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Computer simulations of electrical behaviour in the whole ventricles have become
commonplace during the last few years. The goals of this article are (i) to review the
techniques that are currently employed to model cardiac electrical activity in the heart,
discussing the strengths and weaknesses of the various approaches, and (ii) to
implement a novel modelling approach, based on physiological reasoning, that lifts
some of the restrictions imposed by current state-of-the-art ionic models. To illustrate
the latter approach, the present study uses a recently developed ionic model of the
ventricular myocyte that incorporates an excitation–contraction coupling and
mitochondrial energetics model. A paradigm to bridge the vastly disparate spatial
and temporal scales, from subcellular processes to the entire organ, and from sub-
microseconds to minutes, is presented. Achieving sufficient computational efficiency is
the key to success in the quest to develop multiscale realistic models that are
expected to lead to better understanding of the mechanisms of arrhythmia induction
following failure at the organelle level, and ultimately to the development of novel
therapeutic applications.
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1. Introduction

Computer simulations of electrical behaviour in the whole ventricles (Xie et al.
2004; Rodriguez et al. 2005; Potse et al. 2006; Ten Tusscher et al. 2007; Ashihara
et al. 2008) or atria (Harrild & Henriquez 2000; Vigmond et al. 2001; Virag et al.
2002; Seemann et al. 2006) have become commonplace during the last few years.
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However, even when powerful state-of-the-art computational resources are used,
attempts to integrate behaviour from the protein scale of ion channels to the
organ scale of cardiac arrhythmias remain enormously challenging, and typically
include significant trade-offs between representations of different types of
complexities (subcellular processes versus structural complexities). To arrive
at a computational efficiency in modelling the (patho)physiological processes in
the heart, such that it permits the exploration of the parameter space of interest,
the simplifications typically made are as follows.

—The geometry of the organ is represented in a stylized fashion (‘one heart
geometry fits all’ approach; Xie et al. 2004; Rodriguez et al. 2005; Ashihara
et al. 2008); only parts of the heart are modelled, such as slices across the
ventricles (Meunier et al. 2002; Trayanova & Eason 2002; Hillebrenner et al.
2004) or wedges (Burton et al. 2006; Plank et al. 2008); and idealized
geometries, such as myocardial slabs (Vigmond & Leon 1999; Cherry et al.
2003; Plank et al. 2005), sheets (Beaumont et al. 1998; Skouibine et al. 1999;
Anderson & Trayanova 2001; Samie et al. 2001; Kneller et al. 2002; Weiss
et al. 2005) or strands (Thomas et al. 2003; Qu et al. 2006), are used.

— In constraining the degrees of freedom, the choice of the computational mesh
discretization often leads to (i) under-representation of (to the degree of fully
ignoring) the finer details of the cardiac anatomy, such as endocardial
trabeculations or papillary muscles, and (ii) the necessity to adjust ad hoc the
tissue conductivity tensors in order to avoid the artificial scaling of the
wavelength, thus compensating for the dependence of conduction velocities on
grid granularity. That is, as the grid is coarsened with all other model
parameters remaining unchanged, conduction velocity becomes reduced and
thus the wavelength is diminished, with conduction block occurring above a
certain spatial discretization limit.

—The myocardial mass is treated as a homogeneous continuum, without
representing intramyocardial discontinuities such as vascularization, cleavage
planes, or patches of fat or collagen.

—The specialized cardiac conduction system, i.e. the sinuatrial (SA) and
atrioventricular (AV) nodes and the Purkinje network, is typically not
represented in the whole-organ simulations, although a few exceptions
exist (Berenfeld & Jalife 1998; Vigmond & Clements 2007; Ten Tusscher &
Panfilov 2008).

—Myocardial membrane ion transport kinetics are modelled in a simplified
fashion (Rogers & McCulloch 1994; Ten Tusscher & Panfilov 2006a). Reduced
models preserve salient features such as excitability, refractoriness, electrical
restitution, etc.; these are usually represented phenomenologically at the
scale of the cell (so that they can be easily manipulated). Such approaches have
led to important insights into the mechanisms by which action potential
characteristics control the stability of electrical propagation (Weiss et al. 2006).
Their limitation is, however, that phenomenologically represented parameters
do not directly correspond to actual molecular structures or processes, and are
thus incapable of accounting for many potentially arrhythmogenic
mechanisms, such as propagation instabilities induced by instabilities in
calcium cycling or by the altered metabolic state of the cell.
Phil. Trans. R. Soc. A (2008)
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Clearly, the ultimate goal of modelling is to accurately represent the inter-
play between the subsystems responsible for the primary functions of the heart,
including the electrophysiological, Ca2C handling, contractile and energetic
components. This necessitates a significant level of complexity of the cell models,
often achieved by implementing highly nonlinear control systems. Moreover, the
ability to use simulations to gain a better understanding of cardiac pathophysiology
requires a representation of the bidirectional feedback loops connecting the various
subsystems. This presents additional computational concerns with respect to the
coupling of processes that span very different temporal and spatial scales, described
by equations with varying numerical stiffness.

A case in point is a recently described cell model, which combines
mitochondrial bioenergetics with previously developed electrophysiological,
Ca2C handling and contractile models, referred to as the excitation–contraction
coupling and mitochondrial energetics (ECME) model (Cortassa et al. 2006).
This cell model was developed as a framework for studying how the failure of the
mitochondrial network of the cardiomyocyte can lead to action potential
shortening or complete electrical inexcitability as a result of the depletion of the
high-energy phosphate pool and the activation of the ATP-sensitive KC

channels in the sarcolemma. Through a mechanism of reactive oxygen species
(ROS)-induced ROS release (Cortassa et al. 2004), it was shown that the
uncoupling of oxidative phosphorylation can induce oscillations of background
KC currents (Aon et al. 2003) that were proposed to contribute to electrical
heterogeneity and arrhythmias in whole hearts exposed to ischaemia-reperfusion
(Akar et al. 2005). Compounds that could inhibit mitochondrial depolarization
also prevented the post-ischaemic arrhythmias, demonstrating that a failure at
the level of the mitochondrion scales to cause macroscopic desynchronization of
cardiac electrical propagation. Thus, there is a strong motivation for developing
multiscale models to study excitation–contraction–bioenergetic coupling,
spanning from the organelle to the entire organ. Because the ECME model
takes into account both fast Markovian ion channel gating kinetics (microsecond
relaxation times) and slow enzymatic reactions associated with the tricarboxylic
acid cycle (second-long relaxation times), an ordinary differential equation
(ODE) solver, which explicitly accounts for the wide range of time-scales
involved, would be ideally suited to speed up computational time. The technical
challenges of scaling up a model with a temporal range spanning six orders of
magnitude are formidable.

The goals of this article are (i) to review the techniques that are currently
employed to model cardiac electrical activity in the heart, discussing the strengths
and weaknesses of the various approaches, and (ii) to implement a novel modelling
approach, based on physiological reasoning rather than on mathematical rigour,
that lifts some of the restrictions imposed by ionic models of the most current
generation, such as the ECME model. This article thus presents an efficient
multiscale model of ventricular arrhythmogenesis that incorporates mitochondrial
ionic channels and mitochondrial energetics. Achieving sufficient computational
efficiency is the key to success in the quest to developmultiscale realistic models that
are expected to lead to better understanding of the mechanisms of arrhythmia
induction following failure at the organelle level and, ultimately, to the development
of novel therapeutic applications.
Phil. Trans. R. Soc. A (2008)
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2. Review of tissue- and organ-level modelling techniques

(a ) The bidomain equations

Besides a few exceptions (Wang et al. 1996), the cardiac bidomain equations, or a
simplified version referred to as the monodomain equations, are typically used to
model cardiac bioelectric phenomena at the tissue and organ level. The bidomain
equations (Plonsey 1988) represent the homogenization of cardiac tissue,
replacing discrete components of the intracellular and extracellular tissue matrix,
such as cells and gap junctions, with a continuum. Each point in space is
considered to exist in two domains, the intra- and extracellular; the domains are
superimposed in space and separated from each other by the cellular membrane.

