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Abstract
Recently, it was discovered that sialic acid residues on group B streptococcal (GBS) capsular
polysaccharides (CPS) are O-acetylated. Since GBS vaccine development has focused on de-O-
acetylated CPS, it became germane to investigate the influence of de-O-acetylated GBS vaccine
formulations on functional activity of sera against strains that bear the O-acetyl modification. Post-
immunization sera from healthy adult recipients of de-O-acetylated GBS CPS-tetanus toxoid
conjugate vaccines were evaluated in opsonophagocytosis assays using 20 GBS clinical isolates
representing type Ia, Ib, II, III, or V CPS that varied in amount of O-acetylation from 2 to 40 percent.
Ninety percent or greater opsonophagocytosis and killing of all strains were achieved, using CPS
type-specific post-immunization sera. These data indicate that de-O-acetylated CPS-conjugate
vaccines contain immunogenic epitopes that offer protection against GBS, independent of O-acetyl
CPS modifications. Thus, presence of O-acetyl groups on the GBS CPS is not essential for functional
antibodies to be elicited by GBS glycoconjugate vaccines.
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1. Introduction
Group B Streptococcus (GBS) remains the leading cause of sepsis and meningitis in neonates
and young infants despite universal antenatal screening and maternal intrapartum antibiotic
prophylaxis for GBS culture-positive women [1]. GBS also causes invasive disease in pregnant
women leading to fetal loss, preterm labor, chorioamnionitis, and early postpartum febrile
morbidity [2]. In addition, the incidence of GBS disease is on the rise in non-pregnant adults,
particularly in those with underlying medical conditions and the elderly [3]. Case-fatality rates
are as high as 15% in adults ≥65 years of age and 20% in preterm infants [1-3]. GBS meningitis
infant survivors often suffer from severe sequelae including metal retardation, spastic
quadriplegia, and hearing or vision loss [4]. Immunization with a GBS vaccine has theoretical
potential to prevent significant morbidity and mortality from perinatal infections in the mother
and neonate [5]. Further, GBS immunization of adults with underlying medical conditions and
those ≥65 years of age also would have a significant public health impact [6].

All GBS strains possess a capsular polysaccharide (CPS) on their surface. CPS is a major
virulence factor and the primary component in GBS vaccines being developed [7,8]. Nine
antigenically distinct CPSs have been characterized: Ia, Ib, and II through VIII [9]. All CPSs
are high molecular weight polymers and Ia, Ib, II, III and V are composed of repeating units
of glucose, galactose, N-acetylglucosamine, and N-acetylneuraminic acid (sialic acid) [5].
Sialic acid refers to a family of related nine-carbon acidic sugars situated prominently at
terminal positions of many eukaryotic surface-exposed glycoconjugates [10]. Many pathogenic
bacteria including GBS display sialic acids on their cell surfaces that function to evade host
immune systems. Loss of capsular sialic acid in a mutant GBS strain is associated with
attenuated virulence in animal models of infection [11]. Additional studies have shown that
sialic acids can inhibit alternative complement deposition and block underlying immunogenic
epitopes [12,13]. Both mechanisms of sialic acid evasion allow GBS to resist
opsonophagocytosis and killing of GBS by dampening different arms of the complement
cascade. Interestingly, antibodies that are protective against type III CPS depend on the
presence of sialic acid residues, which dictate a conformational structure of the polysaccharide
[14].

Recently, it was reported that terminal sialic acid residues of GBS CPSs are O-acetylated
[15]. This finding had been overlooked in previous studies primarily because base treatment
during GBS CPS purification removes O-acetyl groups on sialic acid [15]. Thus, GBS vaccine
research has focused on de-O-acetylated CPS. It seemed reasonable to consider that the
presence of O-acetyl groups could introduce unique epitopes to GBS CPSs or mask other
antigenic regions leading to altered host recognition, depending on O-acetylation status.
Therefore, we investigated the impact of CPS O-acetylation on the effectiveness of current de-
O-acetylated CPS-based vaccine candidates. We evaluated for the first time the functional
activity of antibodies elicited by GBS de-O-acetylated CPS-tetanus toxoid conjugate vaccines
against GBS strains with varying degrees of O-acetylation.

