-
vised setting.

Structure learning
The structural EM algorithm allows the efficient evalua-
tion of candidate CSI structures. In order to score the dif-
ferent structures we adopt a Bayesian approach and
compute the model posterior given by

where P(D|M) is the probability of the data set D under
the mixture M given by

where P(D| ) is Eq. 3 evaluated for the maximum a poste-

riori parameters . P( ) is a Dirichlet mixture prior
(DMP) based on nine basic chemical properties of the

amino acids introduced in [18]. The prior P( ) regular-
izes the structure learning by introducing a notion of
amino acid similarity into the objective function P(M|D).

That is, a DMP P( ) is given by

where in this case G = 9 and each of the components rep-
resents one of nine basic chemical property of amino
acids (e.g. hydrophobicity, size or charge). The parameters
of the DMP component distributions αg and mixture
weights qg are chosen according to the heuristic described
in [18].

Finally, P(M) is a prior over the model structure given by
the simple factored form

where P(K) = γK is the prior over the number of compo-

nents and  is the prior over model struc-

ture. γ < 1 and α < 1 are hyper parameters which

˜ki
k fk xi k

k fk xi kk
K

=
=∑
π θ

π θ
( | )

( | )
.

1
(4)

P M D P D M P M( | ) ( | ) ( ),∝

P D M P D P( | ) ( | ) ( ),=
G G
Θ Θ

G
Θ

G
Θ

G
Θ

G
Θ

G
Θ

P q Dg g g

g

G

( ) ( | )
G
Θ =

=
∑ θ α

1

(5)

P M P K P G( ) ( ) ( ),∝ (6)

P G Z

j

p j( ) =
=∏ α
1

Example of constraints arising from labeled samplesFigure 3
Example of constraints arising from labeled samples. 
Red edges between points indicate positive must-link con-
straints, blue edges negative must-not-link constraints.
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determine the strength of the bias for a less complex

model expressed in P(M). The values of α and γ were cho-
sen by use of the heuristic introduced in [22] with a prior

strength of δ = 0.05.

Improvement of the structure learning algorithm

The model posterior P(M|D) defines a scoring function
over the space of CSI structures. However, exhaustive enu-
meration of all possible structures is infeasible in practice,
since the number of possible structures is increasing expo-
nentially with the number of mixture components. The
number of possible structures for a given model can be
computed by the Bell numbers [24]. For instance for a sin-
gle feature and ten components there are already 115,975
possible structures to be evaluated. So, in order to arrive at
structure estimates we applied an iterative, greedy proce-
dure starting from the full structure matrix (see Fig. 2a for
an example). Moreover, we optimized the computations
by making use of redundant terms between the current
model and the candidate models. In each step of the struc-
ture learning procedure, all pair-wise merges of groups in
the current structure have to be scored and the one which
maximizes the posterior is accepted. An example of this is
shown in Fig. 4a). Each of the four nodes represents a
component of the mixture and each pair of components

gives rise to a merge parameter θgjr based on the expected

sufficient statistics of the merge, which in turn allows the

evaluation of the model posterior P(M|D). This means

that in each step O( ) candidate merges have to be

computed, where Zj is the current number of groups, start-

ing with Zj = K in the first step. An important observation

that can be made, is that the merge parameters θgjr of dis-

junct merges are independent in the sense that the respec-
tive computations have no terms in common. This is
because the merge parameters are computed from the ele-
ment-wise addition of the component membership poste-

riors τk = {τki}i = 1,...,N of the components that are part of the

merge. An example is θ1,3 and θ2,4 in Fig. 4a). The former

is based on τ1,3 = τ1 + τ3, whereas the latter arises from τ2,4

= τ2 + τ4. If we were to accept the merge of 1 and 3 in the

first step, the second step (shown in Fig. 4b)) would
necessitate the re-computation of only the merge parame-

ters θ1,2,3 and θ1,3,4 (edges shown in red), whereas θ2,4

would remain unchanged from the previous step and
need not be computed again. Therefore, by caching the
merge parameters in each step, the number of merge
parameters to be re-evaluated in each step after the first

drops from O( ) to O(Zj). This greatly increases the

speed of the structure learning, especially for models with
a large number of components.