The following equations relate the intracellular potential fi to the extracellular
potential fe, through the transmembrane current density Im:

V$�siVfi ZbIm; ð2:1Þ

V$�seVfe ZKbIm; ð2:2Þ

Im ZCm

vVm

vt
CIionðVm; yÞK Itrans; ð2:3Þ

Vm ZfiKfe; ð2:4Þ

where �si and �se are the intracellular and extracellular conductivity tensors,
respectively; b is the surface-to-volume ratio of the cardiac cells; Itrans is the
current density of the transmembrane stimulus; Cm is the membrane capacitance
per unit area; Vm is the transmembrane voltage, defined as fiKfe; and Iion is the
current density of the ionic current, which depends on the transmembrane
voltage and other state variables represented by y.

The bidomain conductivity tensors �si and �se are the result of a homogenization
procedure (Henriquez 1993), through which the discrete nature of the tissue
matrix is translated into a macroscopic representation of the conductive tissue
properties. The conductivity tensors account, in an averaged macroscopic sense,
for the observation that conduction velocity is faster along the direction of the
fibre orientation, and slower in a direction transverse to it. In the intracellular
space, this is a reflection of the discrete coupling network, where cell-to-cell
connections (gap junctions) are found most frequently at the ends of a cell (along
the long axis of the cell). Furthermore, in both intracellular and extracellular
spaces, a preferred direction of conduction is a consequence of the cell geometry,
which constrains current flow in both spaces. This property is referred to as
anisotropy. The anisotropy ratios between the two domains have been shown to be
unequal (Clerc 1976; Roberts et al. 1979; Roberts & Scher 1982; Roth 1997). This
property has been demonstrated to be of major importance in the interaction
between cardiac tissue and externally applied current (Sepulveda et al. 1989).

Different approaches to recast the bidomain equations have been suggested
(Hooke et al. 1994). A particularly popular linear transformation is to add
equations (2.1) and (2.2) and to use the definition of Vm according to equation
(2.4) to retain fe and Vm, the two experimentally measurable quantities of
Phil. Trans. R. Soc. A (2008)
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interest, as the independent variables (Pollard et al. 1992):

V$ð�siC �seÞVfe ZKV$�siVVmK Ie; ð2:5Þ

V$�siVVm ZKV$�siVfeCbIm: ð2:6Þ

In the most general case, when the heart is immersed in a conductive fluid (e.g.
a tissue bath in an experimental context or a surrounding torso to model in vivo
scenarios), a Poisson problem has to be additionally solved,

V$sbVfe Z Ie; ð2:7Þ

where sb is the conductivity of the bath medium; and Ie is the volume density of
the extracellular stimulus current, which is injected or withdrawn through
electrodes located in the bath.

Boundary conditions at the tissue–bath interface enforce continuity of the
normal component of the extracellular current and continuity of fe, whereas the
intracellular domain is isolated there (the normal component of the intracellular
current is zero). At the boundaries of the bath, the normal component of the
extracellular current is zero. Without enforcing Dirichlet boundary conditions,
the elliptic partial differential equation (PDE) components, i.e. equation (2.7),
and the elliptic portion of the bidomain equations, i.e. equation (2.5), are
singular, which may pose numerical difficulties. Typically, grounding electrodes
are used in the extracellular domain, i.e. nodes in the mesh are chosen where fe is
fixed at zero value, to circumvent this problem. For most scenarios of practical
interest this is not a limitation since the validation of simulation results with
experimental data requires the use of grounding electrodes to match an
experimental set-up. With certain iterative solver techniques, for instance
Krylov subspace methods such as conjugate gradients (CG), this is not
necessarily required (Potse et al. 2006).
(b ) Discretization schemes and issues

Different spatial discretization techniques, such as the finite-difference
method (FDM; Skouibine et al. 2000), the finite-volume method (FVM; Harrild &
Henriquez 1997; Trew et al. 2005), the interconnected cable model (Leon &
Roberge 1990), and the finite-element method (FEM; Rogers & McCulloch
1994; Vigmond et al. 2002; Rodriguez et al. 2005; Ashihara et al. 2008), have
been applied to the cardiac bidomain problem. Spatial discretization is mainly
governed by the spatial extent of the depolarization wavefront. Assuming that
the upstroke of the action potential lasts for approximately 1 ms and that under
physiological conditions the wavefront travels at a speed between 0.2
(transverse conduction) and 0.7 m sK1 (longitudinal conduction), the spatial
extent of the wavefront is in the range of 0.2–0.7 mm. The grid resolution has to
be smaller than the extent of the wavefront, otherwise spatial undersampling
effects will influence the simulation results. In the following sections, ‘fine
discretization’ will be used to refer to discretizations where the spatial
resolution is well below the spatial extent of the wavefront, and ‘coarse’ if the
resolution is well above it. A discretization step of 250 mm could be considered
Phil. Trans. R. Soc. A (2008)
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as the limit between the two; however, it is not strict. Under pathological
conditions, for instance, when a very slow decremental conduction is modelled,
even a resolution of 100 mm may be too coarse.

A more formal argument to estimate spatio-temporal discretization con-
straints is found by considering the Courant–Friedrichs–Lewy (CFL) condition
(Courant et al. 1928). Briefly, assuming straight fibres and equal anisotropy
ratio, the CFL condition, which governs the maximum possible time-step for
stable integration using the forward Euler method, is approximated by

Dt%
bCmDx

2

2ðsl CstÞ
; ð2:8Þ

where s�Zsi�se�=ðsi�Cse�Þ with �Z l; t. Assuming a standard value of
1400 cmK1 for b and the conductivity values as published by Clerc (1976), the
CFL condition predicts a maximum possible time-step of 45.5 ms for a 100 mm
grid. For a 10 mm grid Dt decreases to 0.45 ms, which renders the forward Euler
integration for the parabolic PDE computationally inefficient compared with an
implicit scheme such as the Crank–Nicholson scheme discussed below.

Numerically, the bidomain equations can be solved as a coupled system
(Vigmond et al. 2002), where transmembrane voltage and extracellular potential
are solved for simultaneously. Alternatively, operator-splitting techniques are
applied (Keener & Bogar 1998) to decouple the computing scheme into three
components, such as an elliptic PDE, a parabolic PDE and a set of nonlinear
ODEs (equations (2.9)–(2.12)). It has been shown that the decoupled scheme
converges quickly against the coupled scheme by employing a block Gauss–Seidel
iteration (Pennacchio & Simoncini 2002). However, in a number of studies, the
components were essentially treated as independent (Weber dos Santos et al.
2004a,b; Sundnes et al. 2005; Austin et al. 2006; Plank et al. 2007); solutions were
then found by leapfrogging between the decoupled components, where either Vm

in equation (2.5) or fe in equation (2.6) are considered as constant. In Vigmond
et al. (2002), it was found that, with small error tolerance, the difference between
coupled and decoupled approaches is negligible.

Discretizing the decoupled bidomain equations leads to a three-step scheme,
which involves the solution of the parabolic PDE, the elliptic PDE and the
nonlinear system of ODEs at each time-step. In the simplest case, both the
parabolic PDE and the nonlinear ODE systems can be solved with an explicit
forward Euler scheme (Vigmond et al. 2002),

Vk� Z ð1KDtAiÞVkKDtAef
k
e ; ð2:9Þ

VkC1 ZVk� C
Dt

Cm

IionðVk�;hkÞ; ð2:10Þ

hkC1 Zhk CDt gðVkC1;hkÞ; ð2:11Þ

ðAiCAeÞfkC1
e ZAiV

kC1CIe; ð2:12Þ
where Ax is the discretized KV$ð�sxVÞ=ðbCmÞ operator, with x being either i
(intracellular) or e (extracellular); Dt is the time-step; and Vk, fk

e and hk are the
temporal discretizations of Vm, fe and h, respectively, at the time instant of kDt.
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When the computational mesh is of fine discretization and thus the integration
time-step of the parabolic PDE has to be reduced substantially to maintain
stability, it is advantageous to employ the more expensive semi-implicit Crank–
Nicholson scheme instead of the forward Euler scheme to solve the parabolic
PDE, with

1C
1

2
DtAi

� �
VkC1 Z 1K

1

2
DtAi

� �
VkKDtAef

k
e CIion Vk

m;h
k

� �
; ð2:13Þ

replacing equations (2.9) and (2.10).

