Human Golgi Antiapoptotic Protein Modulates Intracellular Calcium Fluxes

Fabrizio de Mattia,* Caroline Gubser,† Michiel M.T. van Dommelen,* Henk-Jan Visch,‡ Felix Distelmaier,‡ Antonio Postigo,† Tomas Luyten,§ Jan B. Parys,§ Humbert de Smedt,§ Geoffey L. Smith,† Peter H.G.M. Willems,‡ and Frank J.M. van Kuppeveld*

Departments of *Medical Microbiology and [‡]Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands; † Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, United Kingdom; and § Laboratory of Molecular Signalling, Division of Physiology, Department of Cell Biology, Catholic University Leuven, B-3000 Leuven, Belgium

Submitted May 11, 2009; Accepted June 16, 2009 Monitoring Editor: John York

Golgi antiapoptotic protein (GAAP) is a novel regulator of cell death that is highly conserved in eukaryotes and present in some poxviruses, but its molecular mechanism is unknown. Given that alterations in intracellular Ca²⁺ homeostasis **play an important role in determining cell sensitivity to apoptosis, we investigated if GAAP affected Ca2 signaling.** Overexpression of human (h)-GAAP suppressed staurosporine-induced, capacitative Ca²⁺ influx from the extracellular space. In addition, it reduced histamine-induced Ca²⁺ release from intracellular stores through inositol trisphosphate **receptors. h-GAAP not only decreased the magnitude of the histamine-induced Ca2 fluxes from stores to cytosol and mitochondrial matrices, but it also reduced the induction and frequency of oscillatory changes in cytosolic Ca2.** Overexpression of h-GAAP lowered the Ca²⁺ content of the intracellular stores and decreased the efficacy of IP₃, **providing possible explanations for the observed results. Opposite effects were obtained when h-GAAP was knocked** down by siRNA. Thus, our data demonstrate that h-GAAP modulates intracellular Ca²⁺ fluxes induced by both **physiological and apoptotic stimuli.**

INTRODUCTION

Recently, a novel regulator of cell death was identified (Gubser *et al.,* 2007). This protein was named Golgi antiapoptotic protein (GAAP) because of its predominant localization in the Golgi and its ability to suppress apoptosis. GAAP is a predicted seven-transmembrane protein and was identified initially in certain poxviruses (vaccinia virus and camelpox virus) where it affects virus virulence. GAAPs are highly conserved in a broad range of organisms including human, orangutan, dog, mouse, rat, *Xenopus laevis,* and zebrafish, and related proteins are present in *Drosophila* and *Arabidopsis*. Human (h)-GAAP is expressed ubiquitously in human tissue and shares 73% aa identity with viral (v)-GAAP. Stable expression of either v-GAAP or h-GAAP suppressed cell death induced by a broad variety of intrinsic and extrin-

This article was published online ahead of print in *MBC in Press* (http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E09–05–0385) on June 24, 2009.

Address correspondence to: Peter H.G.M. Willems (p.willems@ ncmls.ru.nl) or Frank J.M. van Kuppeveld (f.vankuppeveld@ncmls. ru.nl).

Abbreviations used: ATP, adenosine triphosphate; ER, endoplasmic reticulum; GAAP, Golgi antiapoptotic protein; HA, hemagglutinin; IP₃, inositol-1,4,5-trisphosphate; IP₃R, IP₃ receptor; PMCA, plasma membrane Ca²⁺-ATPase; SERCA, sarcoendoplasmic reticulum Ca²⁺-ATPase; siRNA, small interfering RNA; TG, thapsigargin.

sic apoptotic stimuli. Conversely, knockdown of h-GAAP in tissue culture cells by siRNA resulted in cell death.

 $Ca²⁺$ functions as a ubiquitous intracellular signal to many different biological processes. Ca^{2+} -induced signaling arises from Ca^{2+} entry across the plasma membrane and/or release from intracellular stores, predominantly the endoplasmic reticulum (ER) and Golgi. Ca^{2+} is released from intracellular stores by inositol-1,4,5-trisphosphate (IP_3) , which interacts with IP₃ receptors (IP₃Rs) that are Ca²⁺ release channels present in the ER and Golgi (Pinton *et al.,* 1998). Furthermore, IP₃R activity is modulated by Ca^{2+} itself, ATP, phosphorylation, and interacting proteins (Foskett *et al.,* 2007). Ca^{2+} that enters the cytosol activates cytosolic enzymes and is taken up by mitochondria, which play an important role in decoding Ca^{2+} signals during normal cell physiology (Berridge et al., 2003). Mitochondrial Ca²⁺ uptake is mediated by a low-affinity Ca^{2+} uniporter that senses the high Ca^{2+} microdomains that are established at the tight junctions between the ER and mitochondria (Rizzuto *et al.,* 1998). Recently, tight junctions with a putative role in Ca^{2+} signaling were also observed between Golgi and mitochondria (Dolman *et al.,* 2005).

