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Abstract

Uterine leiomyomata (UL), the most common neoplasm in reproductive-age women, have
recurrent cytogenetic abnormalities including del(7)(q22g32). To develop a molecular signature,
matched del(7qg) and non-del(7q) tumors identified by FISH or karyotyping from 11 women were
profiled with expression arrays. Our analysis using paired t-tests demonstrates this matched design
is critical to eliminate confounding effects of genotype and environment that underlie patient
variation. A gene list ordered by genome-wide significance showed enrichment for the 7922 target
region. Modification of the gene list by weighting each sample for percent of del(7q) cells to
account for the mosaic nature of these tumors further enhanced the frequency of 7922 genes.
Pathway analysis revealed two of the 19 significant functional networks were associated with
development and the most represented pathway was protein ubiquitination, which can influence
tumor development by stabilizing oncoproteins and destabilizing tumor suppressor proteins. Array
CGH (aCGH) studies determined the only consistent genomic imbalance was deletion of 9.5
megabases from 7g22-7g31.1. Combining the aCGH data with the del(7q) UL mosacism-weighted
expression analysis resulted in a list of genes that are commonly deleted and whose copy number
is correlated with significantly decreased expression. These genes include the proliferation
inhibitor HPB1, the loss of expression of which has been associated with invasive breast cancer, as
well as the mitosis integrity-maintenance tumor suppressor RINT1. This study provides a
molecular signature of the del(7q) UL subgroup and will serve as a platform for future studies of
tumor pathogenesis.
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INTRODUCTION

Uterine leiomyomata (UL) are tumors commonly referred to as fibroids that arise from the
uterine smooth muscle wall. Despite their non-malignant nature, UL represent a major
concern in women’s health through their induction of significant morbidity in many of the
approximately 25% of reproductive-age women in whom they are clinically detected
(Buttram and Reiter, 1981). The overall prevalence is even higher, as systematic histological
examination of hysterectomy specimens identified UL in approximately 77% of women
(Cramer and Patel, 1990). This frequency, and symptoms including bladder dysfunction,
abdominal pain, excessive menstrual bleeding and impaired fertility (Rein and Nowak,
1992; Coronado et al., 2000), leads UL to be the primary indication for hysterectomy and
account for approximately 1 in 5 visits to a gynecologist, thereby resulting in expenditures
of greater than 2.1 billion health care dollars annually in the U.S. (Lepine et al., 1997; Flynn
et al., 2006; Hartmann et al., 2006).

Approximately 40% of UL have cytogenetic alterations including simple and recurrent
deletions, inversions and translocations (Nibert and Heim, 1990; Meloni et al., 1992). These
abnormalities were used to classify UL into subgroups and provide landmarks for gene
discovery. One of the largest UL subgroups is defined by the presence of chromosome 7
long arm abnormalities, most commonly the interstitial deletion del(7)(q22g32), which
represents approximately 15% of all UL and 20-35% of karyotypically abnormal UL
(Nibert and Heim, 1990; Ozisik et al., 1993; Sargent et al., 1994; Xing et al., 1997). Deletion
of 7q can sometimes be found as the sole alteration in a non-mosaic state, suggesting that it
may play a primary early role in UL pathobiology.

Defining the del(7q) pathogenetic region has proven challenging. Initial work with rare
translocations identified the gene-rich band 7g22 as the minimal cytogenetic region of
importance (Ozisik et al., 1993; Sargent et al., 1994). Further refinement was attempted by
multiple groups through loss of heterozygosity (LOH) analysis using polymorphic
microsatellite markers; however, conflicting minimally deleted regions and inconsistent
LOH maps have resulted. The most consistent common region of overlap based on the
March 2006 assembly of the UCSC genome browser as defined by five previous studies is
located between markers D752453 and D7S501 in 7922.2-022.3 (Zeng et al., 1997; Sell et
al., 1998; van der Heijden et al., 1998; Saito et al., 2005; Vanharanta et al., 2005).
Additional regions were suggested as separate tumorigenic targets in del(7g) UL such as
7931.1 and 7934, but such results only reflect one sample in each study and lack
independent confirmation (Ishwad et al., 1997; Sell et al., 2005; Vanharanta et al., 2007).

UL provide a unique model for tumor pathobiology investigation as on average six to seven
neoplasms are present in an individual woman and each is clonal as demonstrated by
analysis of repeat polymorphisms in the X-linked androgen receptor and
phosphoglycerokinase genes (Cramer and Patel, 1990; Mashal et al., 1994; Hashimoto et al.,
1995). In addition, UL are homogenous and often of a size to provide an abundant sample.
We have taken advantage of this for expression profiling to compare directly UL with
del(7q) and UL without del(7q) obtained concurrently from the same uterus.

As we will show, this matched (or paired) study design is critical in identifying genetic
events associated with the del(7q) abnormality. This design has not been exploited by any
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previous study and will nullify the confounding effect of patient to patient variability due to
divergent genotype, environment, or interaction of genotype and environment.