(i) Linear solver strategies

The PDEs are solved most efficiently with direct methods; however, such
methods are limited to small grids only (Vigmond et al. 2002; Plank et al. 2007)
because otherwise memory demands increase quickly, which, in turn,
significantly increases the required number of operations per solver step.
Although direct methods have been implemented to run in parallel environments
(Amestoy et al. 2001; Li & Demmel 2003), typically they are harder to parallelize
due to the fine-grained parallelism, which is communication intense. For large
systems, iterative methods are mandatory because the memory requirements
increase as OðN 5=3Þ and the complexity, in terms of required operations,

increases as OðN 7=3Þ, whereas the requirements for iterative solvers arezOðNÞ
andzOðN 5=3Þlnð3K1Þ, respectively, where N is the system size and 3 is the error
tolerance (Meurant 1999). In general, linear systems with more than a few hundreds
of thousands of unknowns can be considered as large. For instance, in Plank et al.
(2007) a rabbit ventricular geometry immersed in a bath was discretized, resulting
in 0.87 million unknowns. The linear system associated with this set-up could not be
factorized on a desktop computer with 8 GB of RAM available.

When executing bidomain simulations on sequential computers, the main
computational burden can be attributed to the solution of the elliptic problem
and the set of ODEs (i.e. the ionic model). The complexity of an ionic model is
determined by the number of state variables in the model and the stiffness of the
ODE system. With simple ionic models, among which are phenomenological
models such as FitzHugh–Nagumo (FitzHugh 1969) and its derivatives as well as
electrophysiology-based (Hodgkin–Huxley-type) ionic models with a small
number of state variables and without or with limited intracellular compart-
ments and fluxes between them (Drouhard & Roberge 1987), the elliptic problem
contributes more than 90 per cent to the overall workload. By contrast, for
recent ionic models involving a large number (20–60) of state variables and very
stiff ODEs as well as Markov state models (Iyer et al. 2004; Saucerman et al.
2004; Cortassa et al. 2006; Flaim et al. 2007; Mahajan et al. 2008), the ODE
solution may even dominate the computations.

The parabolic problem is typically less of a concern. On coarser meshes, simple
forwardEuler steps can be employed to updateVm. In this case, the contributions of
the diffusional component (i.e. the PDE) and the local membrane component to
changes in Vm can be updated separately, which renders the PDE linear. On finer
grids, semi-implicit Crank–Nicholson schemes perform well. Even when relatively
cheap iterative solvers are employed, the parabolic portion can be updated
efficiently due to the diagonal dominance of the linear system.
Phil. Trans. R. Soc. A (2008)
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For large systems, parallel computing approaches are necessary to reduce
execution times. The parallel computing context alleviates the problem of solving
the set of ODEs. State variables in an ionic model do not diffuse, which qualifies
the ODEs as an embarrassingly parallel problem. No communication between
processors is required to update the state variable and thus the parallel scaling of
the ODE portion is linear. The parabolic problem is efficiently solved in parallel
as well. Either only a forward Euler step is required (essentially a matrix–vector
product, for which good scalability is expected), or the well-posed diagonally
dominant linear system is solved efficiently with relatively cheap iterative
methods, such as preconditioned CG. Typically, with an incomplete LU (ILU)
preconditioner for the iterative CG solver, the parabolic problem can be solved in
less than 10 iterations.

The elliptic PDE is the most challenging problem. Standard iterative solvers
such as ILU–CG typically require several hundreds of iterations to converge
(Plank et al. 2007), which makes this solution significantly more expensive than
that of the parabolic system, although both systems share the same sparsity
pattern. The parallel scaling of standard iterative solvers is fairly good (Plank
et al. 2007); for instance, a parallel ILU–CG solver, where the system is
decomposed by a block Jacobi preconditioner with ILU(0), i.e. an incomplete LU
factorization with zero fill-in levels that preserves the sparsity pattern of the
original matrix, used as a sub-block preconditioner, exhibits good parallel
scaling. An example of good parallel scaling is presented in Plank et al. (2007),
where parallel efficiency of approximately 92 per cent was achieved over the test
range of processor numbers (up to 64 processors). With fewer number of
processors, ILU(N ) with N levels of fill-in tends to be more efficient; however,
with an increasing number of processors, the efficiency of the preconditioning
deteriorates since the preconditioner is applied only to the main diagonal block.
This deterioration can be avoided by employing overlapping block precondi-
tioners, such as alternating Schwarz methods; however, this increases the burden
on the network interconnect owing to the increase in communication caused by
the increased number of off-processor elements involved (Toselli & Widlund
2005). If the hardware lacks low-latency interconnects, this is undesirable since
parallel efficiency levels off quickly with increasing number of processors.

It has been demonstrated in several recent studies (Weber dos Santos et al.
2004a,b; Austin et al. 2006; Plank et al. 2007) that multilevel preconditioners for
CG methods both significantly improve the overall performance and exhibit
reasonable parallel efficiency (better than 80%) for up to 128 processors. A
generally applicable algebraic multigrid preconditioner (AMG) in conjunction
with an iterative Krylov solver reduces the number of iterations per solver step
by almost two orders of magnitude compared with ILU–CG (Plank et al. 2007).
Although a single iteration with AMG is significantly more expensive than with
ILU, the reduction in the number of iterations clearly favours a multilevel
approach. For instance, in Plank et al. (2007) a speedup of 6 was reported. Using
AMG–CG constitutes to date the most efficient method for solving the elliptic
portion of the bidomain equations. Besides its computational efficiency, a major
advantage of the AMG approach is that it is applied straightforwardly to
unstructured grids, avoiding the complex task of explicitly generating nested
representations of the geometry at different levels of resolution, as required by
the geometric versions of multilevel preconditioners. Unstructured grids allow
Phil. Trans. R. Soc. A (2008)
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smooth representations of the organ boundaries, which is of particular
importance in simulations of cardiac defibrillation, where geometric discretiza-
tions with jagged boundaries inevitably evoke artificial surface polarizations. A
more extensive review of numerical techniques to solve the cardiac bidomain
equations can be found in Vigmond et al. (2008).
(c ) Adaptivity and domain decomposition techniques

Substantial gains in computational efficiency can be achieved by explicitly
taking into account the fact that high spatial and temporal resolution is needed
only in the immediate vicinity of a propagating wavefront, where fast transitions
in time are translated into steep gradients in space. Typically, steep wavefronts
encompass a small portion of the overall domain, although this portion increases
substantially when re-entrant activation patterns, particularly fibrillatory
activity, are being modelled. Spatially adaptive methods that dynamically
adjust grid resolution hold promise in increasing computational efficiency.
Cherry et al. (2003) reported significant performance gains with an adaptive
mesh refinement technique; however, the method, although very well suited for
FDM and explicit stencils, is not easily modifiable to accommodate FEM or
FVM discretizations and implicit stencils. A new class of methods loosely
referred to as mortar FEM techniques (Pennacchio 2004) will possibly allow the
use of FEM discretizations with spatial adaptivity; however, implementations
using unstructured grids have not been reported yet.