2. Methods
2.1 Post-vaccination human sera

Healthy non-pregnant adults enrolled in GBS vaccine studies received GBS Ia, Ib, II, III, or V
CPS-tetanus toxoid (TT) conjugate vaccines [16-19]. Vaccine CPS sialic acids did not contain
O-acetyl groups due to base treatment during vaccine preparation [16]. Paired blood samples
were collected before and 8 to 17 weeks after immunization. Pooled CPS-specific sera
(standard human reference sera [SHRS]) were derived from post-immunization sera from
individuals who developed high concentrations of CPS-specific IgG and/or IgM after
immunization with a single dose of GBS type-specific CPS–TT conjugate vaccine.
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Concentrations of CPS-specific antibodies in each SHRS pool were measured as previously
reported [16-19] by quantitative precipitin analysis in combination with radioactive antigen-
binding assay (Table 1) using methods detailed by Guttormsen et al [20]. Briefly, quantitative
precipitin analysis [21] was employed to establish the concentrations of CPS-specific
antibodies in each SHRS. The concentration of each CPS-specific IgG or IgM assigned to a
SHRS was based on the sum of values obtained by quantitative precipitation of antibodies
[22,23]. Serial dilutions of each SHRS allowed generation of a standard curve based on optical
density values determined at 405 and 630 nm. Sera were stored at -80°C until testing.

2.2. Bacterial strains
Twenty GBS isolates (type Ia [n=5], Ib [n=2], II [n=3], III [n=7], and V [n=3]) were evaluated,
including at least 1 prototype strain for each CPS type. The prototype strains were A909 (Ia),
UAB (Ib [previously called UAB-II] [15]), DK23 (II), D136 (III), and NCTC 10/84 (V). These
well-characterized strains were originally gifts from Drs. Rebecca Lancefield, Dennis Kasper,
or Jarmila Jelinkova. COH1 was a gift from Craig Rubens. The remaining 14 GBS isolates
were obtained from the Streptococcal Immunology Laboratory collection at Baylor College of
Medicine. Except for A909 and D136 (initially obtained from Rebecca Lancefield), all strains
were isolated from neonates with invasive early- or late-onset GBS infections of varying
severity and clinical expression. Strains were isolated from blood in 15 patients and from
cerebrospinal fluid in 3 patients. All strains were stored at -80°C in aliquots of Todd-Hewitt
broth (THB) with 20% glycerol until testing.

2.3. O-acetylation analysis
Analysis of O-acetylation on sialic acid was performed by methods previously described
[15]. Briefly, GBS strains were grown overnight in THB and washed in phosphate-buffered
saline (PBS). Sialic acids were released by acid hydrolysis with 2M acetic acid and the low
molecular weight material derivatized with 1,2-diamino-4,5-methylene dioxybenzene (DMB).
Reverse-phase high performance liquid chromatography (HPLC) analysis was performed by
Glycotechnology Core Resource Laboratory at the University of California, San Diego.
Identification of O-acetylation peaks was based on known standards from bovine submaxillary
mucin and was confirmed by their sensitivity to NaOH treatment. Quantitation of O-acetylation
was performed by automated integration of peak areas. To be consistent with recent
publications evaluating the genetic basis for O-acetyl regulation in GBS, we used O-acetylation
at the 7 and 9-carbon positions (excluding 8-O acetylation) as a measure of total O-acetyl
modification. The “8-OAc” peak is a minor component of GBS sialic acids and is only partially
NaOH sensitive.

2.4. Opsonophagocytosis assay
SHRSs containing post-immunization antibodies against type Ia, Ib, II, III, or V CPS (Table
1) were tested for their ability to promote opsonization, phagocytosis and killing by human
polymorphonuclear neutrophils (PMNs) of homologous CPS-type strains containing varying
levels of O-acetylation. While SHRS Ia, Ib and III consists almost exclusively of CPS-specific
IgG, a substantial amount of CPS-specific IgM is found in SHRS II and V; both antibody
isotypes are opsonic in vitro. The opsonophagocytosis assay was adapted from a previously
described method [24]. Reaction mixtures for opsonization consisted of 50μl of bacteria (2-3
× 106 colony-forming units [cfu]), 100μl of serial dilutions of heat-inactivated SHRS, and
150μl of PBS; these were incubated for 30 minutes at 4°C and then centrifuged at 1600 RPM
at 4°C. The supernatant was decanted, and 30μl of infant rabbit complement (Serotec) with
220μl of PBS were gently vortexed, and 50μl of PMNs (1.5×106) from a healthy adult were
added and incubated for 40 minutes at 37°C. Results were expressed as the mean log10
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reduction in cfu of GBS before and after incubation and represented the mean of 2 to 3
experiments.

2.5. Statistical analysis
Analysis of variance was used to test for differences of sialic acid O-acetylation or
opsonophagocytosis between groups. Spearman rho correlation analysis of percent O-
acetylation and amount of antibody required to kill one log10 GBS were performed using
STATA (version 9.0). P <0.05 was considered significant.