MATERIALS AND METHODS

Clinical Material

GTG-banded karyotyping according to established protocols (Rein et al., 1991) or FISH (see
below) were used to ascertain four UL with del(7q) (cases 1 to 4) and one UL that was
mosaic for both del(7q) and t(12;14)(gq15;923-q24) (case 5) obtained from surgical
specimens at Brigham and Women’s Hospital (BWH) through a Partners HealthCare IRB-
approved protocol. Using the same abnormality detection strategy, six UL with del(7q)
(cases 6 to 11) were identified from an IRB-approved tissue bank of over 100 consented 25—
50 year-old women who underwent myomectomy or hysterectomy at BWH. Participants
consented for the tissue bank also completed detailed epidemiological surveys ascertaining
clinical, reproductive, sexual, dietary, and family history. For each of these 11 cases,
matched uterine myometrium and a non-del(7q) UL were obtained concurrently with the
karyotypically abnormal UL. Each case was grossly confirmed to be a UL or myometrial
specimen and when possible hematoxylin- and eosin-stained tissue sections underwent
histologic evaluation.

Fluorescence In Situ Hybridization (FISH)

End-sequenced and FISH-verified bacterial artificial chromosomes (BACs) (Cheung et al.,
2001) were selected using the University of California Santa Cruz Biotechnology Genome
Browser and Database (http://genome.ucsc.edu) (Karolchik et al., 2003) and then obtained
from the RP11 library (BACPAC Resource Center at the Children’s Hospital Oakland
Research Institute, Oakland, CA). DNA was isolated from bacterial cultures following a
standard protocol consisting of alkaline lysis, neutralization and ethanol precipitation.

UL with del(7q) were identified by loss of probe RP11-374E17 at 7q22.2 with retention of
the control probe RP11-71F18 at 7p21.1 by interphase FISH on nuclei from fresh fixed cell
pellets as previously described (Moore et al., 2004). A total of 100 interphase nuclei were
scored for each specimen. The probe set was validated on normal peripheral blood
metaphases and on interphase nuclei from karyotype-confirmed del(7q) UL tumors. Each of
the tumors was similarly screened by interphase FISH for another common chromosome
abnormality in UL, t(12;14)(q15;023-24), by assessing for the presence of a fusion signal of
probes RP11-185D13 located at 12g15 and CTD-3225F7 at 14q24.

DNA Isolation

For the eight cases (2-3 and 6-11) for which tissue was available, a portion of each of the
non-del(7g) UL and del(7g) UL was minced with scalpels and immediately placed in Buffer
ATL (QIAGEN). Genomic DNA was isolated using the DNeasy Tissue kit with provided
standard protocol (QIAGEN) and assessed for purity and quantity on a Nanodrop
spectrophotometer (Thermo Scientific).

Array Comparative Genomic Hybridization (aCGH) Analysis

High quality genomic DNA from each of six cases (3, 6-9, and 11) was run on Agilent
Human 244K CGH microarrays (Santa Clara, CA) using a standard direct method as
described in the Agilent Oligonucleotide Array-Based CGH for Genomic DNA Analysis
Protocol version 4.0 at www.chem.agilent.com. Briefly, DNA was restriction digested and
each del(7qg) UL (test sample) was labeled with Cy5 and each matched myometrium (control
sample) was labeled with Cy3 using the Genomic DNA Labeling Kit PLUS (Agilent). The
labeled DNA was then washed, yield quantified, and appropriate control and test samples
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combined in equal amounts. After incubation in Cotl DNA, blocking agent and
hybridization buffer, each sample was applied to a 244K array to hybridize overnight
followed by washing and array scanning. Data quality control measures were reviewed and
array images created using Feature Extraction software v9.5 (Agilent). Data were imported
into DNA Analytics software (Agilent) and analyzed for genomic copy number variation
using the ADM2 algorithm with a 5.5 threshold, a 5 probe and >0.125 absolute log ratio
filter, and fuzzy zero correction. The ADM2 algorithm gives a score that is proportional to
the absolute log ratio within an interval and the number of probes that have a significantly
different log ratio from that of the neighboring interval. The filter required that at least 5
consecutive probes had an absolute log ratio of >0.125 for an aberration to be called. The
fuzzy zero correction took into account local and global data noise to reduce false positive
calls. After establishing the aCGH-based DNA copy number aberrations, chromosome 7
data were aligned using the DNA Analytics software to the significantly expressed gene data
(P < 0.01) from the del(7qg) UL gene list weighted for percent of cells with the 7q deletion
(the generation using Affymetrix arrays of which is described below).

RNA Isolation

A portion of each of the myometrial, non-del(7q) UL and del(7qg) UL tissues in the 11 cases
was frozen in liquid nitrogen immediately after surgical removal or placed directly into
RNAlater solution (QIAGEN, Valencia, CA). RNA was isolated using the RNeasy Fibrous
Tissue kit with provided standard protocol (QIAGEN) and assessed for purity and quantity
on a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE).