Alternatively, simpler domain composition methods can be employed, where
the region of interest is divided into several subdomains; each subdomain is then
integrated at a different rate, the latter being a function of the ongoing activity in
the domain itself and in the adjacent domains. However, such techniques
introduce a significant bookkeeping overhead. Whether the reduction in floating
point operations compensates for these extra costs, and to what degree, remains
inconclusive. For instance, in Quan et al. (1998) a speedup of 17 was reported,
whereas in Vigmond & Leon (1999) a speedup of only 3 could be achieved. Using
different temporal resolutions on a per-domain base inevitably leads to load
balancing issues for codes executed in parallel. That is, even though in a
particular domain computations are executed quickly, the slowest domain
dominates the overall execution time. A possible but non-trivial solution to
address this problem is to migrate vertices between parallel partitions, although
to our knowledge there are no simulator codes available today that are capable of
achieving this in a robust manner.
3. Review of ionic model computation techniques

(a ) Integration in standard form

The dynamics of the processes that underlie the action potential in a cardiac cell
are typically described by a set of ODEs. These are initial-value problems of
the form

dy

dt
Z f ðy; tÞ; yðt Z 0ÞZ y0; ð3:1Þ
Phil. Trans. R. Soc. A (2008)
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where y is a vector and f is a vector-valued function. The solution to the above
equation is typically found as

yðtCdtÞZyðtÞC
ðtCdt

t
f ðyðtÞ; tÞdt: ð3:2Þ

Different approaches can be used to approximate the integral over the nonlinear
vector function f. Here, all the components of the vector y are updated
simultaneously with all the components of f ðyÞ integrated simultaneously.
General-purpose packages incorporating a large set of standard integrators are
currently available and allow a convenient integration in a vector form (Cohen &
Hindmarsh 1996). Standard integration techniques include explicit (or forward)
and implicit (or backward) methods. Explicit methods are popular since they are
easy to implement; however, the order of this class of methods is one, which often
results in insufficient accuracy. Approaches to overcome this weakness include the
use of several previously computed solutions (multistep methods) or additional
intermediate solutions in the interval ½t; tCdt � (Runge–Kutta methods) to
update the current solution. The more sophisticated implicit backward methods
such as backward differentiation formula (BDF) or implicit Runge–Kutta
methods (e.g. Rosenbrock methods; Rosenbrock 1963) have superior stability
properties and allow larger time-steps; however, they are computationally
expensive and, in general, robust implementation of these methods is difficult.
The use of BDF methods requires the solution of a linear system of equations
iteratively, by either fixed-point methods or versions of the Newton–Raphson
methods. In this case, Jacobian matrices have to be either analytically
determined and repetitively evaluated, or numerically approximated (Hairer &
Wanner 2004). Many currently used integrators incorporate advanced features
such as variable time-stepping and error control, where a time-step is chosen such
that the local error per step is below a prescribed tolerance level.

For the particular purpose of integrating ODEs representing the myocardial
action potential, standard methods have not been established and many different
techniques are currently employed. Overall, although it is generally believed that
implicit methods, owing to the stiffness of membrane kinetic variables, are
advantageous and should be preferred over forward methods, the vast majority
of implementations rely on forward methods.
(b ) Component-wise integration

Although the use of standard integrators is convenient for single-cell action
potential simulations, it becomes cumbersome when ionic model integrators are
coupled with PDE solvers for calculation of the potentials at the tissue and
organ level. Therefore, as described in Maclachlan et al. (2007), in the field of
cardiac modelling, it is common to split the vector formulation in equation (3.1)
into a set of equations, where each ODE is integrated separately. In this
component form, a system of coupled ODEs with N state variables decouples
into N ODEs of the form

dyi
dt

Z fiðy; tÞ; ð3:3Þ
Phil. Trans. R. Soc. A (2008)
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where 0% i!N and fi refers to the component i of the vector function f ðyÞ
(Maclachlan et al. 2007). Any standard method discussed above is well suited
for component-wise integration as well. The application of implicit BDF
methods is easier with component-wise integration since only scalar Newton
iterations are required.

Possibly the most popular component-wise integration approach was proposed
by Rush & Larsen (1978), and it has been widely applied (Vigmond & Leon 1999;
Vigmond et al. 2002; Ten Tusscher & Panfilov 2006b) ever since. When the set of
ODEs is decoupled and integrated sequentially in a component form, each state
variable yi is updated, with all other state variables yj ( jsi ) held constant.
Many of the ODEs comprising an ionic model, typically all gating equations in
Hodgkin–Huxley-type models, but also ODEs in Markov state formulations, can
be written in the form

dyi
dt

ZAð�yÞyi CBð�yÞ; ð3:4Þ

where all variables belonging to the subvector �y are considered constant during
an integration step. Hence, the nonlinear ODE reduces to a linear ODE with
constant coefficients, for which an analytic solution can be found. With A and B
being constant, the analytical solution is

yiðtCDtÞZ yiðtÞC
A

B

� �
eADtK

A

B
: ð3:5Þ

This analytical solution is then used to compute the solution at the next time-
step, tCDt. Numerical analysis has revealed that the Rush–Larsen method
offers significant stability and accuracy benefits over the forward Euler method
(Maclachlan et al. 2007). Any portions fi of the vector function f ðy; tÞ that
cannot be written in a linear form need to be integrated in the fully nonlinear
form. In the original Rush–Larsen formulation, the forward Euler method was
applied to solve the fully nonlinear form. Therefore, the Rush–Larsen method
has been classified as a non-standard FDM with forward Euler (NSFD w/FE;
Maclachlan et al. 2007). Several suggestions have been made to further improve
the method and overcome its weaknesses (Maclachlan et al. 2007). First,
stability issues due to the use of the forward Euler method for the nonlinear
components could be addressed by the use of implicit methods. Second, the
accuracy of the method, originally first order, could be improved to second by a
more expensive scheme involving the computation of midpoints. Although it has
been shown that such elaborate approaches yield additional benefits for some
ionic models, for instance the Courtemanche model of the human atrial cell
(Courtemanche et al. 1998), where stiffness properties are less critical, no
performance benefits or even worse performance has been observed with models
that have pronounced stiffness properties, such as the canine ventricular ionic
model by Winslow et al. (1999).
(c ) Acceleration techniques

Regardless of the particular method, the expense in ionic model integration is
in the evaluation of fiðy; tÞ, requiring the calculation of hundreds of
computationally expensive expressions (mostly exponential and logarithmic
functions). Many of these expressions depend on a single variable or they can be
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recast into products of terms that depend on a single variable only. The
physiological range of these variables is typically well known a priori, thus it is
convenient to precompute and tabulate the expensive terms and then simply look
up their values when required. For instance, assuming that in equation (3.5) the
terms A/B and expðADtÞ depend only on one state variable yj and that no
adaptive time-stepping scheme is employed, i.e. Dt is constant throughout the
simulation, then the functions l 0ðyjÞZAðyjÞ=BðyjÞ and l 1ðyjÞZexpðAðyjÞDtÞ can
be precomputed and used for table lookup (TLU). As shown in Vigmond et al.
(2003), recasting equation (3.5) leads to a more efficient TLU scheme,

yiðtCDtÞZ yiðtÞ eADt|ffl{zffl}
l 0

C
A

B
ðeADt K1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

l 1

; ð3:6Þ

where one yj -dependent lookup operation is required to determine the values
of l 0ðyjÞ and l 1ðyjÞ. The solution of the ODE can then be updated with one
multiplication and one sum operation only (see algorithm 3.1).

Algorithm 3.1. NSFD w/FE integration of the linear part of the vector function f
using TLU.

for kZ0,., TEnd/Dt do
for nZ0,., Ncells do

1ZTLU(yj);
yi[n]Zyi[n]

�1[0]C1[1];
end for

end for

The TLU, in its most efficient form, requires one multiplication and one
typecast operation only (nearest-neighbour TLU) or two multiplications and
two sum operations (TLU with interpolation). Furthermore, if data structures
are chosen properly for lookup tables and state variables, excellent cache
performance can be achieved with this method.