Alterations in the finely tuned intracellular Ca^{2+} homeostasis and compartmentalization contribute to the induction of apoptosis. The switch from the control of physiological functions to the involvement in this death program most likely entails changes in the tightly regulated spatiotemporal Ca^{2+} signaling pattern affecting cytosolic effector proteins and effector organelles (Orrenius et al., 2003). Ca²⁺

signaling between storage organelles and mitochondria plays an important role in sensitizing cells to apoptosis (Pinton and Rizzuto, 2006). Molecular and pharmacological approaches that lowered Ca^{2+} levels in the stores and thereby reduced Ca^{2+} signaling to the mitochondria, protected cells from apoptosis, whereas conditions that increased Ca^{2+} levels in the stores had the opposite effect (Ma *et al.,* 1999; Nakamura *et al.,* 2000; Pinton *et al.,* 2001; Pinton and Rizzuto, 2006). Moreover, both antiapoptotic (e.g., Bcl-2 and Bcl-X_L) and proapoptotic (e.g., Bax and Bak) partially localize at the ER to regulate Ca^{2+} signaling (Oakes *et al.*, 2003; Chen *et al.,* 2004; White *et al.,* 2005).

On the basis of the localization of h-GAAP at intracellular $Ca²⁺$ stores and the established importance of intracellular $Ca²⁺$ signaling in sensitizing cells to apoptosis induction, we hypothesized that the antiapoptotic role of h-GAAP may be mediated by modulating the Ca^{2+} content of these stores and/or the flux of Ca^{2+} between these stores and the closely opposed mitochondria. Here, evidence is presented that h- $G\widehat{A}AP$ alters intracellular Ca^{2+} fluxes induced by both a physiological stimulus (histamine) and an apoptotic stimulus (staurosporine).

MATERIALS AND METHODS

Cells and Medium

U2OS-neo and U2OS-h-GAAP cell lines were described previously (Gubser *et al.,* 2007). Cells were grown in minimal essential medium (Invitrogen, Carlsbad, CA) supplemented with 10% (vol/vol) fetal bovine serum and 10 μ g/ml Ciproxin (Bayer, Newbury, Berks, United Kingdom) at 37° C in a 5% CO₂ atmosphere.

Antibodies, Conjugates, and Reagents

Mouse monoclonal antibodies against IP₃R3, calnexin, Bcl-2, and paxillin were obtained from BD Transduction Laboratories (Lexington, KY). Mouse mAb against protein disulfide isomerase (PDI) was from StressGen (San Diego, CA), against Bcl-XL from Santa Cruz Biotechnology (Santa Cruz, CA) and against α-tubulin from Upstate Laboratories (Lake Placid, NY). Rabbit polyclonal antibodies against Bax and Bak were from Cell Signaling Technology (Beverly, MA). Rabbit polyclonal antibody (Rbt 476) against IP3R (all isoforms) was described previously (Ma *et al.,* 2002). Coelenterazine-W, coelenterazine-N, fura-2 acetoxymethyl ester (fura-2/AM), and Rhod-2/AM were from Molecular Probes (Eugene, OR), histamine and ionomycin from Sigma-Aldrich (Poole, Dorset, United Kingdom), 2-APB from Calbiochem (La Jolla, CA), and STS from Roche (East Sussex, United Kingdom).

RNA Interference

Sequences of small interfering RNA1 (siRNA1) and siRNA2 (Ambion, Austin, TX) were described previously (Gubser *et al.,* 2007). Cells were grown to 50% confluency in six-well plates and transfected with 1μ g of each of the above siRNAs using siFECTamine (IC-Vec; www.icvec.com) according to the manufacturer's instructions.

Immunoprecipitation

Coimmunoprecipitation was performed as described for Bcl-2 interaction
with IP₃R (Chen *et al.,* 2004). Abs used were anti-IP₃R3 Ab (BD Biosciences, Poole, United Kingdom; 1:200), anti-HA mAb (1:200) and the control Ab used was a mouse IgG2a Ab-1 (Stratech Scientific, Bedfordshire, United Kingdom; 1:150). Proteins were resolved by SDS-PAGE and transferred onto Hybond-P PVDF membranes (Amersham, Bucks, United Kingdom).

Digital Imaging Microscopy of Cytosolic and Mitochondrial Ca2 Concentrations

Cells (3×10^5) seeded on 24-mm glass coverslips were coloaded with 3μ M fura-2/AM and 5 μ M rhod-2 AM for 25 min at 37°C and used for monitoring simultaneous changes in mitochondrial and cytosolic $Ca²⁺$ concentration as described (Visch *et al.,* 2004). The fura-2 and rhod-2 dyes were excited at 380 and 540 nm, respectively. The fura-2 fluorescence emission ratio at 492 nm was monitored as a measure of the free cytosolic Ca^{2+} concentration after alternating excitation at 340 and 380 nm. In all experiments, the fluorescence emission signal was normalized to its prestimulatory value, which was set at 1.

Luminescence Monitoring of Ca2

For luminescence measurement of Ca^{2+} , 5×10^4 cells were seeded on 13-mm glass coverslips, transfected with targeted aequorin (Pinton *et al.,* 1998) using FuGENE 6 reagent (Roche), and analyzed as described (Visch *et al.,* 2004; Visch *et al.,* 2006).