3. Results
3.1. O-acetylation analysis

Sialic acids were hydrolyzed from 20 GBS strains containing Ia, Ib, II, III or V CPS and were
analyzed by DMB-HPLC. The relative areas of peaks corresponding to retention times of
DMB-derivatized standards for 7- and 9-mono-O-acetylated sialic acid were summed to
calculate percent of total sialic acids that were O-acetylated. All strains exhibited O-acetylation
ranging from 2 to 40 percent of total sialic acids (Figure 1). Variation was noted, but among
the strains studied types Ib, III, and V demonstrated higher levels of O-acetylation than types
Ia and II (ANOVA, p=<0.001). These data suggest that O-acetylation is likely not a factor for
immunization studies with GBS CPS serotype Ia and II conjugate vaccines. In contrast, high
levels of O-acetylation observed on CPS serotypes Ib, III, and V confirmed that analysis of the
effect of native O-acetylation of the opsonophagocytic activity of sera from individuals
vaccinated with these de-O-acetylated CPS conjugate vaccine preparations was warranted.

3.2. Functional activity of sera from adults immunized with de-O-acetylated GBS
glycoconjugate vaccines

Utilizing an opsonophagocytosis assay, CPS-specific standard human reference serum pools
containing CPS-specific antibodies from sera of adults after immunization with de-O-
acetylated CPS glycoconjugate vaccines were used to test their ability to promote opsonization,
phagocytosis and killing of GBS strains containing varying levels of sialic acid O-acetylation.
Significant opsonophagocytosis and killing was evidenced by one or more log10 reduction in
colony-forming units of all 20 GBS clinical isolates. This represented over 90% reduction of
the initial inoculum for each strain that was dependent on the presence of vaccine-induced
antibodies and in the case of type II and V, both CPS-specific IgG and IgM. The antibody
concentration required to achieve at least one log10 reduction in colony-forming units ranged
from ∼0.1 to 0.6 ug/ml within and among CPS types, but did not appear to correlate with the
degree of strain O-acetylation (rs =-0.69, p<0.001). This finding was particularly relevant to
serotype III GBS strains, which can express either high or low levels of the O-acetyl
modification (Figure 1). Thorough analyses of the type III strains did not reveal evidence that
O-acetylation has a substantial effect on the recognition of GBS by antibodies generated in
response to de-O-acetylated vaccine preparations (Figure 2a). In fact, a lower CPS-specific
antibody concentration (∼0.22 μg/ml) was required to promote opsonophagocytosis and killing
of type III strains compared to other CPS types (ANOVA, p=0.004; Figure 2b-d).

4. Discussion
We show here for the first time that antibodies elicited by de-O-acetylated GBS CPS-tetanus
toxoid conjugate vaccines function effectively in promoting opsonophagocytosis and killing
of GBS independent of the extent of O-acetyl modification of CPS sialic acid residues. These
findings are particularly relevant to serotype III GBS strains, which account for nearly two-
thirds of late-onset infant disease cases, more than a third of which present as meningitis, for
which there is no prevention strategy [3]. We show that serotype III strains can vary in capsular
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O-acetylation levels, but that the occurrence of O-acetyl groups is not essential for functional
activity of antibodies elicited by GBS glycoconjugate vaccine and does not appear to block
immunogenic epitopes present in this de-O-acetylated vaccine. Post-immunization sera
achieved at least one log10 reduction (90% killing) of clinical type III GBS strains with low
and high levels of O-acetylation.

Less than 0.6 μg per ml of CPS-specific antibodies in pooled post-immunization sera from
healthy adults was sufficient for significant opsonophagocytosis and killing of CPS type Ia,
Ib, II, III and V strains. These in vitro antibody concentrations are in concordance with
previously published quantities found to be “protective” against CPS type Ia, Ib, and III strains
[25-27]. Further, CPS-specific human IgG concentrations of 1.0 and 0.2 μg/ml, respectively,
have been reported to protect mice against a 90% lethal dose challenge against type Ia and Ib
strains [25,26] and infants infected with type Ia and Ib GBS disease have concentrations below
these in their acute sera. For infants and adults with invasive type III disease, concentrations
of less than 2 μg/ml have been detected in acute sera [27]. Pre-immunization sera tested
previously showed low levels (0 to <0.3 log10 reduction in cfu/ml) of opsonophagocytic activity
against all CPS types [16-19].