(d ) Tissue-level aspects of ionic model computation

On a current standard desktop computer, single-cell ionic model simulations,
no matter how complex the particular ionic model is, can be executed faster
than real time and memory requirements are negligible. With regard to organ-
level simulations, however, real time is orders of magnitude too slow for a
satisfactory performance. For instance, assuming that a human heart is
sufficiently finely discretized by 10 million vertices, with real-time performance
the simulation of one second of activity would last for approximately 116 days.
Using supercomputers with tens or hundreds of CPUs scales the simulation time
down to a few hours. However, considering that this is only the ODE part of a
tissue-level simulation and that only a time interval of one second is simulated,
it becomes apparent that, even on supercomputers, real-time performance is
much too slow to allow meaningful computational studies, where a large
parameter space is explored and where simulations of several seconds to minutes
of electrophysiological activity are desired.
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Clearly, performance plays a key role in tissue/organ simulations whereas it is
of minor importance for single-cell simulations. Therefore, ionic model implemen-
tations used in tissue-/organ-level simulations are typically not straightforward
extensions of single-cell codes. Ionic state variables in tissue models become
vectors, memory demands increase, and the flexibility needed to allow
implementation of spatial heterogeneities in model parameters or the use of
different ionic models with different parameter settings in one organ model
requires a careful software engineering design.

At the tissue/organ level, there are specific issues that prevent concepts
successfully applied at the single-cell level from being carried over to tissue
simulations without major adjustments. These issues can be summarized
as follows.

(i) Organ-level simulations are almost exclusively carried out in parallel
computing environments in order to achieve reasonable performance,
whereas parallelization is pointless for single-cell codes. Since state
variables do not diffuse, the solution of the system of ODEs qualifies as an
embarrassingly parallel problem. That is, parallelization is easily achieved
by simply partitioning the problem into evenly sized chunks, with no
communication required. In tissue-level codes, the ODE solver is coupled
to the solution of the PDEs, adding complexity. In the most complex case,
where a bidomain formulation including a bath is discretized on an
unstructured grid and where globally defined quantities other than Vm

(for instance, strain or interstitial concentrations) are linked to sets of
different ODE systems representing different types of tissues (SA and AV
node, Purkinje network, ventricular tissue, with spatial heterogeneities in
transmural and apicobasal directions), the partitioning of the ODE
system and its interaction with the global quantities becomes a truly
challenging problem. Addressing parallelization and domain decom-
position issues will become even more important in the near future
because any standard desktop computer will be essentially a parallel
computer with several computational cores. Approaches that do not
address these issues will not benefit from future generations of computers
and thus will be of very limited use.

(ii) In single-cell simulations, computational efficiency can be improved by
allowing adaptivity in time-stepping, with dt being a function of yi or dyi.
In tissue-level simulations this becomes problematic because ODE time-
stepping has to be synchronized with the update intervals of the PDEs.
Similar to the approach of solving bidomain equations in the decoupled
form, where the elliptic portion is solved and hence the extracellular
potential fe is updated at a slower rate than the parabolic portion
updating Vm, the ODEs can be updated at a different rate than the PDEs.
This is likely to work for small time-steps, with the ODE time-step chosen
to be smaller than that of the PDE. Such an approach is advantageous if
the stiffness associated with the fast-changing internal state variables
enforces a time-step well below the time-step limit imposed by the mesh
ratio of the parabolic portion of the bidomain equations. Furthermore, for
time-adaptive ODE methods, the solver time depends largely on the
current state of the ionic model. Therefore, solution time is larger in
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portions of the tissue grid where activation is ongoing, and shorter
in portions where the tissue is quiescent or at plateau/repolarization.
In tissue simulations, particularly when re-entrant phenomena are
simulated, all phases of the action potential coexist at any time.
Therefore, adaptive ODE time-stepping introduces a load imbalance in
parallel codes, where partitions with the fastest processes and thus the
smallest time-steps become the limiting factor preventing linear parallel
scaling of the ODE system.

(iii) For current computer architectures, cache performance is the key factor.
Efforts to reduce the overall number of flops are not nearly as efficient as
the careful layout of data structures, which increases the cache
performance of the code. For single-cell simulators, code efficiency is of
minor importance. Nomatter how complex an ionic model is, it will always
fit into cache.

(iv) Single-cell codes aim to increase the maximum time-step while preserving
stability and accuracy. Requirements are, however, very different in
tissue-/organ-level simulations. The maximum time-step that allows
stable integration could be limited by the mesh ratio and not the ODEs.
For instance, using the NSFD w/FE technique, the Courtemanche model
of the human atrial action potential (Courtemanche et al. 1998) can be
integrated with a time-step of 400 ms. However, when incorporated in a
tissue model of a fine discretization, the time-step has to be reduced well
below this number; the particular value depends on the method used to
solve the parabolic PDE (Weber dos Santos et al. 2004a,b). That is, the
potential of expensive ODE integration schemes, which allow large
time-steps, cannot be fully exploited since PDE time-step constraints
limit Dt to values for which cheaper ODE integrators perform well
without any stability problems. On the other hand, it has been
demonstrated that methods that increase the stability of an integration
scheme allow for larger time-steps; however, they lead to increasingly
inaccurate solutions with increasing Dt. For instance, in Whiteley
(2006, 2007) tissue simulations were conducted with time-steps from
100 to 500 ms. Although the numerical scheme was stable, oscillations
were observed immediately after the action potential upstroke (Whiteley
(2006); figure 1c,d ). Such oscillations may lead to spurious transients
in internal state variables, which, in turn, will be reflected in Vm.
For instance, owing to the tight coupling between Vm and intracellular
calcium handling, oscillations in Vm at the end of an action potential
upstroke would give rise to artificial calcium transients; these are purely
numerical artefacts and are not related to any intrinsic properties of the
model. We demonstrate this in figure 1. Hence, such large time-steps
have to be used with great care. In Whiteley (2006), the largest time-
step used in a fully implicit ODE solver that resulted in reasonably
accurate solutions (a small artefactual ripple in Vm during early
repolarization was visible, though) turned out to be 100 ms. The same
simulation can be carried out with the NSFD w/FE method with the
same time-step without any stability problems. In addition, a single
NSFD w/FE step implemented efficiently could take only a fraction of
the execution time required for an implicit BDF solver step, thus
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Figure 1. Stable integration schemes for the parabolic PDE allow larger time-steps, but, as illustrated
in Whiteley (2006, 2007), may lead to oscillations in (a) transmembrane potential Vm. Such
oscillations are numerical artefacts. Although they do not affect the stability of the integration, these
perturbations will couple to the internal state variables and thus change the overall system
behaviour. To demonstrate the effect of such an oscillation, a K30 mV pulse was delivered during
early repolarization and its effect on intracellular calcium cycling examined. Using the Mahajan et al.
(2008) model of the rabbit ventricular myocyte, shown are control (black) and artefact (grey) traces
of calcium concentrations in: (b) the dyadic space, ½Ca2C�p, (c) the subsarcolemmal space, ½Ca2C�ss,
(d ) the junctional sarcoplasmic reticulum, ½Ca2C�jsr, and (e) the myoplasm, ½Ca2C�i.

3395Mitochondrial ion channels to arrhythmias
allowing one to execute tens to hundreds of NSFD w/FE solver steps
within the time-frame required for a single BDF step. Thus, it can be
concluded that, in most cases of practical interest, BDF methods are not
likely to help in reducing the computational burden.
4. A new modelling paradigm for complex ionic models based
on temporal multiscale decoupling

(a ) The need for a new paradigm

Although computationally efficient implementations of versions of the NSFD
w/FE method continue to be an excellent choice for many recent ionic models
(Mahajan et al. 2008), for other recent models such as the ECME ionic model
(Cortassa et al. 2006), their application becomes impracticable. For instance,
with the fastest extended NSFD method implementation to date (Maclachlan
et al. 2007), it took 25.77 s to execute a simulation of over 500 ms of activity in a
single cell using the Winslow et al. (1999) canine ventricular model (no specific
detail regarding the implementation was provided). The same study showed that
fully implicit methods indeed allow much larger time-steps, but the overall
performance was not better and the accuracy was strikingly inferior to that of
NSFD w/FE.

The reason why some recent models have imposed a much higher burden on
the ODE integrators than others stems from the current trend to develop more
realistic (and hence, predictive) mechanistic formulations. This has led to the
incorporation of processes whose dynamics occur on a faster time-scale and
require a large number of state variables to faithfully reproduce experimentally
observed phenomena. This is the case for formulations where Hodgkin–Huxley-
type ionic channel representations have been replaced by Markov process
descriptions (Clancy & Rudy 1999). Taking this approach has led to the
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development of a series of integrative cardiac myocyte models that can explain
the mechanisms underlying observations, such as action potential prolongation
in heart failure (Winslow et al. 1999), the coexistence of high gain and graded
sarcoplasmic reticulum Ca release (Greenstein & Winslow 2002), the role of beta-
adrenergic stimulation on excitation–contraction coupling (Greenstein et al.
2004), and how properties of the cardiac dyad influence excitation–contraction
coupling gain (Greenstein et al. 2006).

