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Abstract
Previous studies using different techniques have shown that adenoviral-mediated gene transfer to
different tissues, including the kidney, is more efficient in neonatal mice. In this study, we report a
simple technique that allows an efficient and long term expression of β-galactosidase (β-gal) in the
heart of newborn mice. Newborn and adult C57BL6/J mice were subjected to a single retro-orbital
venous plexus injection of recombinant adenoviral vector (rAd) (2 × 109 particles/g body weight)
carrying the lac Z gene. Seven days after the injection, positive perinuclear β-gal staining was
systematically observed in the heart, lung, intestine, liver, kidney and spleen of newborn mice.
However, only the heart showed persistent expression of β-gal one year after the initial injection. In
contrast, adult mice showed only significant but transient β-gal expression mainly in the liver. In
summary, we have found that a single retro-orbital intravenous injection can be used to establish a
long-term adenoviral-mediated gene transfer to cardiac cells of newborn mice.
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INTRODUCTION
As a result of their ability to infect both dividing and non-dividing cells in almost all tissues,
recombinant adenovirus (rAd) vectors have become one of the most widely used vectors for
in vivo delivery of foreign genes. The bio-distribution of rAd following in vivo administration
has been studied by a number of groups, and found to depend largely on the route of viral
administration [1–3]. Direct injection of the virus into a target tissue usually results in localized
transgene expression. A systemic injection, on the other hand, provides access to all major
organs, however, the recombinant adenoviruses are rapidly cleared from the circulation by the
liver and Kupffer cells [4], resulting in high levels of transgene expression in the liver but not
in other tissues [2,4–8].

In previous studies we developed two procedures, named “portal-clamping” [9] and “prolonged
renal-infusion techniques” [10], to express rAd-vectors in the lung, intestine, and renal
glomeruli of adult mice [9] and rats [10]. Both methods are based on the principle of bypassing
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the hepatic circulation to prevent the rapid clearance of rAd by liver cells [11]. Our results
suggest that if the rAd vectors can be retained in the circulation, they will continue to pass
through the lung, intestine and glomerular circulation for an extended period of time, and
therefore will establish an efficient infection of these structures. We have previously found
that new-born mice also have a delayed clearance or rAd vectors from the circulation and a
more efficient transduction of glomerular cells after a single retro-orbital injection of rAd [6].
A greater susceptibility of neonates to rAd mediated gene transfer has also been reported by a
number of groups [2,12–13]. In the present study, we systematically evaluated the long term
tissue distribution and expression of β-galactosidase (β-gal) in neonatal and adult mice
following a single retro-orbital venous plexus injection of rAd carrying the lacZ gene. We
found that this simple injection technique allows a transient expression of β-gal in glomerular
cells and a long term transfer of the transgene to cardiac cells up to one year after the initial
injection.

EXPERIMENTAL DESIGN
Adult C57BL6/J mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA)
and were housed in a specific pathogen-free animal facility at the Children’s National Medical
Center. All animal experiments were carried out according to institutional guidelines for animal
use. The E1-deleted recombinant Ad carrying the Escherichia coli lacZ gene, encoding β-gal
(designated rAd-lacZ), was generated as previously described [7]. LacZ gene expression was
controlled by a cytomegalovirus (CMV) enhancer and chicken β-actin gene promoter. The
virus was amplified in 293 cells, purified from a frozen cell lysate by two centrifugations in
CsCl gradient, desalted on Bio-Gel p-6-DG column (Bio-Rad Laboratories, Hercules, CA),
suspended in phosphate buffered saline (PBS) with 10% of glycerol, and stored at −80°C. The
particle/plaque forming unit (pfu) ratio of the virus stcok used in the experiments was 100.

RETRO-ORBITAL INJECTION TECHIQUE
Newborn (1 day old) and adult (6 months old) mice were injected retro-orbitally with rAd-
lacZ. Injection of newborn pups was performed with a 100 µl Hamilton syringe connected to
a No. 0160832 needle (Hamilton, Reno, NE, USA). Ten µl of virus suspension (2× 109

particles/g body weight) were injected into the retro-orbital vein plexus of newborn mice. Adult
mice were injected with 100 µl of virus suspension (2 × 109 particles/g body weight) retro-
orbitally using a 0.5 insulin syringe (Becton Dickinson, Franklin Lakes, NJ, USA).