45Ca2 Fluxes

⁴⁵Ca²⁺ fluxes were performed as described (Kasri *et al.,* 2006). Briefly, cells were grown to confluency, permeabilized with saponin, loaded with $45Ca^{2+}$ and washed with efflux medium containing $4 \mu M$ thapsigargin (TG) to block ATP-dependent Ca²⁺ uptake. IP₃-stimulated Ca²⁺ release was initiated by the addition of efflux medium containing the indicated concentration of IP_{3} , and 2 min later the efflux medium was collected and counted for radioactivity. After correction for the passive leak induced by TG alone, the amount of radioactivity released by IP_3 was expressed as a percentage of the total amount of radioactivity present in the stores as determined by addition of the
Ca²⁺ ionophore A23187. To assess the rate of passive Ca²⁺ leakage induced by TG alone, the efflux medium was replaced every 2 min during 18 min. At the end of the experiment, all residual radioactivity was released by incubation with 1 ml of 2% SDS for 30 min. For each data point, the amount of radioactivity that was still present in the stores was calculated, expressed as a percentage of the total amount present at the onset of the experiment, and plotted as a function of time.

Calculations

Data are presented as mean values \pm SEM. Differences were tested for significance using the Student's *t* test.

RESULTS

h-GAAP Decreases Cytosolic and Mitochondrial Ca2 Rises Triggered by an Apoptotic Stimulus

In this study, possible effects of h-GAAP on intracellular $Ca²⁺$ signaling were investigated using U2OS cells that stably expressed hemagglutinin (HA)-tagged h-GAAP predominantly at the Golgi but also at the ER (hereafter referred to as h-GAAP cells; Gubser *et al.,* 2007). Essentially the same results were obtained with two independently constructed h-GAAP cell lines. Except in experiments in which parental U2OS cells were transfected with siRNA, U2OS cells containing the empty plasmid vector were used as a control (hereafter referred to as U2OS-neo cells). Western blot analysis was performed to exclude the possibility that h-GAAP overexpression affected the expression levels of ER chaperones or Bcl-2 family members. The data show that the expression levels of calnexin, PDI, Bcl-2, Bcl- X_L , Bax, and Bak in h-GAAP cells was not altered compared with U2OS-neo cells (Supplementary Figure S1).

Previously, staurosporine (STS)-induced apoptosis was demonstrated to be partially, but significantly, inhibited in h-GAAP cells (Gubser *et al.,* 2007). The exact mechanism by which STS induces cell death is unknown, but STS-induced cell death is at least partially Ca²⁺-dependent (Oakes et al., 2003; Chen *et al.,* 2004; White *et al.,* 2005). Therefore, we first addressed a possible role of h-GAAP in the STS-induced changes in intracellular Ca²⁺ homeostasis (Boehning *et al.*, 2003). To this end, cells were coloaded with the cytosolic Ca^{2+} indicator fura-2 and the mitochondrial Ca^{2+} indicator rhod-2, treated with STS, and analyzed by digital imaging microscopy. Initial measurements of the resting cytosolic $Ca²⁺$ concentration using fura-2 revealed no detectable differences between U2OS-neo and h-GAAP cells (resting fura-2 ratio in U2OS-neo cells was 0.35 ± 0.02 , n = 85 cells, measured on 5 d; resting fura-2 ratio in h-GAAP was 0.35 \pm 0.01, n = 85 cells, measured on 5 d). On addition of 2 μ M STS, U2OS-neo cells displayed a gradual increase in both mitochondrial and cytosolic Ca^{2+} concentration (Figure 1, A and B). Both increases were virtually abolished by 2-aminoethoxy-diphenylborate (2-APB), a drug that suppresses extracellular Ca^{2+} entry by inhibiting store-operated Ca^{2+} channels and indicating that STS acts to stimulate the capac-

Figure 1. h-GAAP reduces staurosporine and histamine-induced Ca^{2+} rises in the cytosol and the mitochondria. (A and B) Fura-2 and rhod-2 coloaded cells were excited alternately at 380 and 540 nm for digital imaging microscopy of the STS $(2 \mu M)$ -induced changes in rhod-2 (A) and fura-2 (B) fluorescence, respectively, in the absence or presence of 2-APB. STS was added at 120 s after the onset of monitoring. The fluorescence emission signal was normalized to its prestimulatory value. Typical records depicting changes in mitochondrial and cytosolic Ca^{2+} are shown (average of 13 cells is shown). In B, the scale representing the fura-2 380-nm fluorescence is inverted to give a more intuitive representation of the rise in cytosolic Ca²⁺. (C) Fura-2–loaded cells seeded on glass coverslips were treated with 100 μ M histamine and changes in cytosolic Ca^{2+} were monitored by digital imaging microscopy. In each experiment, the fluorescence emission ratio was normalized to its prestimulatory value, which was set at 1. Left, typical records depicting changes in cytosolic Ca^{2+} (average of 30–40 cells is shown); right, the average \pm SEM of the peak amplitude from three independent experiments performed in duplicate. * p 0.05, *** $p < 0.001$. (D) Luminescence analysis of histamine-induced changes in Ca^{2+} concentration in the mitochondrial matrix of neo

and GAAP cells transfected with mitochondrion-targeted aequorin. * $p < 0.05$. (E) IP₃R expression levels in neo and h-GAAP cells lysates were determined by immunoblotting using an antibody recognizing all three IP_3R isoforms. Proteins were resolved by using $4-15%$ linear gradient SDS-PAGE.

itative entry of extracellular Ca²⁺ (Peppiatt *et al.*, 2003). Similarly, no increases were observed when using Ca^{2+} -free medium (data not shown). Importantly, expression of h-GAAP strongly reduced the STS-induced increase in both mitochondrial and cytosolic Ca^{2+} concentration.