The wider range of time-scales captured in such ionic models increases the
overall model stiffness primarily owing to the very fast time constants that
govern intermediate states of these Markov state models. In a number of these
ionic models (Jafri et al. 1998; Winslow et al. 1999; Cortassa et al. 2006;
Greenstein et al. 2006), the fastest processes are linked to formulations describing
the intrinsically fast dynamics of the L-type calcium channel and the ryanodine
receptor, RyR, as well as the calcium dynamics in the dyadic space, i.e. the
restricted space between the membrane of the T-tubules, where the L-type
calcium channels reside predominantly, and the co-localized RyR in the
membrane of the junctional sarcoplasmic reticulum. The positive feedback loop
between the L-type calcium currents and the calcium release controlled by RyR
is referred to as calcium-induced calcium release (CICR). Descriptions of CICR
processes stiffen the ODE system considerably, as illustrated in figure 2. The
time-scales governing CICR are often in the sub-microsecond range. Using the
NFSD w/FE method enforces a time-step as small as 0.2 ms to successfully
integrate these equations.

To avoid issues with ODE integration that are related to the stiffness of the
system of equations resulting from detailed descriptions of CICR, a simplified
phenomenological description could be used. Such descriptions employ a simple
set of equations that reproduce the profile of a typical calcium-release signal with
the time course of the release ‘hard coded’ into the equations. However, because
CICR is the process that is at the very core of myocyte contractile function, and
because understanding how alterations in CICR impact integrative function in
both normal and diseased cells is a fundamental goal of building mathematical
models, the use of phenomenological descriptions of CICR or any subcellular
process hinders progress towards elucidating the integrative mechanisms at play
in the cardiac myocyte. In order to be considered predictive, ionic models must be
developed that accurately capture the underlying biophysical mechanisms of
experimentally observed phenomena.

In the following sections, we present a novel ODE integration scheme that
builds on the NSFD w/FE method but overcomes its limitations to improve
computational efficiency and thus enable the use of ionic models such as the
ECME model in tissue- and organ-level simulations. The needed gains in
efficiency are obtained by taking advantage of two key observations.

(i) There is a wide range of time constants involved in the system of ODEs,
ranging from the sub-microsecond range to hundreds of milliseconds
(figure 2). Decoupling the ODE system into a suitable number of
subsystems that are governed by similar time constants, and using
different time-steps and/or different integrators for each subsystem could
lead to substantial performance gains. We refer to this approach as
temporal multiscale decoupling (TMSD).
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(ii) A salient feature of ionic models such as the ECME model is the extreme
stiffness of the system of ODEs, which is, however, only present during
very brief phases of the action potential. By making simplifications to
reduce this stiffness, the integrator can be relieved from having to track
this extremely fast dynamics. We refer to this technique as dynamic
reformulation of the ODEs.
(b ) Formalization of the TMSD approach

In this section, we present the general TMSD approach, which we later apply
to the ECME model to provide a specific illustration of its implementation. The
essence of the approach is that fast state variables are considered constant as
long as the difference in time-scales with the rest of the system is sufficiently
large. In applying the temporal multiscale decoupling approach, state variables
that act at a similar time-scale are grouped together, and blockwise updates of
the different groups are performed using different update frequencies without any
impact on the overall solution. However, special care is taken of equations where
fi depends on fluxes. In this case, fluxes are integrated and adjusted to a
particular update frequency when used outside of the group in which they were
computed. Often such groups can be mapped to subsystems of the cell, for
instance the mitochondria in the ECME model (Cortassa et al. 2006). Temporal
changes of state variables in this subsystem occur at time-scales that are at least
three orders of magnitude slower than those of the RyR subsystem and thus
infrequent updates of the state variables in this subsystem can be executed
without any loss of information. Since updates of slow variables require the same
expensive evaluations of a group of functions fn of the vector function f, not
updating all state variables at the same rate (figure 2) leads to significant savings
in terms of execution time.

The wide range of time-scales involved in these ionic models can be exploited
in a systematic manner to arrive at more efficient integration schemes, where
different components of the state vector are decoupled according to a temporal
multiscale modelling approach. In the simplest case, the state vector y is split
into M portions and each partial state vector ym is integrated either with the
same time-step Dt, when fixed time-step integration schemes are employed, or if
an adaptive integration method with a varying internal time-step is used, the
integrator output is synchronized at a desired Dt. With respect to the ODE
integration frameworks presented in the review above, each subvector can then
be integrated either in the standard form or component-wise in the non-standard
form. Such decoupling has several benefits.

—Each group ymZfmðyÞ is integrated with the method that is best suited. Stiff
partial state vector systems with very fast components can be integrated with
an expensive ODE solver, whereas partial state vectors with slow components
can be integrated with much cheaper methods.

—When implicit backward integrators in the standard form are employed, the
nonlinear systems that have to be solved are much smaller and thus easier to
solve. For instance, solving the ODEs of the ECME model in the standard
form involves the solution of a system with a sparse Jacobian of dimension
Phil. Trans. R. Soc. A (2008)
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Figure 2. (a) (i) CICR-related currents and fluxes in the ECME model (blue, ICa; green, INa; red,
Jrel; light green, Jxfer; violet, Jtr; dark yellow, Jup). Fluxes Jrel and Jxfer act at a substantially faster
time-scale during CICR. The sodium current, INa, which is considered in most models to be the
fastest current, is plotted here as a reference. Peak INa occurs prior to CICR. For better direct
comparison of the time-scales, the INa trace around the peak has been shifted and replotted as the
dotted line. (ii) A zoomed representation of the same traces centred around the fast transient of
the CICR release flux Jrel. Owing to the large time-scale separation, it is safe to consider the
current ICa as constant during the entire upstroke phase of Jrel. (b) CICR-related state variables
(blue, PC1

; green, Cajsr; red, Cass; light green, Cai; dark yellow, PO2
; black, open; dark blue, YCa).

The variables representing the state of the RyR subsystem and the calcium concentration in the
dyadic space, ½Ca2C�ss, act at a substantially faster time-scale than most other state variables
related to CICR. With increasing distance from the RyR subsystem, the state variables tend to
change at increasingly slower rates due to the size of the compartments in which the processes are
taking place.
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50!50. By decoupling and employing the method described here to the RyR
subsystem, only a 4!4 system has to be solved. The evaluation of the
Jacobian is much simpler in this case because evaluation of the portions of the
vector function f that are not pertinent to the subsystem fm can be skipped.