Z j
2

Z j
2

Structure learning optimization strategyFigure 4
Structure learning optimization strategy. a) Pair-wise merges to be evaluated in the first step of the greedy structure 
learning for a four component mixture. b) Second step after θ1,3 has been accepted in a). Only the parameters corresponding 
to the red edges need to be recomputed.
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Results
We applied our mixture modeling to four protein
sequence data sets. These were chosen as representatives
of specific challenges for subclass discovery. In the case of
the phosphatases, catalytic active members should be dis-
tinguished from inactive ones. The focus in this example
is the automatic identification of sites important for the
catalytic reaction. The second dataset, pyridoxal-5'-phos-
phate dependent decarboxylases was chosen to test
whether our algorithm is able to identify substrate specific
groups even if they were not monophyletic. In this case,
one substrate specificity was evolved independently in
archaea and plants. Thus, no tree based approach will cor-
rectly predict the two classes of substrate specificity. Fur-
thermore, this protein family is highly divergent, with
median pairwise identities below 20%. This also holds
true for the remaining two datasets, WW and SH3
domains (Fig. 5). Additionally, these domains are compa-
rably small, leaving few conserved positions for classifica-
tion. Finally, they are functionally divergent and
genetically mobile, that is they can be found in many oth-
erwise non-homologous proteins. Finally, as part of the
comparison of clustering performance and in order to
assess the impact of the clustering quality on the func-
tional residue prediction, we also revisit a data set of
malate/lactate dehydrogenase sequences previously ana-
lyzed in [18]. All the alignments are available from the
authors upon request. The general properties of all data
sets are summarized in Table 1.

In order to assess the impact of the partially-supervised
setup, models were trained with and without labels. The
labeled samples were chosen at random. For each data set
we trained models with a number of components in a
range of one to ten and the Normalized Entropy criterion
(NEC) [25] was used to perform model selection.

In practice, it seems reasonable to expect that the number
of labeled data points available for a given data set is fairly
limited. Therefore, the main question we were interested
in with regards to the partially-supervised learning was in
how much different amounts of randomly chosen labels
would impact on the clustering performance.

Following the approach in [18], alignment columns with
more than 33% gaps were filtered prior to clustering in
order to reduce the noise level in the data sets. The cluster-
ing quality was evaluated by the standard measure of

accuracy , where for the cluster labels

and the true class labels, TP gives the number of pairs of
samples where the true class labels and the cluster labels
are the same. The remaining quantities are calculated
accordingly, i.e. FP (same cluster, different class), TN (dif-
ferent cluster and class) and FN (different cluster, same
class).

Receptor tyrosine phosphatases
Together with protein kinases, protein phosphatases are
the key players of signal transduction cascades. Here, we
analyzed a specific subfamily, the receptor tyrosine phos-
phatases. Intracellularly, receptor tyrosine phosphatases
contain two phosphatase domains. Whereas the mem-
brane proximal domain is catalytic active, the distal
domain has lost its activity and is assumed to be involved
in regulation. Searching for differences in site specific evo-
lutionary rates, a second functional region, opposing the
catalytic center, was proposed [26]. Using this dataset, we
asked two questions: (i) is our algorithm capable to
recover a classification which is based on phylogenetic
trees [27] and (ii) can the algorithm identify known func-
tional sites.

Therefore, the 22 phospho-tyrosine phosphatase domains
(PTPc) of all proteins with two PTPc domains in the
human genome were extracted from SMART [28]. An
alignment was obtained using MUSCLE [29].

When performing the clustering, a clear separation of the
two classes became apparent. The NEC model selection
chose two clusters as optimal and the resulting model sep-
arated the classes with perfect accuracy. This result was
confirmed in 30 repetitions and unsurprisingly remained
unchanged when adding prior knowledge in form of
labeled samples.

Fig. 6 shows the ranking of alignment positions by score.
Positions with a score of zero have been marked as unin-
formative for the clustering by the CSI structure learning.
This is the case for the majority of positions. When con-
sidering the top ranked positions, we found two positions
(Gln232 and Leu33 with respect to sequence
[PDB:1LAR]) which are part of a loop surrounding the
active site (Gln232) or involved in inter domain hydrogen
binding (Leu33). To illustrate the kind of regularities in
the alignment revealed by the position ranking, the top
ten ranked positions in the phosphatase data are shown in
Fig. 7. The two experimentally confirmed sites are high-

# #
# # # #

TP TN
TP FP TN FN

+
+ + +

Table 1: General properties of the data sets. 