To gain further support for a role of h-GAAP in regulating STS-induced Ca^{2+} fluxes, we next assessed the effect of h-GAAP down-regulation. Parental U2OS cells were transfected with siRNA1 (hereafter referred to as h-GAAP siRNA) or siRNA2 (hereafter referred to as control siRNA), shown before to decrease h-GAAP or be without effect on h-GAAP expression, respectively (Gubser *et al.,* 2007). Cells were tested for their response to STS at 2 d after transfection, at which time they were shown before to be still alive (Gubser *et al.,* 2007). Cells transfected with h-GAAP siRNA showed a much larger STS-induced increase in mitochondrial and cytosolic Ca^{2+} concentration than untreated U2OS-neo cells (Figures 1, A and B) or parental U2OS cells treated with either control siRNA or transfection reagent alone (data not shown). Also in h-GAAP siRNA-treated cells, the STS-induced increase in mitochondrial and cytosolic Ca^{2+} concentration was virtually completely inhibited by 2-APB. These results show that h-GAAP reduces the STSinduced increase in mitochondrial and cytosolic Ca^{2+} concentration, which depends on the influx of Ca^{2+} across the plasma membrane.

h-GAAP Decreases Histamine-induced Rises in Cytosolic and Mitochondrial Ca2

To gain more insight into a possible role of h-GAAP in the regulation of intracellular Ca^{2+} signaling, we investigated its effects on the increase in cytosolic and mitochondrial $Ca²⁺$ concentration evoked by the IP₃-generating hormone histamine. To prevent capacitative Ca^{2+} entry, stimulation with histamine was performed in the absence of extracellular Ca²⁺, i.e., after dye-loading, cells were washed in Ca²⁺ free medium, transferred to \tilde{Ca}^{2+} free medium containing 0.5 mM EGTA, and stimulated with histamine 1 min later. Under these conditions, 100 μ M histamine evoked a transient rise in cytosolic Ca^{2+} concentration, the amplitude of which was significantly reduced in h-GAAP cells (Figure 1C). Moreover, the upstroke of the Ca^{2+} transient induced by histamine appeared slower in h-GAAP cells than in U2OS-neo cells. To test the effects of h-GAAP on histamineinduced mitochondrial Ca^{2+} uptake, cells were transfected with a mitochondrial-targeted variant of the Ca^{2+} -sensitive photoprotein aequorin. Resting Ca^{2+} levels in the mitochondrial matrix were not significantly altered in h-GAAP cells (U2OS-neo cells, 0.038 \pm 0.010 $\mu \dot{M}$, n = 10 coverslips, measured on 3 d; h-GAAP cells, $0.034 \pm 0.009 \mu M$, n = 14 coverslips, measured on 3 d). Histamine evoked a transient increase in mitochondrial Ca^{2+} concentration, the amplitude of which was significantly decreased in h-GAAP cells ($p <$ 0.05; Figure 1D). Western blotting using an IP_3R antibody that recognizes all three subtypes revealed no detectable differences in the amount of IP_3R in U2OS-neo and h-GAAP cells (Figure 1E). These results indicate that h-GAAP can reduce the histamine-induced increase in mitochondrial and cytosolic Ca²⁺ concentration, mediated by IP₃Rs and, in this case, depending solely on the release of Ca^{2+} from intracellular stores.

h-GAAP Coimmunoprecipitates with the IP3R

The above results suggested that h-GAAP might interact with IP₃Rs thus providing a potential explanation for its inhibitory effect on the flux of Ca^{2+} through these receptors. Because currently there exists no good antibody against h-GAAP for immunoprecipitation purposes, we made use of

the HA-tag that was fused to h-GAAP. The results obtained show that the anti-HA mAb coprecipitated IP_3R subtype 3 $(\text{IP}_3\text{R}3; \text{Figure 2A})$, which is the most abundant subtype in U2OS cells (data not shown). The specificity of this reaction was confirmed by the failure of the antibody to precipitate any sarcoendoplasmic reticulum $Ca²⁺-ATP$ ase isoenzyme 2b (SERCA2b), the predominant SERCA protein in nonmuscle cells. In the reciprocal experiment, immunoprecipitation of IP₃R3 brought down h-GAAP (Figure 2B). These results demonstrate that h-GAAP interacts, either directly or indirectly, with the IP_3R .

h-GAAP Alters the IP₃-induced Ca²⁺ Release Response *from Intracellular Ca*²⁺ Stores in Permeabilized Cells