A formal description of the TMSD method for three groups is provided in
algorithm 4.1. Each group is integrated using a different time-step with every
outer time-step being a multiple of the time-step of the innermost loop.
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Algorithm 4.1. TMSD integration of a system of ODEs using time-steps Dt0, Dt1
and Dt2. State variables �y are considered constant. Primed and double-primed
fluxes J 0 and J 00 are used to update state variables with a different time-step in
an outer loop.

for kZ0,., TEnd/Dt2 do
J 0
1Z0;

J 00
0 Z0;

t2ZkDt2;

for jZ0 to Dt2/Dt1 do

t1Zt2CjDt1;

J 0
0Z0:0;

for iZ0,., Dt1/Dt0 do

t0Zt1CiDt0;

_y 0Z f0ðy0ðt0Þ; �y1ðt1Þ; �y2ðt2ÞÞ;
J 0
0Zð1=Dt1Þ

Ð t1CDt1
t1

J0ðy0ðt0Þ; �y1ðt1Þ; �y2ðt2ÞÞ dt0;
end for

_y 1Z f1 �y0ðt0Þ; y1ðt1Þ; �y2ðt2Þ; J 0
0ð Þ;

J 0
1Zð1=Dt2Þ

Ð t 2CDt 2
t 2

J1ð�y0ðt0Þ; y1ðt1Þ; �y2ðt2ÞÞ dt1;
J 00
0 Zð1=Dt2Þ

Ð t 2CDt2
t 2

J 0
0ðt1Þ dt1;

end for

_y 2Z f2 �y0ðt0Þ; �y1ðt1Þ; y2ðt2Þ; J 00
0 ; J

0
1ð Þ dt2;

end for
(c ) Dynamic reformulation of the ODEs

The main reason for the increased computational cost of the current state-
of-the-art ionic models that use Markov chains is their stiffness and, to a much
lesser extent, the large number of state variables. With Markov state models, the
stiffness of the governing equations may vary substantially depending on the
state vector y, since the Jacobian is not a constant but a function of y. That is,
during a particular interval, a problem may be stiff, but it may be non-stiff
during other intervals. For instance, with the ECME model, stiffness seems to be
a problem only for a few microseconds during the onset and upstroke of the
calcium transient in the dyad; other than that, the ECME model can be treated
as other models are, with the minor difference that the number of state variables
is two to three times higher than that of most standard ionic models. During the
phases of pronounced stiffness, the integration time-step has to be reduced to
values as small as 0.2 ms, even when expensive implicit ODE integrators are
employed (Maclachlan et al. 2007).

In other words, this problem can be circumvented neither with more elaborate
ODE integrators nor with the TMSD approach, since the inner loop of the TMSD
integrator is tied to the same small time-step. Depending on the number of
Markov state variables relative to the overall size of the set of ODEs, the inner
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Figure 3. ½Ca2C�ss-dependent toggling of RyR subsystem models. Depending on a threshold calcium
level ½Ca2C�ss;th in the dyad, different formulations to describe the RyR subsystem were used. For
low ½Ca2C�ss concentrations with ½Ca2C�ss! ½Ca2C�ss;th, when rate coefficients are slow, the full-blown

formulation A is employed (a), while for ½Ca2C�ssR ½Ca2C�ss;th, the simpler formulation B is

employed (b). Furthermore, while using formulation B, the ODE describing ½Ca2C�ss is replaced by

an algebraic equation. (c) Different combinations of the presented formulations. Reference trace A

(grey line) is generated using formulation A and the ODE to update ½Ca2C�ss over the entire cycle.

For trace B (black dots), formulation A is initially employed, but replaced with B upon

½Ca2C�ssR ½Ca2C�ss;th. No noticeable differences are observed between these two traces. Trace B�

(black line) is obtained employing the same methodology as in trace B, but an algebraic formulation is

used during all phases of the cycle, including the initial phase of low ½Ca2C�ss level and relatively slow

rate coefficients. In this case, noticeable deviations in the timing of ½Ca2C�ss are observed; however, the
½Ca2C�ss transient waveform and amplitude are similar with reference to trace A.
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loop may impose a computational burden that renders organ-level applications
computationally intractable or at least extremely expensive. In such cases, we
suggest that the equations themselves be modified to reduce the stiffness of the
system without changing the solution. This is again achieved by taking
advantage of the separation of time-scales using the rationale as follows.

(i) Processes that are sufficiently faster than the minimum time-scale of
interest can be assumed to occur instantaneously. In this case, an ODE
dyi=dtZ f ðyi; �y; tÞ can be replaced by an algebraic equation by assuming
that dyi=dtZ0, which yields yiZgð�y; tÞ.

(ii) In a Markov state model, rapid equilibrium assumptions can be made if the
transition between two connected states is substantially faster than other
transition rates in the Markov network. For instance, in the Markov state
model of RyR in the ECME model (Jafri et al. 1998; Cortassa et al.
2006), for a transition between the closed state PC1

and the open state PO1

(figure 3), one can assume that kCa ½Ca2C�nssPC1
ZkKaPO1

, where kCa and kKa are
rate constants and ½Ca2C�ss is the calcium concentration in the dyad, and
use the combined state PC1

gPO1
instead of the individual states PC1

and
PO1

. This approach has been used in a stochastic implementation of a
Markov state RyR model (Greenstein & Winslow 2002), and in the
development of a simplified (yet mechanistically detailed) model of CICR
in the cardiac myocyte (Greenstein et al. 2006); however, unlike here, an
integrator in standard form was used.
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(d ) Implementation of a TMSD ODE integrator with dynamic
reformulation of ODEs for the ECME model

As part of this study, the suggested TMSD ODE numerical integration
technique with dynamic reformulation of ODEs was implemented for the ECME
model and validated against the well-established integrator used in the original
paper (Cortassa et al. 2006); the latter relies on an implicit BDF method
provided through the CVODE library (Cohen & Hindmarsh 1996). Our validated
TMSD code used three different groups, which we integrated at time-steps of 2.5,
20 and 100 ms. The smallest time-step was applied to integrate the equations
related to ½Ca2C�ss and the Markov state models representing RyR and the L-type
calcium current. Standard Hodgkin–Huxley-type gating variables and other ionic
fluxes were integrated at a time-step of 20 ms using the NSFD w/FE integrator.
The very slow processes linked to mitochondrial metabolism and force generation
were integrated with the largest time-step of 100 ms.

Besides using the TMSD approach, dynamic reformulation was applied to the
equations for RyR and ½Ca2C�ss, but not to the Markov state model representing
the L-type calcium current. Details of the procedure are illustrated in figure 3.
Formulations for the RyR subsystem were switched based on the transition rates
of the ½Ca2C�ss level. For ½Ca2C�ss below a threshold level, ½Ca2C�ss;th, the full-blown
Markov state model of the RyR (formulation A, figure 3a) was employed and the
ODE that governs the calcium flux balance in this compartment was integrated to
update ½Ca2C�ss. Since there are no ½Ca2C�ss transients, large time-steps could be
implemented to speed up execution time. Fast transients in the RyR states are
triggered by the quick rise in ½Ca2C�ss. As soon as ½Ca2C�ss rose above the threshold
level ½Ca2C�ss;th, rapid equilibrium assumptions were made, and a simplified model
was employed to update the RyR states (formulation B, figure 3b). The combined
state PO1

gPC1
substituted the individual states PO1

and PC1
, where the

probability of PO1
relative to the new combined state was determined by

PðO1jO1gC1ÞZa with a being determined from kCa ½Ca2C�nssPC1
ZkKaPO1

and
PO1

gPC1
ZPO1

CPC1
, i.e. PO1

ZaðPO1
gPC1

Þ. The threshold value for switching
between the formulations was chosen in such a way that the rate coefficients
governing the transitions between PC1

and PO1
were at least 10 times faster than

all other processes. Specifically, we used a threshold kCa ½Ca2C�nssZ100 m sK1, which
translated into a threshold concentration of ½Ca2C�ss;thZ0.095 mM.

When switching to formulation B, further numerical stability benefits were
gained by replacing, with an algebraic equation, the ODE that governs the
½Ca2C�ss transient as a function of the fluxes into and out of the dyad. This was
accomplished by assuming that ½Ca2C�ss equilibrates rapidly, i.e. the Ca2C influx

into the dyadic space and the Ca2C efflux out of it are equal. This is equivalent to
assuming that d½Ca2C�ss=dtZ0 holds true, resulting in the reduction of the ODE
governing the transients into an algebraic equation. This assumption is well
justified because Ca2C diffusion out of the dyad occurs far more rapidly than the
L-type Ca channel and RyR gating processes (Hinch et al. 2004; Greenstein et al.
2006). As evidenced by figure 3c, this modification does not lead to any
differences in results (compare traces A and B in figure 3c), but allowed a
much larger time-step, 2.5 ms. Otherwise, for stability reasons, the integrator
was forced into a small time-step of 0.2 ms. However, for ½Ca2C�ss close to the base
level, employing the algebraic equation to update ½Ca2C�ss results in small
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deviations. In this case, the onset of the ½Ca2C�ss transient occurs approximately
5 ms earlier than that in the original model (compare traces A and B with B�

in figure 3c).
Finally, longer single-cell simulations, over 1 min, were executed to ensure the

long-term stability of the scheme. It was established, for all 50 state variables of
the model, that the results were indiscernible from those obtained with the
reference implementation.
5. Implementation of the new paradigm in organ-level simulations
with the ECME model

The gain in execution speed obtained by using TMSD with the dynamic
reformulation of several ODEs versus the classical NSFD w/FE scheme turned
out to be at least two orders of magnitude. Although the exact speedup depended
on several factors, such as platform, compiler, optimization and implementation
details, differences in execution time between a straightforward NSFD w/FE
implementation of the ECME model, using an integration time-step of 0.2 ms,
and the TMSD integrator with dynamic reformulation reached a factor of up to
285. This is mainly attributed to gains in the maximum stable time-step size that
can be used to integrate the RyR state equations, while less frequent updates of
state variables related to the metabolic state and force generation helped to
reduce execution times further by reducing the number of expensive evaluations
of the function f.