Quantitative Polymerase Chain Reaction (Q-PCR)

Total RNA from the del(7q) and non-del(7qg) UL from each of four women (cases 4, 7, 10
and 11) was examined for MLL5 gene expression. PCR was performed on the ABI PRISM
7900HT Sequence Detection System in a 384-well format. TagMan Universal PCR
MasterMix and a pre-designed and optimized Tagman Gene Expression Assay for
quantitation of human MLL5 RNA (Applied Biosystems, Foster City, CA) were used
according to the manufacturer’s instructions. Each RNA was run in quadruplicate and the Ct
(cycle threshold) values of these replicates were averaged and then normalized by
subtracting the Ct value of the co-amplified internal control housekeeping gene GAPDH for
a ACt value. Data analysis used the comparative Ct method where the ACt of a non-del(7q)
UL was used as a calibrator reference and subtracted from the ACt of the corresponding
del(7g) UL to yield a AACt value. This was then converted into a fold-change relative to one
using the following formula: MLL5 expression = 2(-AACY)_ This number was then averaged
across the four samples.

Transcriptional Profiling

Total RNA isolated from the myometrial, non-del(7q) UL and del(7qg) UL tissues from each
of 11 cases was assessed for quality by RNA Nano LabChip analysis on an Agilent
Bioanalyzer 2100. Standard protocols as described in the Affymetrix GeneChip Expression
Analysis Technical Manual revision 4
(http://jaxservices.jax.org/Affymetrix_Gene_expression_manual_430.pdf) were employed at
the Harvard Medical School - Partners HealthCare Center for Genetics and Genomics
(HPCGQ). Briefly, 5 pg total RNA template from each sample was reverse-transcribed into
cDNA using oligo-dT primer containing T7 RNA polymerase binding sites using the
GeneChip Expression 3’-Amplification Reagents One-Cycle cDNA Synthesis kit with
subsequent purification of the double-stranded product with Affymetrix GeneChip Cleanup
Module (Affymetrix, Santa Clara, CA). In vitro transcription to produce complementary
RNA (cRNA) using T7 Polymerase and biotinylated dUTP and dCTP was performed with
the GeneChip Expression Amplification Reagents kit (Affymetrix) and the biotin labeled
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product quantitated on a Bio-Tek UV plate reader (Bio-Tek, Winooski, VT). Following
purification and fragmentation to reduce secondary structure, hybridization in a Model 640
hybridization chamber to GeneChip Human Genome U133 Plus 2.0 oligonucleotide
expression microarrays (Affymetrix), which contain over 54,000 oligonucleotide probe sets
representing more than 47,000 transcripts and 38,500 well-characterized genes, occurred
overnight at 45°C. Arrays were washed using a Model 450 Fluidics station with GeneChip
Operating Software (Affymetrix). The GeneChip Model 3000 7G was employed to scan the
arrays and the probe set expression values were calculated by GeneChip software using the
MAS 5.0 algorithm. Array images were inspected visually for experimental artifacts and
various quality measurements such as presence calls and RNA degradation were examined
to verify the quality of the data.

Data processing and analysis were carried out in the statistical language R (R Development
Core Team, 2008), including the use of microarray analysis tools from the Bioconductor
project (Gentleman et al., 2004). Normalization across arrays occurred by setting the
trimmed (2% of each tail) mean of each array to 100. Probe sets with fewer than five present
calls among the del(7qg) UL, non-del(7q) UL, and myometrium arrays were excluded. Paired
differential expression analysis (not accounting for percent mosaicism) between del(7q) UL
and non-del(7q) UL was computed using paired t-tests in which tissue samples were
analyzed as matched pairs based on patient status. Mosaicism-weighted paired differential
expression analysis was implemented in the Bioconductor package limma (Smyth, 2005) by
fitting a linear model (Gentleman et al., 2004) with weights equal to the percent mosaicism
for each array. All differential expression analyses were corrected for multiple testing using
the false discovery rate (Q-value).

Expression data were deposited at the NCBI Gene Expression Omnibus (GEO;
http://www.ncbi.nIm.nih.gov/geo/); the series entry number is GSE12814 and the specific
accession identifiers are listed in Table 1.

Ingenuity Pathways Analysis

Functional analyses of the top 300 probe sets from the del(7q) UL-specific gene list
weighted for del(7q) cell mosaicism were performed using Ingenuity Pathways Analysis
(IPA, Ingenuity Systems, Redwood City, CA, USA, www.Ingenuity.com) through
uploading of the Affymetrix probe set identifiers and fold changes. Networks were
generated by looking for interactions of the del(7q) UL-specific genes to others based on the
published literature accumulated in the Ingenuity Pathways Knowledge Base. Fisher’s exact
test was used to assign statistical significance, which is displayed as a score based on —
log(P-value) and represents the probability of finding genes from the del(7qg) UL-specific
gene list in a network relative to genes being assembled into that network based on random
chance. A score greater than two indicates less than a one in 100 likelihood (P —value <
0.01) that genes are assembled into a network by random chance. Networks including > 25
genes from the del(7q) UL-specific list are highly significant (giving a score of > 50).