Studies of vaccines derived from several pathogenic bacteria have shown varying effects of
O-acetylation on immunogenicity of polysaccharide structures. In murine models of Neisseria
meningitidis group A and Salmonella typhi Vi CPS infection, O-acetyl groups appear to be
important for vaccine-induced protection [28,29]. On the other hand, several human trials of
bacterial CPS vaccines have shown very little impact of O-acetyl groups on immunogenicity
and functional activity of the induced antibodies [30-32]. McNeely et al. [30] showed that
antibodies raised against O-acetylated and de-O-acetylated Streptococcus pneumoniae type
9V CPS were able to opsonize 9V organisms in vitro. In humans and infant rhesus monkeys,
backbone-specific antibody was sufficient for opsonic killing of type 9V. Giardina et al. [31]
found that post-immunization sera from adults given an O-acetylated meningococcal group
W135 CPS vaccine showed little or no discrimination between O-acetylated and non-O-
acetylated strains as quantitated in serum bactericidal assays. Clinical trials of group C
meningococcal CPS vaccines in O-acetylated and de-O-acetylated forms also demonstrated
that O-acetylation was not required for immunogenicity of the vaccine [32].

The data presented here strongly suggest that in the case of GBS, O-acetyl modifications of
the CPS do not have a significant effect on the functional activity of antibodies generated
against the de-O-acetylated structure. Because these studies employed de-O-acetylated CPS
conjugate vaccines, they cannot address the possibility that O-acetyl groups confer novel
immunogenic epitopes. However, given the chemical lability of O-acetyl esters and the
effectiveness of the de-O-acetylated CPS vaccines, such studies may not be feasible or
necessary.

Theoretically, immunization with an O-acetylated GBS CPS could induce antibody against the
O-acetyl groups and the backbone. In evaluations of Staphylococcus aureus type 5 and 8 CPS
vaccines [33], immunization with the native CPS conjugates with 75% O-acetylation elicited
a high proportion of antibodies directed against the O-acetyl moiety, but all of the vaccines
constructed also produced antibodies to the backbone moieties. However, other studies have
found that presence of O-acetyl groups in vaccine can actually interfere with the ability to
induce antibody to the protective epitope. De-O-acetylated meningococcal group C CPS
vaccine induced a twofold greater titer of antibody compared to the O-acetylated vaccine in
humans [32]. Thus, antibody formed to the de-acetylated version of the vaccine will recognize
the bacteria regardless of the presence or location of the O-acetyl groups.
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A potential limitation of this study is that we tested opsonophagocytic activity with only a
single serum pool for each CPS type. It is theoretically possible that if individual serum samples
had been examined, O-aceylation-dependent differences in activity may have been found.
However, previous studies of individual pre- and post-immunization sera done prior to the
discovery of O-acetylation showed that opsonophagocytic activity of in excess of 90% was
significantly correlated with concentration of CPS-specific antibody [16-19].

This investigation demonstrates that current de-O-acetylated GBS CPS-based conjugate
vaccine formulations [16-19] induce antibodies that function effectively against major disease-
causing types of GBS regardless of the presence of high or low percentage of O-acetylated
sialic acid residues. Consideration should be given to further investigation with the use of
isogenic strains that only differ in levels of O-acetylation to control for variation in other
capsular features. However, our results using clinical strains support the presumption that
protective epitopes for GBS CPS are contained on the de-O-acetylated form. We are hopeful
that further trials of GBS conjugate vaccines or newly developed GBS vaccine formulations
in young women, adults with defined medical conditions, and the elderly will show that the
growing burden of invasive GBS disease in these groups and neonates can be substantially
reduced.
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Figure 1.
The percent of total sialic acids that were O-acetylated at carbon positions 7 and 9 varied by
GBS strain. High levels of O-acetylation were observed for CPS types Ib and V; low levels of
O-acetylation were observed for CPS types Ia and II. CPS type III showed the most variation.
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Figure 2a-d.
Opsonophagocytosis and killing by human PMN of CPS GBS strains with varying levels of
sialic acid O-acetylation (indicated as %) in the presence of standard human reference sera
(SHRS) containing glycoconjugate vaccine-induced, CPS-specific-antibodies and infant rabbit
complement. Vaccine-induced antibodies functioned effectively against all GBS strains. In
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particular, despite high levels of O-acetylation, CPS types Ib, III, and V GBS were killed by
de-O-acetylated vaccine-induced antibodies. (Figure for opsonophagocytosis of type II CPS
with low O-acetylation is not shown.)

Pannaraj et al. Page 12

Vaccine. Author manuscript; available in PMC 2010 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Pannaraj et al. Page 13

Table 1

Concentrations of GBS glycoconjugate vaccine-induced CPS-specific IgG and IgM in Standard Human
Reference Sera (SHRS).

CPS Type No. of Vaccine Recipients in Serum Pool CPS-specific IgG (μg/ml) CPS-specific IgM (μg/ml) Total CPS-specific antibody (μg/ml)
Ia 5 47.2 <0.1 47.2
Ib 5 35.4 <0.1 35.4
II 7 30.4 26.1 56.5
III 5 83.5 <0.1 83.5
V 5 11.6 25.1 36.7
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