Data Size length length after filtering

phosphatase 22 316 259
decarboxylase 72 411 304

WW 49 40 36
SH3 20 81 56

dehydrogenase 29 168 141

The number of sequences, length of alignment and length of alignment 
after filtering (see below) are given.
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lighted in yellow and green, respectively. Indeed, the
method picked up positions which showed patterns of
subgroup-specific conservation.

Global pair-wise sequence identity for the four data setsFigure 5
Global pair-wise sequence identity for the four data sets. Large parts of each data set lie within the twilight zone of ≤ 
35% sequence identity.

Ranking of alignment positions for the phosphatase data setFigure 6
Ranking of alignment positions for the phosphatase 
data set. Ranking of positions in the alignment for the phos-
phatase data set.
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Best ranking positions for the phosphatase data setFigure 7
Best ranking positions for the phosphatase data set. 
Top ten ranked alignment positions on the phosphatase data 
set. The two experimentally found sites 232 and 33 are high-
lighted in yellow and green.
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Pyridoxal-dependent decarboxylase
The pyridoxal-5'-phosphate dependent amino acid decar-
boxylases comprise a large protein family of four evolu-
tionary unrelated families [30]. These are classified
according to their substrates. Here, we focused on two
enzymatic classes of group II decarboxylases. The first
catalyses the decarboxylation of tyrosine (EC: 4.1.1.25),
whereas glutamate is the substrate of the second group
(EC: 4.1.1.15, identifier starting with DCE). The data set
was constructed by selecting all sequences of the PFAM
family pyridoxal_deC which had an unique annotation for
the substrate specificity in the CATALYTIC ACTIVITY field
of the corresponding SWISSPROT entries. This resulted in
35 sequences with glutamate specificity and 37 sequences
with specificity for tyrosine. An alignment of these 72
sequences was obtained using Clustalw [31]. Subse-
quently, a phylogenetic tree was calculated using proml
[32], which showed that the studied tyrosine decarboxy-
lases are not monophyletic. Whereas the position of the
sequences within the groups were frequently only poorly
supported, the relation of the four groups to each other
was revealed in all of the 100 bootstraps [see Additional
file 1: Supplemental Figure S1]. Thus, the catalytic specif-
icity for tyrosine arose independently in archaea (identi-
fier starting with MFNA) and plants (TYDC). No tree
based method will be able to identify the two groups with
the differing substrate specificity. We used this dataset to
test if our method was able to dig out the small signal of
substrate binding differences covered by a strong phyloge-
netic signal.

While the NEC assigned two clusters, the separation of the
glutamate and tyrosine subclasses proved to be very chal-
lenging without labels. The average performance over 30
repetitions was an accuracy of 51% (SD: 0.3%). When
adding the power of the partially supervised framework to
the clustering by randomly selecting different numbers of
labels for the two subclasses a different picture emerged.
The average accuracies based on 30 repetitions for differ-
ent amounts of randomly selected labels per class are
shown in Fig. 8. The average clustering accuracy increased
monotonously with the number of labeled samples.
While the average accuracy improved significantly in the
range of 5%-16% labeled samples, the variance also
increased. This is most likely an effect of the random selec-
tion of labels. Indeed, the quality of the labeling is crucial
for the performance of partially-supervised approaches
[33]. When outliers of a class were labeled, the labeling
could even have a negative impact on the clustering per-
formance. This issue is increasingly receiving attention in
the machine learning community [34]. For about 22%
labels the variance decreased again and models with per-
fect accuracy and zero variance (over the 30 repetitions)
were obtained for more than 22% labels.

The unsupervised clusterings returned a very low-vari-
ance, highly robust clustering of the sequences. These
clusterings did not reflect the tyrosine/glutamate sub-
families and so the question was whether they represent
some other biological context. Upon examination it
became clear that the unsupervised clustering split the
data set based on phylogenetic divergence. One cluster
contained predominantly archaeal and bacterial
sequences, the other metazoa and viridiplantae (i.e. green
plants). Based on this taxonomic classification of the
sequences, the clusterings had an average accuracy of
about 82%. This means that for the unsupervised setup,
the clustering picked up a decomposition of the sequences
which, while being biologically meaningful in itself, did
not reflect the specific question we were interested in. This
problem was overcome by including prior knowledge in
form of sequence labels. These results illustrated nicely
how the partially supervised approach improved the
parameter estimation and structure learning by guiding it
away from clusterings which were not consistent with the
biological question under consideration. However, the
high variance for moderate amounts of labeled samples
again underlined the importance of the label selection
procedure.