RESULTS
Screening for del(7q) UL by Interphase FISH and Karyotyping

To identify UL with deletions in 722, interphase FISH or karyotype analysis was employed
(Table 1). For del(7q) interphase FISH, a conservative false-positive cut-off of 9%
monosomy was established by doubling the positive rate of 4.5% found in normal peripheral
blood lymphocytes. Probe binding to the correct target region without cross-hybridization
was validated on lymphocyte metaphases. The probe (RP11-374e17 at 7q22.2) was chosen
based on its presence within the commonly deleted interval among five prior del(7q) UL
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LOH studies (Ishwad et al., 1997;Sell et al., 1998;van der Heijden et al., 1998;Saito et al.,
2005;Vanharanta et al., 2005). Screening of 206 tumors identified 19 UL with at least partial
deletion of 7922 (9.2%). Of these 19 UL, those with parallel myometrium and non-del(7q)
samples plus similar cases found through karyotyping were selected for further analysis
resulting in a total of 11 cases. The level of mosaicism in these 11 cases of cells with del(7q)
ranged from 12-80%. Case 5 also had a proportion of cells with another recurrent UL
karyotypic abnormality, t(12;14)(gq15;923-q24).

Identification of del(7q)-Specific UL Genes

RNA from each del(7q) UL as well as from concurrently collected non-del(7q) UL and
normal myometrial tissues from each of 11 cases was hybridized on Affymetrix GeneChip
Human Genome U133 Plus 2.0 oligonucleotide arrays for expression analysis. Among these
cases, multiple clinical features were variable such as UL size, race, and the patient age and
stage of menstrual cycle at the time of surgical removal (Table 2). To control for such
variables, a direct comparison of the array expression data was made between tissues
obtained from each individual to identify differences in expression specifically resulting
from the deletion. A heatmap from an unsupervised hierarchical cluster analysis of the 500
most variable genes demonstrates a tendency of the myometrial tissues to cluster separately
from the UL samples and the del(7q) UL and non-del(7q) UL to cluster by patient rather
than by presence or absence of the deletion (Fig. 1A). The separation of the myometrial
samples from the overlapping UL groups can be visualized in three dimensions through
principal component analysis (Fig. 1B). These results suggest incorporation of the
myometrial array data is suited to determining genes that differentiate any UL from the
normal myometrium tissue rather than identifying the del(7q)-specific UL genes. Therefore,
the myometrial samples were not included in further analyses.

The effect of controlling for patient to patient variability is further illustrated by a
comparison of the percent of genes overlapping between gene lists generated by a paired and
an unpaired analysis of the del(7q) UL and non-del(7q) UL expression data. Minimal
overlap was found between the two analyses, particularly among the most significant genes
(Fig. 1C). A comparison of the top 50 genes from each analysis showed only 20% in
common, a percentage which did not increase above 40% when extended to include the top
several hundred genes. Another demonstration of the need to take into account variability
between patients is shown by examining the distribution of p-values from paired and
unpaired t-tests for a two group comparison (Fig. 1D). In the paired case, the individual
variation is accounted for by considering the difference between the samples of the same
individual, resulting in a peak on the left side of the distribution indicating more genes with
significant p-values were identified than expected from a random data set. In contrast, the
unpaired analysis ignores the sample pairing and results in a nearly flat distribution, showing
no clear evidence that genes appearing to have significant p-values from such a study
analysis design would be true positives.

Based on these analyses, paired t-tests directly contrasting the del(7q) UL and the non-
del(7q) UL from each individual were performed to determine del(7q) associated genes.
This resulted in a list of genes ordered by their genome-wide significance levels corrected
for multiple testing by the false discovery rate (Q-value) (Storey and Tibshirani, 2003). Of
the 100 most significant del(7q) UL-specific genes, those with decreased expression are
reported in Table 3 and those with increased expression in Table 4. A more extensive data
set of 300 genes is provided as Supplementary Table S1. Importantly, the del(7q) UL-
specific gene list is highly enriched for genes localized to 7q, most of which are in the
proposed target region of 7922 (Fig. 2). Further, all genes in 7922 showed decreased
expression. One of these genes, the vesicle transport mediator SYPL1 in 7922.2, appears on
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the del(7q) UL-specific gene list at number 227 and is overlapped by the FISH probe
employed to identify the del(7qg) UL.