DETERMINATION OF β-GAL ACTIVITY IN TISSUE SAMPLES
To study the localization of β-gal expression, frozen tissue sections (10 µm) were fixed in 0.5%
glutaraldehyde (Sigma, St. Louis, MO) at room temperature for 10 min, washed with PBS, and
stained for 2h at 37°C in PBS containing 5mM K3Fe(CN)6, 5mM K4Fe(CN)6, 1mM MgCl2
(all from Sigma, St. Louis, MO), and 1mg/ml 5-bromo-4-chloro-3-indolyl-β-D-
galactopyranoside (X-gal, Boehringer Mannheim, Indianapolis, IN). The sections were then
counter-stained with hematoxylin (Fisher Scientific, Pittsburgh, PA) and mounted for
microscopic evaluation. Quantification was performed by counting β-gal positive cells or
structures in ten randomly selected 20× microscopic fields in each section and mouse. A β-gal
positive structure was defined as one that contains at least five β-gal-positive cells. For
quantitative analysis of β-gal activity, one mg of tissue harvested from the mice was
homogenized in 10 mM Tris-HCl buffer. The protein concentration was determined using the
Bio-Rad Protein assay, and 0.1 mg protein was used for each sample. β-gal activity was
measured using the β-gal enzyme assay system (Promega, Madison, WI, USA) according to
the manufacturer’s instructions.
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TISSUE DISTRIBUTION AND PERSISTENCE OF β-GAL EXPRESSION
C57BL6/J adult and newborn mice were injected retro-orbitally with rAd-lacZ at day 1 (n =11)
and at 6 months of age n= 10). The animals were sacrificed 7 days following viral injection,
and various tissues were analyzed for β–gal staining and activity. As shown in Table 1, the
pattern of β–gal expression in different tissues changed dependent on the age of the mice.
Injections in both newborn and adult mice resulted in high levels of expression of β–gal in the
liver, however, only newborn mice showed a widespread distribution of β–gal in the heart,
lung, intestine, spleen, and kidney (Table 1, Figs. 1A-B-C). β–gal expression in the heart was
predominately detected in myocytes (Fig. 1A and Fig. 2 A–C), while in the lung (Fig. 1B),
intestinal villi (Fig. 1C), and renal glomeruli (not shown), it was predominantly localized to
capillaries, vessels, and perivascular structures. It should be noted that the quantification of
β-gal expression in the kidney in both newborn and adult mice should take into consideration
the fact that β-gal released into the circulation by the hepatocytes could be trapped almost
exclusively in renal glomeruli [14]. Nevertheless, in a previous study we have shown that in
addition to the accumulation of circulating β-gal, both lacZ and β-gal are produced in
glomerular cells of newborn mice, but not those from adult mice [6]. Little or no β–gal
expression (< 1 %) was observed in the brain, pancreas, or skeletal muscles of mice injected
at any age (data not shown).

We then examined the stability of virus-mediated β-gal expression in mice injected on the first
day of life. In these experiments, 32 mice were injected with rAd-lacZ and sacrificed at 7, 21,
35, 90, 180 and 360 days post injection to asses the expression of β-gal in different tissues
(Table 2). β-gal expression in the liver, intestine, and kidney peaked on day 7, but decreased
significantly by day 21. β-gal expression in the lung lasted up to 90 days, while approximately
5 % of the cardiac cells remained positive for up to 360 days after the initial injection (Table
2, Fig. 1–Fig. 2).

DISCUSSION OF THE TECHNIQUE
In this study we have shown that a retro-orbital intravenous injection of rAd-lacZ to newborn
mice leads to significant widespread β-gal expression in the heart, lung, intestine, liver, kidney,
and spleen. The virus-mediated β-gal expression in the intestine, liver, kidney, and spleen of
newborn mice was transient lasting approximately 7–30 days. In contrast, the expression of
β-gal in lung and heart however, lasted much longer. Approximately 180 days after the initial
injection, the heart remained the only organ showing significant β-gal activity. Alternatively,
adult mice treated in a similar manner only showed high levels of β-gal in the liver and the
kidney. However, based on the results of the current and previous studies, the β-gal staining
in adult mouse kidney, unlike the β-gal staining in other tissues [6,9–11,15,16,17], was
attributed to the trapping of circulating β-gal by renal glomeruli [14]. Overall, these findings
show that a simple retro-orbital intravenous injection of adenoviral vectors can establish a long
term gene transfer to the heart of newborn mice.