Because h-GAAP can be coprecipitated with IP_3Rs , we next assessed the possibility that it might affect the characteristics of the IP₃-induced Ca²⁺ release response. To gain access to the IP_3R , we made use of a permeabilized cell system. Cells were permeabilized with saponin, loaded to steady state with $45Ca^{2+}$, washed to remove excess ATP using an efflux medium containing the SERCA inhibitor TG to prevent Ca^{2+} -reuptake, and challenged with either the Ca^{2+} ionophore A23187, to determine total releasable $45Ca^{2+}$ or the indicated concentration of IP_3 . After 2 min, the time required for completion of the rapid phase of the IP₃-induced Ca^{2+} release response, the medium was removed, and the amount of $45Ca^{2+}$ released was determined, corrected for passive $45Ca²⁺$ leakage, and expressed as percentage of total releasable ${}^{45}Ca^{2+}$. Maximum stimulation with IP₃ released a significantly smaller fraction of total releasable Ca^{2+} in h-GAAP cells ($p < 0.005$, Figure 2C). The latter finding was not likely to be due to a decrease in the number of IP_3Rs because immunoblot analysis of cell lysates revealed no detectable difference in expression of the most abundant subtype 3 (Figure 2A).

Calculation of the EC_{50} value showed that h-GAAP did not affect the sensitivity for IP₃ (1.35 \pm 0.33 and 1.28 \pm 0.14 μ M IP₃ for U2OS-neo and h-GAAP cells, respectively). We observed a small effect of h-GAAP on the cooperativity of the IP₃-induced Ca²⁺ release response, as measured by calculation of the Hill coefficient (1.22 \pm 0.22 and 1.02 \pm 0.15 for U2OS-neo and h-GAAP cells, respectively), but this difference was not statistically significant. These results indicate that h-GAAP decreases the efficacy of IP_3 without altering its potency. It remains to be established whether this involves a direct or indirect interaction between h-GAAP and IP_3Rs .

h-GAAP Lowers the Amount of Stored Ca2 in Intact Cells

Next, we measured the steady-state Ca^{2+} content of IP₃Rregulated Ca^{2+} stores in intact cells expressing h-GAAP. To this end, cells were loaded with the cytosolic $\bar{C}a^{2+}$ indicator fura-2, transferred to a Ca^{2+} free medium, and treated either with the Ca²⁺ ionophore ionomycin (1 μ M) or the SERCA inhibitor BHQ (20 μ M). Because the Ca²⁺ content of these stores is maintained by a pump-leak system, SERCA inhibi-

Figure 3. h-GAAP reduces the Ca^{2+} filling state of the intracellular stores. (A and B) Fura-2–loaded cells were treated either with 20 μ M BHQ (A) or 1 μ M ionomycin (B) and changes in cytosolic Ca^{2+} were monitored as described in Figure 2C. Right panels, the average \pm SEM of the peak amplitude (A) or integrated curve (B) from three independent experiments performed in duplicate. * p 0.05. (C and D) Cells transfected with ER (C) and Golgi-targeted (D) aequorins were permeabilized with saponin, and then their \dot{Ca}^{2+} uptake and content were determined by active loading of the stores in a perfusion medium containing ATP and 0.1 μ M free Ca²⁺. Depicted are typical traces (left) and average \pm SEM values of three or four measurements (right). ** p < 0.01. (E) Ca²⁺ content of the intracellular stores (average \pm SEM) as analyzed by digital imaging microscopy at 20 and 40 h after transfection of the indicated siR-NAs. The average Ca^{2+} content of siRNA control-transfected cells was set at 100%. *** $p <$ 0.001. (F) Ca^{2+} filling state of the ER (left) and Golgi (right) in control siRNA and h-GAAP siRNA transfected cells as determined with targeted aequorins at 40 h after transfection. Average values \pm SEM of four coverslips is shown. One of three representative experiments is shown. $*$ p < 0.05.

tion will lead to passive release of stored Ca^{2+} into the cytosol. The results show that both BHQ (Figure 3A) and ionomycin (Figure 3B) evoked a transient rise in cytosolic $Ca²⁺$ concentration, the amplitude of which was significantly reduced in h-GAAP cells. Importantly, and in contrast to what was observed with histamine, the upstroke of the $Ca²⁺$ transients induced by BHQ and ionomycin was unaltered in h-GAAP cells.

To investigate the effects of h-GAAP on the Ca^{2+} concentration in ER and Golgi separately, cells were transfected with organelle-targeted aequorins, permeabilized with saponin at 20 h after transfection, and assayed for ATP-dependent Ca^{2+} uptake under "cytosolic" conditions at a free Ca^{2+} concentration of 0.1 μ M. In both organelles the steadystate Ca²⁺ concentration appeared lower (~20%) in h-GAAP cells ($p < 0.01$, Figure 3, C and D). Importantly, no major differences in the initial rate of Ca^{2+} uptake were observed, indicating that h-GAAP does not alter the SERCA pump capacity of the intracellular stores.