In order to quantify the impact of label selection, we split
the results shown in Fig. 8 in cases where the phylogenet-
ically divergent groups with glutamate specificity TYDC/
MFNA were linked by the labeling (i.e. at least one TYDC
and MFNA sequence was labeled) and cases where there
was no link. The average accuracies for the two cases are

Evaluation of accuracy for different amounts of labels on the decarboxylase dataFigure 8
Evaluation of accuracy for different amounts of labels 
on the decarboxylase data. Average accuracy for different 
numbers of randomly chosen labels for the pyridoxal-
dependent decarboxylase domain data set. The error bars 
show the standard deviation over thirty repetitions.
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shown in Fig. 9. Accuracies of the cases where TYDC/
MFNA were linked are shown in red, other cases in blue.
The average accuracies of labelings with TYDC/MFNA
were higher. For 6 labels (~8% labels out of 72
sequences), the average accuracy improved from 69% to
90% for the cases where TYDC and MFNA were linked. It
is also noteworthy that the variances of the average accu-
racies were still large. These results showed how the inte-
gration of additional biological prior knowledge (in this
case the common function of TYDC and MFNA) could
improve the clustering.

WW domain family
The WW domain is a small protein module of about 40
amino acids, which forms a triple stranded anti-parallel β-
sheet. It is involved in protein-protein interactions and its
target sequences are usually proline rich or contain phos-
phorylated serine/threonine sites. Based on the sequence
of their ligands, WW domains have been grouped into
three functionally different classes (I, II/III and IV) [35].
Using protein arrays, the ligand preferences for 49 human
WW domains of the two most populated classes, I and II/
III were determined [15]. Here, we asked the question,
whether the ligand based classification can be recovered
using only the domain sequences. The NEC model selec-
tion gave a two cluster model as optimal. The domains
were correctly classified with accuracy 96% with this
model. This result was highly robust, 30 repetitions of the
clustering gave an average accuracy of 96% (SD 1%).
When performing the same setup in a partially-supervised

manner with randomly selected labels, the same results
were obtained for any number of labels.

Based on the optimal unsupervised clustering according
to the NEC, the positions of the alignment were ranked by
their information for separating the clusters (Fig. 11
shows the ranked scores). The main structural difference
between members of Group I and of Group II/III is the
existence of an additional binding site, the XP2 groove in
the latter. Of three residues which form the XP2 groove
[36], two were identified within the five top ranking posi-
tions (Fig. 10). Thus, our method was not only able to
identify the correct clustering of this domain, it also iden-
tified the sites responsible for the functional difference
without prior knowledge.

SH3 domain family
Similar to the WW domain, the src homology domain 3
(SH3) is a protein interaction module binding to polypro-
line regions. Its preferred binding partners are character-
ized by a structural motive, the polyproline type II helix.
Two types of binding mode can be distinguished based on
the direction of the helix in the binding groove [37]. In
contrast to the WW domain, these different binding pref-
erences are not caused by two different binding patches

Evaluation of accuracy for different amounts of labels linking TYDC and MFNAFigure 9
Evaluation of accuracy for different amounts of labels 
linking TYDC and MFNA. Average accuracy for different 
numbers of randomly chosen labels for cases where the labe-
ling links TYDC and MFNA sequences (red) and other labe-
lings (blue). The standard deviation over thirty repetitions is 
shown by the error bars.

0 5 10 15 20 25 30 35 40
Percentage of labeled samples

0

20

40

60

80

100

C
lu
s
te
ri
n
g
a
c
c
u
ra
c
y

Comparison of labelings with and
without TYDC/MFNA linking

TYDC/MFNA linking

other labeling

Evaluation of predicted functional sites in the FBP11 WW1 structureFigure 10
Evaluation of predicted functional sites in the FBP11 
WW1 structure. Structure of FBP11 WW1. Highlighted 
are positions specific for ligand binding by the XP2 groove 
identified by our method (blue), not identified by our method 
(orange) and further positions identified as important for the 
classification (red). Ligand in yellow
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on the domain, rather it is one site responsible for these
interactions. This makes an automated classification and
identification of specificity inducing sites even more chal-
lenging than in the case of the WW domain.