At the present time, the mechanisms responsible for the increased gene transfer efficiency of
newborn mouse tissues are not clearly understood. Several factors might play an important role
in this process. In a previous study we have demonstrated a prolonged retention of rAd-lacZ
in the circulation of newborn mice [6]. We also showed that by increasing the retention of rAd
in the circulation of adult mice using the “liver clamping technique”, the vascular structures
of the lung, intestine, and renal glomeruli [9] can be transduced successfully. The liver
clamping technique, however, did not enhance β-gal expression in the heart or skeletal muscles
of adult mice [9]. These findings suggest that, in addition to the presence of high and persistent
levels of rAd in the circulation, other factors are needed to facilitate the transduction of cardiac
cells. Of interest, Christesen et al. [15] performed direct injections of adenovirus into the
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cardiac cavity, and showed a more efficient in vivo transduction of cardiac cells in one day old
mice, when compared to mice injected 5 days after birth. They suggested that the adenovirus
could be trapped in the trabecular network of ventricles and atria of developing newborn mice
[15]. Thus, the presence of anatomical or physiological vector barriers in older mice may play
a critical role in this process [18]. In our study, it could be assumed that the retro-orbital venous
plexus injection will deliver rAd directly into the heart via the superior vena cava, and therefore
bypassing the first liver passage, which plays a key role removing adenoviruses from the
circulation [9]. This might explain the more efficient transduction of new-born hearts via the
retro-orbital venous plexus, when compared to systemic intravenous injections in other sites
[17]. Alternatively, when adenoviruses were injected directly into the thoracic cavity [2,5] or
pericardium [19–20], different results were obtained depending on the technique used to inject
the rAd. One study showed higher levels of β-gal expression in the lungs and diaphragm [2],
while other studies demonstrated efficient gene transfer to cardiac cells [16,19–20]. Finally, a
direct myocardial injection usually can establish a successful gene transfer over a limited
cardiac region [21–22]. Taken together, these studies suggest that the age, site, and method of
injection play critical roles in determining the efficiency of adenoviral-mediated gene transfer
to mouse cardiac cells. All studies however, support that notion that the efficiency,
reproducibility, and duration of gene expression are significantly increased in newborn mice.

Entry of adenovirus serotypes 2 or 5 into cells requires at least two receptors: a primary high
affinity Coxsackievirus and adenovirus receptor (CAR) for attachment [23,24], and a
secondary cell surface integrin receptors for internalization [25,26]. The integrins αvβ3 and
αvβ5 are heterodimeric cell adhesion molecules that are differentially expressed during
embryogenesis [27]. However, the relative importance of CAR and integrins in the infection
of cardiac mouse cells is not well understood at the present moment. In addition, the distribution
and expression of the genes transferred with rAd-vectors may be also impacted by the stage of
maturity of the immune system in newborn mice [28,29]. It is well known that B-cell and T-
cell responses, as well as the generation of antibodies and cytotoxic immune responses are
diminished in newborn mice, when compared to adult mice [30]. Overall, further studies will
be required to determine the exact mechanism by which cardiac cells remain the only cells that
continue to express β-gal throughout the first year of life.

CONCLUSION
We have described a simple and highly reproducible technique to establish a long-term gene
transfer to the heart of newborn mice. It should be noted that when our technique is compared
to the direct injection of adenoviruses into the cardiac cavity of newborn mice [15], it induces
lower levels of gene expression, but it does not require special equipment, general anesthesia,
and is not associated with high mortality rates. Our approach could become even more powerful
when cardiac-specific promoters are used. We are confident that this simple adenoviral-
mediated gene transfer technique will provide a valuable experimental tool to explore the role
of different genes during mouse cardiac development and the pathogenesis of cardiac
hypertrophy.
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Fig. (1). β-gal expression after a single retro-orbital injection of rAd-lacZ in newborn mice
One day old mice were injected retro-orbitally with rAd-lacZ (2 × 109 particles/gram), as
described in methods. Subsequently, they were sacrificed at different time points post injection.
Tissue samples were harvested and examined for β-gal expression by X-Gal staining (blue
color). The panels show representative pictures demonstrating blue β-gal staining in: (A) heart,
7 days after injection; (B) lung, 7 days after injection., (C) intestine, 7 days after injection;
(D) heart, 360 days after injection; (E) lung, 90 days after injection; and (F) intestine, 90 days
after injection. Bar graph: 500 µm.
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Fig. (2). Long-term expression of β-gal in the heart of mice injected via the retro-orbital venous
plexus with rAd-lacZ
Representative mouse heart and liver samples were taken from mice injected during the first
day of life with rAd-lacZ (2 × 109 particles/gram). The samples shown in the panels were
harvested at 7 and 360 days after the initial injection. Tissue samples were examined for β-gal
expression by X-Gal staining (blue color). The panels show representative β-gal blue staining
in the: (A) heart, 7 days after injection; (B) liver, 7 days after injection; (C) heart, 360 days
after injection; (D) liver, 360 days after injection Bar graph: 500 µm.
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