Identification of del(7q)-Specific UL Genes Weighted for Percent Mosaicism of del(7q)

Cells

Cells with 7g abnormalities in UL are usually present in a mosaic form with karyotypically
normal cells (Xing et al., 1997). In contrast to previous studies, the impact of this biology
was integrated by weighting each sample pair [del(7g) UL and non-del(7q) UL from the
same woman] for percent del(7q) mosaicism of the tumor in a paired differential expression
analysis: the higher the percentage of del(7q) cells present, the more heavily weighted was
that sample. The 50 most significant genes based on Q-value in this modified del(7q) UL-
specific gene list are given in Table 5. A more expansive list of 300 genes is also presented
(Supplementary Table S2). The purpose of weighting the samples for mosaicism level is to
compensate for background noise caused by the karyotypically normal cells in order to
identify those genes specific to the del(7q) abnormality. The validity of this approach is
supported by the two-fold increase in the proportion of genes in 7922 within the top 50 of
the mosaicism-weighted list relative to the non-weighted list (from 10 up to 20 genes). A
comparison of the expression log ratios of genes and percent mosaicism identified seven
genes with a Q-value < 0.1 which are illustrated as scatterplots (Fig. 3A). Three of these
seven significant genes are located in 7922 (Fig. 3B).

Determination of Deletion Size Using aCGH and Alignment to Gene Expression Data

Genomic copy number changes in the del(7q) UL of six cases for which DNA was available
was assessed using array comparative genomic hybridization (aCGH). The matched
myometrium from each woman was used as the control against which each del(7q) UL DNA
was compared to remove any copy number variants inherent in the patient but not related to
tumorigenesis. All samples tested showed genomic deletion of 7q (Fig. 4A). The smallest
commonly deleted region on chromosome 7 in all six samples spanned approximately 9.5
megabases from 7922.1-g31.1 (Fig. 4B). No other deletion or amplification was universal to
all samples (Supplementary Table S3). Alignment of this aCGH-defined commonly deleted
region on 7q to the significant genes (P < 0.01) from the percent mosaicism-weighted
del(7qg) UL-specific list demonstrated a high correlation between genes located in the
deletion interval and significantly downregulated expression (Fig. 4A). This correlation
supports the accuracy of both the aCGH and expression microarray data. The significant
genes in the commonly deleted interval are listed in Table 6.

Quantitative PCR (Q-PCR) Confirmation of MLL5 Expression

Cases 4, 7, 10 and 11 for which additional RNA was available were evaluated by Q-PCR for
expression of MLL5 (Mixed-Lineage Leukemia-5), a gene in 79g22.3 which had decreased
expression in del(7g) UL by microarray analysis (sixth gene in the del(7q)-specific gene
list). In addition, MLL5 was significant with a Q-value of 0.0753 and a P-value of 0.0000148
in the fourth position in the gene list produced by weighting for percent mosaicism of
del(7q) cells (Table 5). Q-PCR for MLL5 confirmed the microarray data of a 1.4-fold
reduction by showing a 1.5-fold decrease in RNA expression in the del(7q) UL compared to
non-del(7q) UL after normalization to GAPDH (data not shown).

Functional Significance of del(7q)-Specific UL Genes

To extract biological insight from the transcriptional profile of del(7q) UL, the top 300
probe sets from the del(7q) mosaicism-weighted gene list, which represent the majority of
genes with altered expression in the target region of 7922, were investigated with the
Ingenuity Pathways Analysis (IPA) System. IPA is a web-based entry tool developed by
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systematic encoding of manually curated functional relationships between genes presented
in hundreds of thousands of scientific publications. Of the 300 probe sets, 197 were assigned
to networks. There were 19 networks of functional dependencies generated of which two
were highly significant (score > 50, genes from deletion 7q list > 25); nodes in the network
correspond to a gene and each arc to a published article reporting a functional relationship
between those two linked genes. The most significant networks (Fig. 5A and 5B) are
principally associated with development. The other networks involving 11 to 18 del(7qg) UL-
specific genes (scores 15 to 28) are associated with multiple functions including but not
limited to cell cycle, cell growth, cancer, cell morphology, DNA replication and repair,
reproductive system disease, gene expression, and additional development pathways.

In addition to functional networks, IPA was also used to identify which well-characterized
canonical pathways are most relevant across the entire del(7q) UL dataset. The significance
is based on a p-value calculated using the right-tailed Fisher’s Exact Test by comparing the
number of user-supplied genes that participate in a given function or pathway relative to the
total number of occurrences of these genes in all function/pathway annotations stored in the
Ingenuity pathways knowledge base. The protein ubiquitination pathway was the most
significantly associated (P-value = 2.76x107°), involving 11 genes from the del(7q) UL-
specific list. The genes from network 1 involved in protein ubiquitination include PSMA2,
PSMB3, PSMC2, PSMC3 while those in network 2 include UBE2] and UBE2J1.

DISCUSSION

Multiple recurrent cytogenetic abnormalities have been described in UL, suggesting these
tumors develop from several distinct genetic pathways. This necessitates examination of
each major cytogenetic subgroup for its role in UL tumorigenesis. One of the most common
abnormalities, deletion or rearrangement of 7922, remains largely undefined as
determination of the causative gene(s) has been complicated by the uncertainty of the
smallest commonly deleted region and the gene-dense nature of the target region 7g22.