We analyzed data from a large scale interaction study on
20 yeast SH3 domains [16] which classified each domain
into one of three groups (I, II and Unusual) based solely
on their ligands. Some of the domains showed interac-
tions with both types of polyproline helices, indicating
that even biologically there is no clear separation between
these groups. Out of the twenty SH3 domains in the data
set, eight fell unequivocally into class I, four into class II,
five showed binding for both classes (I and II) and three
showed an unique, unusual binding pattern. For the par-
tially-supervised clusterings 1-6 labeled samples from
each of the classes I and II were selected at random. This
corresponds to 10%-60% labeled samples out of the 20
sequences in the data set. The structure of the SH3 domain
of PEX13 (Fig. 12) was used as reference.

For the the models trained with two labels per class, NEC
model selection picked two components as optimal and
the clustering gave a clear separation of class I (with two
of the unusual domains) and classes II and I/II (and the
remaining unusual domain). The separation was com-
plete except for two misclassifications, one for classes I
and II each. With respect to the I vs. (II, I/II) class separa-
tion, this amounted to an accuracy of 78%. To quantify
the robustness of this result and the performance for
larger number of labels, average accuracies over thirty rep-
etitions were computed Fig. 13. Thirty repetitions of the

two label setup had an average accuracy of around 65%
(SD 12%). In the unsupervised approach we observed
average accuracies of 80% (SD 11%) for 30 repetitions.
Thus, the partially-supervised setup had a detrimental
effect on clustering performance with up to four labels per
class. Probably the main reason was again the random

Ranking of alignment positions for the WW data setFigure 11
Ranking of alignment positions for the WW data set. 
Ranking of positions in the alignment for the WW data set.
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Evaluation of predicted functional sites in the PEX13 SH3 domain structureFigure 12
Evaluation of predicted functional sites in the PEX13 
SH3 domain structure. Structure of Yeast SH3 domain 
from PEX13 (green) and bound peptide ligand (yellow). Resi-
dues of the canonical binding sites identified by our method 
in blue, further important sites in red

Evaluation of accuracy for different amounts of labels on the SH3 domain dataFigure 13
Evaluation of accuracy for different amounts of labels 
on the SH3 domain data. Average accuracy for different 
numbers of randomly chosen labels for the SH3 domain data 
set. The error bars show the standard deviation over thirty 
repetitions.
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selection of labels for the partially supervised parameter
training. Although the average accuracy was better, the
optimal unsupervised model chosen by NEC had one
misclassification more than the one from the partially-
supervised clusterings with two labels per class (three mis-
classifications instead of two).

As the clustering results revealed a sufficient overlap with
the ligand based classification, the next question was,
whether the sites of highest importance for the clustering
are indeed involved in the ligand binding. One interesting
aspect of the CSI structure learned for the SH3 data was,
that there were almost no completely uninformative posi-
tions in the alignment (Fig. 14). This showed the high het-
erogeneity of the sequences involved, where each position
carried at least some information about cluster separation.
In order to evaluate the ranking, the highest scoring sites
were mapped on the structure of the Pex13p SH3 domain.
This domain contains a second interaction site, which we
did not consider, as it is not present in other members of
this group. We found that of the 10 highest scoring resi-
dues 5 are directly involved in ligand interaction, i.e.
"their accessible surface area dropped by more than 50%
or their backbone amides were shifted considerably after
binding of the ligand" [38] (Fig. 12). The alignment of the
ten best scoring positions is shown in Fig. 15. The previ-
ously reported functional residues are marked in yellow.

Interestingly, other sites directly involved in the interac-
tion yielded low scores. The SH3 domain of Sla1
([PDB:2JT4]) contains five primary binding interface
positions, Tyr362, Phe364, Trp391, Pro406 and Phe409.
These positions were listed at the very end of the ranking,
within the last nine positions, and were found to be unin-
formative for the clustering. Thus, our method identified
those sites, which are responsible for differences in bind-

ing between the family members. Complementary, it
rejected those, which are of importance in all family mem-
bers.