To establish more firmly that h-GAAP has an effect on the steady-state Ca^{2+} content of the intracellular stores, we next determined this content at different times after transfection of parental U2OS cells with h-GAAP siRNA. Comparison with parental U2OS cells transfected with control siRNA revealed no detectable difference at 20 h after transfection

(Figure 3E). At 40 h after transfection, however, the amplitude of the ionomycin-induced increase in cytosolic $C\hat{a}^{2+}$ concentration was significantly higher $(\sim 35\%)$ in h-GAAP down-regulated cells ($p < 0.001$). Organelle-targeted aequorins revealed that this increase in Ca^{2+} concentration occurred in both ER and Golgi ($p < 0.05$, Figure 3F).

*hGAAP Decreases the Sensitivity to Histamine Induction of Oscillatory Cytosolic Ca*²⁺ *Changes*

In the experiments described thus far, cells were stimulated with a "pharmacological" concentration of histamine (100 μ M). In the remainder of this study, we assessed the possible consequences of these findings on Ca^{2+} signaling in intact cells under more "physiological" conditions. Cells were loaded with fura-2 and superfused with medium containing (sub)micromolar concentrations of histamine. Digital imaging microscopy of individual cells revealed that 0.3 and 1.0 μ M histamine increased the cytosolic Ca²⁺ concentration in \sim 70 and \sim 95% of the U2OS-neo cells, respectively. For h-GAAP cells, these values were \sim 20 and \sim 70%, respectively, indicating a reduced sensitivity to hormonal induction of an increase in cytosolic Ca^{2+} concentration. In a small percentage of the responding U2OS-neo cells (\sim 5–10% at 1.0 μ M histamine), the initial large Ca²⁺ transient was followed by Ca^{2+} oscillations (Figure 4, A and B). These Ca^{2+} oscil-

Figure 4. h-GAAP reduces the sensitivity to hormonal induction of cytosolic Ca^{2+} oscillations and reduces their frequency. (A and B) Fura-2–loaded cells were stimulated with different concentrations of histamine at the indicated time and monitored for their Ca^{2+} response. (A) Average percentage of the responding cells (\pm SEM) that produce Ca²⁺ oscillations. ** p < 0.01. (B) Representative traces of three oscillating neo and three h-GAAP cells. (C and D) Fura-2–loaded cells transfected with either control siRNA or h-GAAP siRNA were stimulated with different concentrations of histamine at the indicated time and monitored for their Ca^{2+} response. (C) Representative histamine-induced Ca^{2+} oscillations of three cells transfected with either siRNA. (D) Average percentage of cells (\pm SEM) that respond with Ca²⁺ oscillations to the indicated histamine concentrations. * p 0.05.

lations were observed only rarely in the h-GAAP cells, indicating that the occurrence of these oscillations is prevented in these cells. Taken together, these data are in agreement with the idea that h-GAAP reduces IP_3R activity in intact cells.

We also tested the effect of h-GAAP down-regulation on cytosolic Ca^{2+} signaling. Parental U2OS cells transfected with either h-GAAP siRNA or control siRNA were monitored for histamine-induced oscillatory Ca^{2+} changes at 2 d after transfection (Figures 4, C and D). About \sim 5 and \sim 30% of control siRNA-transfected cells, displayed oscillatory Ca^{2+} changes in response to 0.3 and 1.0 μ M histamine, respectively. Similar percentages were observed in nontransfected parental U2OS cells (data not shown). Treatment with h-GAAP siRNA significantly increased the sensitivity of parental U2OS cells to histamine induction of oscillatory changes in cytosolic Ca²⁺ concentration (\sim 25 and \sim 45%) responding cells at 0.3 and 1.0 μ M histamine, respectively; $p \le 0.05$). Noticeably, a small number of cells responded already to a relatively low concentration of 0.1 μ M histamine and, occasionally, even spontaneous Ca^{2+} oscillations were observed (data not shown).

DISCUSSION

In this study, evidence is presented that h-GAAP, a novel regulator of cell death, reduces both extracellular Ca^{2+} influx evoked by staurosporine, a widely used apoptosis inducer, and intracellular Ca^{2+} release evoked by, histamine, known to exert its effect on intracellular Ca^{2+} through IP₃.

Using a permeabilized cell system, which allows experimental control of the cytosolic compartment, h-GAAP overexpression was demonstrated to lower the efficacy of IP_{3} , as demonstrated by a reduction of the maximum amount of total (A23187-) releasable Ca²⁺ that could be released by IP_3 . Because neither the amount of IP₃Rs nor their affinity for IP₃ were detectably altered in h-GAAP–overexpressing cells, this result suggests that h-GAAP either decreases the IP_3 sensitive part of the (A23187-) releasable Ca^{2+} store or, alternatively, decreases the Ca^{2+} release properties of the IP₃-channels. In intact cells, h-GAAP overexpression was shown to reduce the amount of total (ionomycin- or BHQ-) releasable Ca^{2+} , consistent with a reduced filling state of the intracellular stores. Consistent with the above results, the cytosolic and mitochondrial Ca^{2+} increases in response to a pharmacological histamine concentration (100 μ M) were down-regulated in intact cells overexpressing h-GAAP and up-regulated when h-GAAP was knocked down. Furthermore, stimulation with a more close to physiological concentration of histamine (1 μ M) revealed that h-GAAP rendered cells less sensitive to the induction of cytosolic Ca^{2+} oscillations, characteristic for these low concentrations of histamine. Together, these data suggest that h-GAAP reduces both the total amount of releasable Ca^{2+} and its maximum amount that can be released by IP_{3} , thereby attenuating IP₃-induced cytosolic and mitochondrial Ca²⁺ signaling.