Rearrangements of 7q22 are found more consistently in UL but have been observed in other
solid tumors such as lipomas and endometrial polyps as well as some hematological
malignancies (Dal Cin et al., 1995; Dal Cin et al., 1997; Liang et al., 1998). Such frequent
deletion or rearrangement of a specific chromosomal region is generally thought to indicate
involvement of a tumor suppressor gene where tumorigenesis results from the structural loss
of one copy and subsequent mutation of the other allele. However, it remains unclear if UL
with chromosome 7 abnormalities follow a loss of function pattern either due to deletion or
disruption at the translocation breakpoint. Alternatively, haploinsufficiency may be the
underlying molecular mechanism. Another possibility is that del(7q) UL arise through a gain
of function, resulting from either production of a fusion gene or a positional effect due to
rearranging sequences within chromosome 7 such as by an interstitial deletion. A gain of
function is not as likely because the del(7q) breakpoints are variable. It also has yet to be
determined if the predisposing gene(s) at 7q22 is the same or divergent between UL, other
mesenchymal solid tumors, and myeloid cells (AML and MDS).

Multiple studies have targeted del(7q) UL and shown LOH of microsatellite markers or
altered expression of genes within 7g22 such as CUTL1 (repressor of c-MYC expression),
ORCSL (DNA replication initiation factor), LAMBL (extracellular matrix component),
LHFPL3 (transmembrane protein of unknown function), and PAI1 (hemostasis and smooth
muscle cell expression) (Sourla et al., 1996; Zeng et al., 1997; Quintana et al., 1998; Saito et
al., 2005; Ptacek et al., 2007). No alteration in expression was found by RT-PCR for
NRCAM, DLD, PIK3G, PBEF or SRPK2 (Saito et al., 2005). However, despite these varied
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efforts, no consistent gene expression changes have been identified and the causative gene(s)
in the pathogenesis of the del(7q) subgroup of UL remain to be established.

It is notable that UL with 7q abnormalities are often mosaic with karyotypically normal
46,XX cells and when cultured grow poorly and frequently lose the chromosomally aberrant
cell line (Xing et al., 1997). These observations indicate a gene(s) deleted from the 7q region
likely plays a role in regulating cellular growth (Rein et al., 1998). Such mosaic UL were
demonstrated to be clonal tumors, which may suggest the del(7q) abnormality is not likely to
be the primary pathogenetic event. Deletion of 7q has however been observed as the sole
abnormality in a non-mosaic state, and it is possible there are submicroscopic pathogenetic
events such as small deletions or point mutations in the regulatory or coding sequences
occurring in the same genes as those indicated by chromosomal rearrangement (Xing et al.,
1997). In fact, submicroscopic deletions have been identified by the finding of LOH in 7q in
a subset of karyotypically normal UL through microsatellite allelotyping (Ishwad et al.,
1997).

Further inconsistency has been noticed when attempting to correlate LOH and karyotype
data. LOH was not detected in a proportion of UL with cytogenetically visible 7q deletions
(Ishwad et al., 1997). This discrepant result may be due to the mosaic nature of these UL
where the karyotypically normal cells dilute the ability of aCGH to detect the change in
DNA copy number of the involved genes. Another explanation is that del(7q) tumors
identified solely by interphase FISH may have rare complex chromosomal rearrangements
which result in some 7q genes being integrated elsewhere in the genome.

In addition to an inability to detect complex rearrangements, FISH is not able to quantify
precisely the deletion interval size. Defining the deletion boundaries was therefore addressed
in the current study by employing aCGH analysis on six of the del(7q) UL. In contrast to
earlier work that employed aCGH using a general female normal DNA as the control
(Vanharanta et al., 2007), we used the normal myometrial tissue from the same patient as the
control in each case to eliminate any confounding effect of germline copy number variation.
The only consistent copy number change among the six cases analyzed was deletion on
chromosome 7, the smallest common region of which spanned approximately 9.5 megabases
from 7g22.1-g31.1. Alignment of genes significantly expressed in del(7q) UL relative to
non-del(7q) UL after correction for mosaicism demonstrated a high correlation between
gene presence in the common deletion interval and decreased expression. This provides a
further validation of the accuracy of the microarray expression data. Our results also confirm
the finding that small homozygous deletions are not observed in del(7q) UL, arguing against
the target gene(s) in 7q being a tumor suppressor. In fact, microarray expression analysis
and coding region sequencing of many genes across the region have previously failed to
identify a gene of interest (Vanharanta et al., 2005; Vanharanta et al., 2007).