Comparison with other methods
The general principle underlying most methods for the
prediction of functional residues, independent of the spe-
cific metric used, is to contrast the amino acid composi-
tion in the alignment between different clusters. As such,
the quality of the clustering is crucial for the subsequent
prediction of functional residues. Therefore, in the follow-
ing we evaluate the clustering performance of the CSI mix-
tures.

In order to assess the performance of our method in com-
parison to other state-of-the-art procedures, we computed
clusterings for all the data sets using five different meth-
ods. The CLUSS 3.0 [10,39] algorithm is a tree-based clus-
tering method which does not rely on an alignment. In
the original papers CLUSS has been compared with favo-
rable results to a variety of protein clustering methods.
The clusterings were performed using the CLUSS server at
http://prospectus.usherbrooke.ca/CLUSS/Server/
Index.html. Additionally we applied four methods which
combine clustering and functional residue prediction. The
ProteinKeys algorithm [13] finds subgroups and putative
functional residues by combinatorial entropy optimiza-
tion http://www.proteinkeys.org/proteinkeys/. The
TreeDet [14] server http://treedetv2.bioinfo.cnio.es/
treedet/index.html offers two different methods for clus-

Ranking of alignment positions for the SH3 data setFigure 14
Ranking of alignment positions for the SH3 data set. 
Ranking of positions in the alignment for the SH3 data set.
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Evaluation of predicted functional residues for the SH3 dataFigure 15
Evaluation of predicted functional residues for the 
SH3 data. Top ten ranked alignment positions on the SH3 
data set. The experimentally verified ligand interacting sites 
are marked in yellow.
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tering and functional residue prediction: the TreeDet-S is a
tree-based method which tries to find optimal tree cuts
and TreeDet-S3DET is based on dimensionality reduction
by multiple correspondence analysis. All methods were
run on the respective servers with default parameters.

In addition to domains described in detail above, we
revisited a previously analyzed data set [18]. The align-
ment of the malate/lactate dehydrogenase (LDH/MDH)
family (PFAM PF00056) is a benign test case for clustering
and functional residue prediction. The data set is small
(29 sequences, 16 LDH, 13 MDH) and there is a single
experimentally verified specificity-determining position
(Arg86 with respect to PDB 1IB68) with very strong
(almost perfect) subgroup specific conservation. For
details on the CSI mixture clustering on this data, refer to
[18].

Table 2 summarizes the accuracy values of all clusterings
in comparison to the optimal unsupervised (i.e. unla-
beled) results determined by the NEC model selection of
the CSI mixtures. The WW data set was rejected by the
TreeDet server for being too short (fewer than 50 amino
acids).

Generally the CSI mixtures performed favorably. In the
dehydrogenase data, there is a strong correlation between
the clustering accuracy and the presence of the true specif-
icity inducing residue in the predicted functional residues.
For those methods with good clustering performance (CSI
mixtures, TreeDet-S, TreeDet-S3DET) Arg86 was correctly
predicted to be functional, whereas the other method
(ProteinKeys) did not (note that CLUSS is a pure cluster-
ing method and does not generate predictions for func-
tional residues). This underlined the importance of a high
quality clustering as a necessary condition for the predic-
tion of biologically valid functional residues.

The ProteinKeys method achieved rather mediocre clus-
tering accuracies. The main reason was the inflated
number of clusters returned by the method. This suggests
that the ProteinKeys method has the implicit assumption
that the data contains a larger number of functional sub-
groups, which makes it less suited for the small, highly
diverse data sets which are the focus of this work.

To test whether this result was exemplary for other tree
based methods, we calculated phylogenetic trees for the
four analyzed domain families. Starting with the multiple
alignments of the families, 100 bootstrap replicates were
generated with the seqboot program [32]. Finally, trees
were calculated using proml and a consensus tree was gen-
erated by consense [32]. The decarboxylase tree captured
the phylogenetic partitioning as described above. As
expected for the phosphatases, the inactive and the active
members were separated with a bootstrap support of 100.
This was in contrast with the other two data sets where the
resulting tree did not show reliable bootstrap values [see
Additional file 1: Supplemental Figure S2 - S4 for the
bootstrap trees]. The average bootstrap values per data set
were 41.2 (SD 34.7) for the SH3 data and 31.6 (SD 25.1)
for the WW domains. From the high standard deviation it
can be seen, that beside some edges with decent support,
there were also edges with almost no support in the boot-
strap samples. With the usually accepted bootstrap cutoff
of 75, the usefulness of the tree was highly dubious. In
contrast, our method gave reliable results even in the chal-
lenging cases of short and extremely divergent domains
(Fig.5), which were intractable for tree based methods.
For all four data sets the median identity was at or below
(~35%) the so called protein twilight zone.