How h-GAAP exerts these effects remains to be established. In this study, we showed that h-GAAP inhibits the influx of extracellular Ca^{2+} influx and decreases the IP₃mediated release of Ca^{2+} from the stores. In addition, we showed that h-GAAP coprecipitated with IP_3Rs , suggesting an interaction. Such an interaction, which may be either direct or indirect, could be involved in the ability of h-GAAP

to suppress Ca^{2+} fluxes. However, the observed effects of h-GAAP may equally well be explained by its ability to reduce the filling state of the $Ca²⁺$ stores. Therefore, the importance of this interaction for the observed function of h-GAAP requires further investigation.

A reduction in Ca^{2+} filling state of the intracellular stores is usually associated with an increase in capacitative Ca^{2+} entry across the plasma membrane, resulting in an increase in cytosolic Ca²⁺ concentration. However, under resting conditions no such increase in cytosolic Ca^{2+} concentration was observed in cells overexpressing h-GAAP, despite a decrease in the amount of total releasable Ca^{2+} . This result suggests that h-GAAP exerts an inhibitory effect on the process of capacitative Ca^{2+} entry. In agreement with this idea, the STS-induced increase in cytosolic and mitochondrial Ca^{2+} concentration, which depended completely on the presence of extracellular Ca^{2+} and was abolished by 2-APB, an inhibitor of capacitative Ca²⁺ entry channels, was decreased in cells overexpressing h-GAAP and was increased in cells in which this protein was down-regulated. STS and histamine increased the cytosolic Ca^{2+} concentration with different kinetics, a relatively slow increase after addition of STS versus a relatively fast increase after stimulation with histamine. In contrast to STS, histamine readily increased the cytosolic Ca^{2+} concentration in the absence of extracellular Ca^{2+} , reflecting the IP₃-induced release of Ca^{2+} from intracellular stores. The present finding that h-GAAP lowers the histamine-induced increase in cytosolic Ca^{2+} concentration in the absence of external Ca^{2+} strongly supports the idea that GAAP exerts its effect by reducing the IP_3R -mediated release of Ca²⁺ from intracellular stores. In doing so, h-GAAP likely also reduces the capacitative entry of \tilde{Ca}^{2+} . It remains to be established whether a similar mechanism underlies the inhibitory effect of h-GAAP on the STS-induced entry of extracellular Ca^{2+} .

The ability of h-GAAP to interfere with intracellular Ca^{2+} signaling provides a plausible explanation for its ability to suppress apoptosis. This idea is supported by observations that modulation of IP_3R activity (by antisense knockdown, genetic deletion, or using a cell-permeable inhibitory peptide that interferes with the IP_3R -cytochrome c interaction) rendered cells less sensitive to apoptosis triggered by both intrinsic and extrinsic pathways (Joseph and Hajnoczky, 2007). Moreover, Bcl-2 and Bcl- X_L , two major antiapoptotic proteins, interact with the IP_3R and alter its activity, though in opposite ways: Bcl-2 decreases the IP_3R opening probability, whereas Bcl-X_L increases it (Oakes *et al.*, 2003; Chen *et al.,* 2004; White *et al.,* 2005). The mechanism by which alterations in cellular Ca^{2+} handling sensitize or protect cells from apoptosis are as yet incompletely understood. Decreases in the amount of Ca^{2+} available for signaling may prevent cytotoxic Ca^{2+} fluxes between the stores and the cytosol and/or the mitochondria. Cell death–regulating proteins have also been linked to cellular metabolism (Hammerman *et al.,* 2004; Kim *et al.,* 2005; Skulachev, 2006). The ability of Bcl- X_L to increase the IP₃R opening probability was shown to elevate Ca^{2+} oscillations, resulting in enhanced mitochondrial activity and cellular bioenergetics under steady-state conditions (White *et al.,* 2005). h-GAAP may suppress apoptosis by down-regulating cytosolic and/or mitochondrial $Ca²⁺$ rises. Exactly how h-GAAP modulates intracellular $Ca²⁺$ signaling and suppresses apoptosis remains to be elucidated. The observation that h-GAAP is present in an immunoprecipitable complex with the $IP_3\overline{R}$ and modulates IP₃-induced Ca²⁺ signaling does not necessarily imply that it acts directly on the IP_3R . h-GAAP may be part of a larger IP₃R complex comprising also Bcl-2 and/or Bcl-XL

and may exert its effects on Ca^{2+} homeostasis through this complex.

In conclusion, h-GAAP is a novel protein that that modulates both capacitative Ca²⁺ entry and IP₃-mediated Ca²⁺ release. Altogether, these data show that h-GAAP has an important role in the cross-talk between the intracellular $Ca²⁺$ stores, the cytosol and the mitochondria, and this may explain how h-GAAP plays a decisive role in regulating cell death by apoptosis.