Other microarray expression analyses of UL relied on a comparison of the tumors to the
normal myometrial tissue, not taking into account the known cytogenetic variation among
UL. To identify genes specific to the del(7q) abnormality rather than those that distinguish
myometrium from any UL, the expression profile of del(7q) UL needs to be compared
directly to that of non-del(7q) UL. The current study takes this approach, and in contrast to
recent work (Vanharanta et al., 2005), the del(7q) and non-del(7q) tumors were from the
same rather than different patients to eliminate the genotype, environment, and genotype x
environment confounding effects that underlie patient to patient variation. In addition, the
aforementioned study employed the HG-U133A array which has less extensive genome
coverage than the U133 plus 2.0 microarray used in the present work, and even after
reducing the stringency to identify any contrasting genes of significance, none were
discovered in their 7qg commonly deleted region (Vanharanta et al., 2005).
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The validity and necessity of our approach to compare UL with and without the abnormality
from the same patient is supported by the finding of a del(7q) UL-specific gene list that is
highly enriched for genes in 7922, all of which showed significantly decreased expression. It
is interesting that the chromatin-modulating gene MLL5 (Mixed Lineage Leukemia-5),
which is ranked sixth in the del(7q) UL-specific gene list and was examined by Q-PCR to
confirm the decreased expression observed by microarray data analysis, has been found to
inhibit cancer cell cycle progression when ectopically overexpressed or when knocked down
by small interfering RNAs (Deng et al., 2004; Cheng et al., 2008). This suggests cells are
very sensitive to MLL5 dosage, and haploinsufficiency due to deletion at 7g22.3 in UL may
explain at least in part the poor growth and frequent loss of the abnormal cell line in culture
as well as a relatively smaller size of del(7q) tumors compared to another UL subgroup,
those with a t(12;14)(g15;923-g24) (Rein et al., 1998).

MLL5 was found to reach statistical significance and rank fourth on the del(7q) UL-specific
gene list when the data were weighted for the percent of cells containing the 7q deletion.
Previous studies had not accounted for the mosaic nature of most del(7g) UL, and the
doubling of genes at 7g22 in the top 50 of the mosaicism-weighted gene list relative to the
unweighted list (from 10 up to 20 genes) suggests the importance of implementing this data
correction to reduce the noise introduced by karyotypically normal cells. Six other genes
(ZNF498, TRAF3IP1, MGC39821, SSR2, MARCKS, and HBP1) were also identified as
being significant. HBP1 at 7q22.3 is of interest as loss of expression of this proliferation
repressor has been associated with invasive breast cancer, suggesting the decreased
expression found in del(7q) UL may contribute to the proliferative capacity of these tumors
(Paulson et al., 2007). A similarly functioning gene, SIN3A at 15924.2, also has decreased
expression in del(7g) UL and is present at number 155 on the mosaicism weighted gene list
(also in network 2 as described below). SIN3A is a core component of a complex with
histone deacetylase enzyme activity which is employed by multiple factors such as p53 to
repress their target genes such that loss of SIN3A activity is linked to proliferation and cell
survival (Dannenberg et al., 2005). Downregulation of SIN3A has been demonstrated in
human cancer, specifically non-small cell lung type (Suzuki et al., 2008). Another gene of
significance in the del(7q) UL mosaicism-weighted list is RINT1, which has been shown
through RNA interference studies and the development of multiple tumors in
haploinsufficient mice to serve a novel tumor suppressor function by maintaining integrity
of the Golgi apparatus and centrosome necessary for proper cell division (Lin et al., 2007).

Biological insight into del(7q) UL was pursued further through Ingenuity Pathways Analysis
(IPA) of the top 300 probe sets based on the Q-value from the del(7q) mosaicism-weighted
gene list. The two networks of highest significance were associated with development,
which may reflect the need of the tumor cells to revert towards a more embryonic phenotype
to proliferate. This could be related to the hypothesis that UL arise from an inappropriate
activation of myometrial cell proliferation deriving from the inherent abilities of the uterine
tissue during pregnancy (Andersen et al., 1995). Interestingly, the most represented
canonical pathway was protein ubiquitination, with 11 of the top 300 del(7q) UL-specific
genes. Genes from network 1 involved in protein ubiquitination include PSMA2, PSMB3,
PSMC2, and PSMC3 while those in network 2 include UBE2I and UBE2J1. Ubiquitination
is of interest because >80% of cellular proteins are tagged with ubiquitin for proteasome
degradation and cancer can develop through disruption of this system either by stabilizing
oncoproteins or destabilizing tumor suppressor genes (Burger and Seth, 2004). The
hierarchical nature of the ubiquitination enzyme cascade with transfer from E1 to any of a
multitude of E2s and then E3s as well as a number of different subunits present on the
proteasome allows for specialization targeting of proteins for degradation. It is therefore
likely that disruption of multiple E2 enzymes (EBE2 genes) and proteasome subunits (PSM
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genes) reflects an altered protein homeostasis in the del(7q) UL which potentially
contributes to tumorigenesis.

In conclusion, this study provides a genome-wide expression profile of the 7q deletion
cytogenetic subgroup of UL. The unique design employed to target del(7q) UL-specific
genes included a paired comparison to non-del(7q) UL from the same women and weighting
of the data for percent of del(7q) cells to account for the mosaicism usually present in this
UL subgroup. Although the full implications and biological significance of the differentially
expressed genes and networks remain to be fully elucidated, the resultant gene list, which is
dense with genes from the target region of 7922, may serve as a platform to explore further
relevant mechanisms of tumor pathogenesis and understanding of the molecular basis of UL.
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Figure 1.