To assess to what degree the gain in efficiency in the ECME model was
sufficient to allow simulations at the tissue and organ levels, we carried out
benchmark simulations in tissue consisting of one million cells. The benchmark
was executed without coupling the cells, i.e. the parabolic PDE was not solved
and no spatial domain was discretized. This problem size was chosen (i) by
considering that one million degrees of freedom suffice to discretize any small
mammalian heart up to the size of a rabbit at a sufficiently fine spatial resolution
(approx. 200 mm) and (ii) to ensure that realistic organ-level simulation is tested
where cache performance will play an important role.

Execution times to simulate one second of activity were measured on a
standard desktop computer with four CPUs for the ECME model and several
other widely used models, from a simple ventricular model with seven state
variables, the MBRDR model (Drouhard & Roberge 1987), through the
Courtemanche model of the human atrial action potential (Courtemanche
et al. 1998) and the Luo–Rudy guinea-pig ventricular model in its latest revision
(Faber & Rudy 2000; Luo & Rudy 2006), to the most recent Markov state model
of the rabbit ventricular cell by Mahajan et al. (2008). For all models other than
the ECME, we used the NSFD w/FE method with the acceleration techniques
described in the review portion of this article. Although some of these models
could be integrated with significantly larger time-steps in a single-cell mode, all
models were integrated with a time-step of 20 ms, assuming that this value is a
constraint imposed by the CFL conditions of the parabolic PDE.

Benchmark results are summarized in table 1. Even with all the optimizations
implemented, the ECME model is, by a wide margin, computationally
significantly more expensive than all the other models in this benchmark.
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Table 1. Summary of execution times Texec, in minutes, to simulate 1 s of activity in a tissue model
with one million cells running on a standard desktop computer for various ionic models. (A global
time-step of 20 ms was used for all models.)

MBRDR Courtemanche LRdII Mahajan ECME

Texec/s (min) 11 24 54 125 300

60 0.03 126.6 0.04

–100

(m
V

)

(m
V

)

(m
M

)

(m
M

)

0 124.8 0

100 ms

(a) (b) (c) (d )

Figure 4. Application of the TMSD ODE integrator with dynamic reformulation of ODEs to the
ECME model in an organ-level simulation. An apical pacing sequence was simulated in a
monodomain guinea-pig-size ventricular model (approx. 75e3 degrees of freedom) using a proof-
of-concept implementation of a TMSD ODE integrator with dynamic reformulation. On a current
standard desktop computer, the execution time was approximately 1e3 times slower than real time
(i.e. simulation of 1 ms of activity lasted for approx. 1 s). Shown are the epicardial maps of the
distributions of (a) transmembrane voltage, Vm, (b) calcium concentration in the dyadic space,
½Ca2C�ss, (c) mitochondrial membrane potential, Dj, and (d ) the concentration of permissive
tropomyosin with zero crossbridges, P0. All variables are shown at 40 ms after the pacing pulse
delivery, except for P0, which is shown at a later instant, 70 ms.
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Nonetheless, the performance is sufficient to investigate phenomena occurring
on the time-scale of several seconds to minutes when simulations are executed
on a supercomputer. Since the ODE computations scale linearly on a parallel
computer, the time spent on solving the ODEs can be scaled down to execute the
computations within a reasonable time. For instance, using 512 processors, the
execution time will be reduced by a factor of 128 relative to this benchmark.
That is, in 2.34 min, 1 s of activity can be simulated; 1 min of activity would be
executed in 140 min.

Finally, we coupled the ECME model with the implemented TMSD ODE
integration scheme with dynamic reformulation to tissue-/organ-level bidomain
codes to conduct true organ-level simulations. A guinea-pig-size ventricular
geometry model, which represents the rabbit ventricular geometry used in our
previous studies (Trayanova et al. 2002; Rodriguez et al. 2005; Ashihara et al.
2008), scaled half in size, was chosen to facilitate the execution of the test on a
standard desktop computer with reasonable performance. The discretization
of the myocardial volume at an average element size of approximately 200 mm
led to approximately 75e3 degrees of freedom. The guinea-pig ventricles were
paced at the apex to initiate a simple activation sequence (figure 4). Using a
current desktop computer (Dual Opteron X2), the simulation of 1 ms of activity
Phil. Trans. R. Soc. A (2008)
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was executed in approximately 1.2 s for a monodomain formulation and in
approximately 5 s for a bidomain formulation. That is, on a standard desktop
computer in 1 hour execution time, approximately 3 s of activity could be
simulated with a monodomain formulation and 0.72 s with a bidomain
formulation. These numbers clearly demonstrate the potential of the new
methods presented in this study. Again, when parallel computers are employed
to execute simulations, much longer observation periods, of the order of tens of
seconds to minutes, can be studied with ionic models as complex as the ECME
model within a reasonable time.
6. Concluding remarks on the new paradigm

This article has presented a review of various numerical techniques to model
electrical activity in the heart, spanning the spatial scales from subcellular
mechanisms to the entire organ. Furthermore, a new version of the NSFD w/FE
method was developed, which takes advantage of the very different time-scales of
the processes represented in recent ionic models of very high complexity, such
as the ECME model, to obtain substantial increases in computational efficiency.
In Maclachlan et al. (2007), it was reported that the simulation of 500 ms activity
in a single cell modelled by the Winslow et al. (1999) canine ventricular model
lasted for 25 s. The ECME model used in this study employed the same set of
equations to represent the L-type calcium current and RyR subsystem, which are
by far the computationally most expensive components of the model. Although
direct comparison is difficult, the ECME model can be judged as computationally
more expensive than the canine model by Winslow et al. The performance we
obtained in this study for the ECME model translates into 36 ms to simulate
500 ms activity in a single cell and, thus, is significantly more efficient than the
standard NSFD w/FE method.

This is the first attempt at an implementation based on the TMSD ODE
integration method with dynamic reformulation of ODEs. Although the
performance is satisfactory and opens new avenues to employ highly detailed
cell models in organ-level simulations, this is a first step only and further
significant performance improvements can be expected. The choice of
decomposing the set of ODEs into groups and the maximum possible time-step
for each group cannot be determined automatically and needs manual tuning. In
general, this is a significant disadvantage of the TMSD technique since intimate
knowledge of the model is required to tune up the method for best performance.
Decoupling an ionic model into different subsystems requires a non-trivial effort
and careful examination of the maximum rates of change of different state
variables. The effort to develop ionic models based on the suggested methods is
further complicated by the fact that at least two implementations of an ionic
model are required, a very accurate reference implementation such as an implicit
BDF integrator in the standard form and the TMSD implementation itself. At
the current stage of development, the method is sufficiently efficient to allow
parameter sweeps in organ modelling studies of small mammalian hearts, even
when high-performance computing (HPC) environments are not available. To
simulate larger mammalian hearts or for questions that require the use of the
bidomain formulation, the use of HPC hardware is mandatory. Today, with the
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availability of HPC environments, there are virtually no limitations in using
highly detailed Markov chain ionic models, and the testing of various simulation
scenarios as well as explorations of parameter spaces indeed appear feasible.
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