ACKNOWLEDGMENTS

F.J.M.v.K. is supported by grants from the Netherlands Organization for Scientific Research (NWO-VIDI-917.46.305) and the M.W. Beijerink Virology Fund from the Royal Netherlands Academy of Sciences. G.L.S. is a Wellcome Trust Principal Research Fellow. J.B.P. and H.de.S. were supported by research program G.0210.03 of the Fund for Scientific Research-Flanders and by Concerted Actions 04/07 of the Catholic University Leuven.

REFERENCES

Berridge, M. J., Bootman, M. D., and Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. *4*, 517–529.

Boehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T., and Snyder, S. H. (2003). Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat. Cell Biol. *5*, 1051– 1061.

Chen, R., *et al.* (2004). Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J. Cell Biol. *166*, 193–203.

Dolman, N. J., Gerasimenko, J. V., Gerasimenko, O. V., Voronina, S. G., Petersen, O. H., and Tepikin, A. V. (2005). Stable Golgi-mitochondria complexes and formation of Golgi Ca(2+) gradients in pancreatic acinar cells. J. Biol. Chem. *280*, 15794–15799.

Foskett, J. K., White, C., Cheung, K. H., and Mak, D. O. (2007). Inositol trisphosphate receptor Ca²⁺ release channels. Physiol. Rev. 87, 593-658.

Gubser, C., Bergamaschi, D., Hollinshead, M., Lu, X., van Kuppeveld, F. J., and Smith, G. L. (2007). A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog. *3*, 246–259.

Hammerman, P. S., Fox, C. J., and Thompson, C. B. (2004). Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends Biochem. Sci. *29*, 586–592.

Joseph, S. K., and Hajnoczky, G. (2007). IP3 receptors in cell survival and
apoptosis: Ca²⁺ release and beyond. Apoptosis. 12, 951–968.

Kasri, N. N., Kocks, S. L., Verbert, L., Hebert, S. S., Callewaert, G., Parys, J. B., Missiaen, L., and De Smedt, H. (2006). Up-regulation of inositol 1,4,5-trisphosphate receptor type 1 is responsible for a decreased endoplasmic-reticulum Ca²⁺ content in presenilin double knock-out cells. Cell Calcium 40, 41–51.

Kim, H. E., Du, F., Fang, M., and Wang, X. (2005). Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc. Natl. Acad. Sci. USA *102*, 17545–17550.

Ma, H. T., Venkatachalam, K., Parys, J. B., and Gill, D. L. (2002). Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J. Biol. Chem. *277*, 6915–6922.

Ma, T. S., Mann, D. L., Lee, J. H., and Gallinghouse, G. J. (1999). SR compartment calcium and cell apoptosis in SERCA overexpression. Cell Calcium *26*, 25–36.

Nakamura, K., Bossy-Wetzel, E., Burns, K., Fadel, M. P., Lozyk, M., Goping, I. S., Opas, M., Bleackley, R. C., Green, D. R., and Michalak, M. (2000). Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J. Cell Biol. *150*, 731–740.

Oakes, S. A., Opferman, J. T., Pozzan, T., Korsmeyer, S. J., and Scorrano, L. (2003). Regulation of endoplasmic reticulum Ca^{2+} dynamics by proapoptotic BCL-2 family members. Biochem. Pharmacol. *66*, 1335–1340.

Orrenius, S., Zhivotovsky, B., and Nicotera, P. (2003). Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. *4*, 552–565.

Peppiatt, C. M., Collins, T. J., Mackenzie, L., Conway, S. J., Holmes, A. B., Bootman, M. D., Berridge, M. J., Seo, J. T., and Roderick, H. L. (2003). 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium *34*, 97–108.

Pinton, P., Ferrari, D., Rapizzi, E., Di Virgilio, F., Pozzan, T., and Rizzuto, R. (2001). The Ca^{2+} concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. *20*, 2690–2701.

Pinton, P., Pozzan, T., and Rizzuto, R. (1998). The Golgi apparatus is an
inositol 1,4,5-trisphosphate-sensitive Ca²⁺ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J. *17*, 5298–5308.

Pinton, P., and Rizzuto, R. (2006). Bcl-2 and Ca^{2+} homeostasis in the endoplasmic reticulum. Cell Death. Differ. *13*, 1409–1418.

Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A., and Pozzan, T. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca²⁺ responses. Science 280, 1763-1766.

Skulachev, V. P. (2006). Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis *11*, 473–485.

Visch, H. J., Koopman, W. J., Zeegers, D., van Emst-de Vries, S. E., van Kuppeveld, F. J., van den Heuvel, L. W., Smeitink, J. A., and Willems, P. H. (2006) . Ca²⁺-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca^{2+} removal: aberrations in human complex I deficiency. Am. J. Physiol. Cell Physiol. *291*, C308–C316.

Visch, H. J., et al. (2004). Inhibition of mitochondrial Na⁺-Ca²⁺ exchange restores agonist-induced ATP production and Ca²⁺ handling in human complex I deficiency. J. Biol. Chem. *279*, 40328–40336.

White, C., Li, C., Yang, J., Petrenko, N. B., Madesh, M., Thompson, C. B., and Foskett, J. K. (2005). The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat. Cell Biol. *7*, 1021–1028.