Paired analysis of the del(7g) UL and non-del(7q) UL microarray data to control for patient
to patient variability without involvement of the myometrium is necessary to generate an
accurate del(7qg) UL-specific gene list. (A) Heatmap of an unsupervised hierarchical cluster
analysis of the 500 most variable genes between myometrium (M), del(7g) UL (D) and non-
del(7g) UL (N) from each of the 11 patients shows a trend of myometrial separation from all
UL tissues and of UL clustering based on patient rather than del(7q) status. A similar result
is obtained when more genes are included in the analysis. (B) Unsupervised principal
component analysis illustrates in three dimensions the tendency of the myometrial samples
(Liang et al.) to cluster and have only minimal overlap with the del(7q) (blue) and non-
del(7q) tissues (red). (C) A comparison of the percent of genes in common between a paired
and unpaired analysis of del(7q) UL versus non-del(7q) UL indicates the two modes of
analysis produce different gene lists. (D) The distribution of p-values for two group
comparison t-tests using a paired analysis (with pairing) includes a peak on the left side
indicating more genes were found with significant p-values than expected in a random data
set. In contrast, the unpaired analysis (without pairing) generates a nearly flat distribution
suggesting the genes with significant p-values identified by such an assessment are not
likely to be true positives.
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Figure 2.

The del(7qg) UL-specific gene list is highly enriched for 7q genes. Examination of the top
500 genes based on false discovery rate shows a high percentage were localized to 7q (black
line), the majority of which are in the proposed target region of 7922 (red line). The more
limited the gene list examined, the greater the percentage of genes mapped in 7qg. This is in
contrast to the expected percentage of genes in 7q if the list was generated randomly based
on the fraction of genes in 7q in the total data (dotted line).
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TRAF3IP1 TNF receptor-associated factor 3 interacting protein 1~ 238494_at NM_015650  -1.23 9.49E-06 0.0753 2q37.3
MGC39821 hypothetical protein MGC39821 1655363_s_at  XR_041448 -1.67 123E-05 0.0753 19p13.11
MLLS myeloid/lymphoid or mixed-lineage leukemia 5 226100_at NM_018682  -1.37 1.48E-05 0.0753 79221
SSR2 signal sequence receptor, beta 200652_at NM_003145 1.26 1.52E-05 0.0753 1921-923
MARCKS myristoylated alanine-rich protein kinase C substrate ~ 225897_at NM_002356 1.32 1.81E-05 0.0753 6q22.2
HBP1 HMG-box transcription factor 1 209102_s_at NM_012257 -1.29 2.96E-05 0.1060 7922-931

Figure 3.

Seven most significant genes identified by weighting the microarray data for the level of
del(7q) cell mosaicism in each UL. (A) Scatter plots show the relationship between the
percent of del(7q) cells in each UL and the log ratio of gene expression in del(7g) UL
relative to the non-del(7qg) UL in each of the 11 women. (B) The significance of these seven
genes is reflected by a Q-value < 0.10, and three of the genes are in the region of interest at

7q22.
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Figure 4.

Detection of a commonly deleted region using aCGH analysis of six del(7q) UL cases and
alignment with microarray expression data showed a strong correlation between the 7q
deletion and decreased gene expression. (A) aCGH analysis demonstrated variable 7q
deletion sizes in each of the six cases. Alignment of the common deletion interval to genes
with significant expression from the mosaicism-weighted del(7q) UL-specific gene list
revealed a cluster of downregulated genes in the deleted interval, supporting the accuracy of
the microarray expression analysis. Green dots represent downregulated genes and red dots
upregulated genes. (B) Genomic penetrance summary of chromosome 7 showing the
affected regions and in what percentage of the six cases they were found to be abnormal.
Skewing of data to the left of zero indicates deletion. The common region of genomic loss
for the six cases, as indicated by the 100% line, spans approximately 9.5 megabases from
7022.1-931.1 (basepairs 98,598,014-108,112,352 based on the UCSC genome browser
March 2006 assembly; aCGH probe A_16 P18041391to A 16 _P18063689).
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Figure 5.

Identification of highly significant networks of functional dependencies of genes from the
top 300 del(7q) UL-specific gene list weighted for percent of del(7q) cells using Ingenuity
Pathways Analysis. The functions of the two networks of highest significance are involved
in (A) drug metabolism, organismal development and carbohydrate metabolism (score = 55,
genes from deletion 7q list = 29) and (B) embryonic, nervous system and tissue development
(score = 52, genes from deletion 7q list = 28). Pink shading indicates upregulated gene
expression, green downregulated gene expression, solid lines a direct relationship between
connected genes, and dotted lines an indirect relationship between linked genes.
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