Discussion & Conclusion
Domains are the structural, evolutionary and functional
building blocks of proteins. A domain based analysis is a
fundamental step in predicting the function of a protein.
Still, this step is hampered by the fact that different mem-
bers of the same domain family can perform vastly differ-
ing functions. Here, we used a CSI mixture clustering
method augmented with partially-supervised learning to
assign domains to a functional subclasses. Additionally,
our method predicts residues relevant for the specific
function of a subclass. This information can directly be
used in the experimental characterization of the protein.
The application of our method to four domain families
revealed a good classification and identified known func-
tional residues even for the selected, highly challenging
families (receptor tyrosine phosphatases, decarboxylases,
WW and SH3 domains).

Table 2: Method comparison. Comparison of accuracies of the CSI mixtures and the CLUSS, ProteinKeys, TreeDet-S and TreeDet-
S3DET methods.

CSI mixtures CLUSS ProteinKeys TreeDet-S TreeDet-S3DET

dehydrogenases 100% 76% 71% 81% 97%
SH3 80% 63% 61% 69% 57%
WW 96% 69% 64% - -

phosphatases 100% 85% 69% 64% 87%
decarboxylases 51% 68% 66% 49% 77%
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It is interesting to contrast the different effects of the
extension to partially-supervised learning on these four
data sets. For the WW and phosphatase domain data, the
unsupervised clustering already yielded a very high qual-
ity clustering and as such it is not unsurprising that a min-
imal number of labels did not have a significant effect on
the results.

For the yeast SH3 domain data set, the addition of ran-
dom labels actually caused more noise in the clustering
than compared to the unsupervised case. There are a
number of possible explanations for the apparent disad-
vantage the partially-supervised framework had on the
SH3 data. First of all, the labels used for the 30 repetitions
of the partially-supervised setup were chosen at random
and therefore it is likely that samples which are outliers
within their class were labeled. This can overemphasize
these outliers in the characterization of the cluster center,
especially if only few labels are available, as was the case
in our setup. This effect of low quality labels having a det-
rimental effect on clustering performance has been
described previously [33]. From this perspective, the
results on the SH3 data can be seen as a cautionary tale to
take proper care that the chosen labels chosen are of high
quality. It is also noteworthy that even though the average
performance of the partially-supervised method
decreased, the best model chosen according to NEC was
one misclassification better than the model obtained
from the unsupervised setup. Finally, for the decarboxy-
lase data the integration of prior knowledge greatly
increased the quality of the clustering solution with
respect to a subgrouping of the data that was informative
for the biological classification we were studying. At the
same time, just as with the SH3 data, the high variance
observed for the labeled data sets underlined the impor-
tance of the choice of labels. Bearing that in mind, if the
labeled samples are known to be of high quality, the par-
tially-supervised approach can greatly improve the clus-
tering setup.

In addition to the functional grouping, our method also
provides a ranking of sites important for each group. As
exemplified by the SH3 domain, the method is able to dis-
tinguish 'core' position, which are functional in all family
members, from those which are responsible for the sub-
group specific function. This information could guide the
further experimental characterization of the domain fam-
ily.

The software we developed to carry out this analysis PyMix
- the Python Mixture Package is freely available from http:/
/www.pymix.org. For future work it would be interesting
to investigate additional data sets, especially protein
sequences which arose from the kind of high-detail stud-
ies which yield data sets that do not lend themselves to

study with tree-based methods. On the theoretical side it
would be interesting to extend the framework with more
complex notions of partial-supervision such as pair-wise
positive and negative constraints between samples.
Finally, we intend to devise additional improvements to
the running time of the structure learning to optimize per-
formance for the analysis of large scale data sets.
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