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BACKGROUND: An effective cancer therapeutic must selectively target tumours with minimal systemic toxicity. Expression of a cytotoxic
protein using Salmonella typhimurium would enable spatial and temporal control of delivery because these bacteria preferentially
target tumours over normal tissue.
METHODS: We engineered non-pathogenic S. typhimurium to secrete murine TNF-related apoptosis-inducing ligand (TRAIL) under the
control of the prokaryotic radiation-inducible RecA promoter. The response of the RecA promoter to radiation was measured using
fluorometry and immunoblotting. TRAIL toxicity was determined using flow cytometry and by measuring caspase-3 activation.
A syngeneic murine tumour model was used to determine bacterial accumulation and the response to expressed TRAIL.
RESULTS: After irradiation, engineered S. typhimurium secreted TRAIL, which caused caspase-3-mediated apoptosis and death in 4T1
mammary carcinoma cells in culture. Systemic injection of Salmonella and induction of TRAIL expression using 2 Gy g-irradiation
caused a significant delay in mammary tumour growth and reduced the risk of death by 76% when compared with irradiated controls.
Repeated dosing with TRAIL-bearing Salmonella in conjunction with radiation improved the 30-day survival from 0 to 100%.
CONCLUSION: These results show the pre-clinical utility of S. typhimurium as a TRAIL expression vector that effectively reduces tumour
growth and extends host survival.
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Selective targeting of tumours enhances therapeutic delivery by
increasing the drug concentration in cancer cells while limiting
damage to normal tissue (Jain and Forbes, 2001; Forbes, 2006).
Many genera of bacteria have been shown to selectively target
tumours (Low et al, 1999; Forbes et al, 2003) and have great
promise as adjunctive cancer therapies (Dang et al, 2001; Zhao
et al, 2007). Despite this potential, once these bacterial species
have been rendered non-toxic to humans, their toxicity is also
limited against cancer cells, lowering their clinical significance
(Toso et al, 2002; Nemunaitis et al, 2003). The utility of these
bacterial therapies can be enhanced by engineering controllable
expression of a cytotoxic peptide. Because these bacteria preferen-
tially accumulate in tumour microenvironments (Zhao et al, 2005;
Kasinskas and Forbes, 2006), they can also be manipulated to
control the location and timing of cytotoxic peptide expression
and further reduce host toxicity.

Four main genera of bacteria have been analysed as anticancer
agents (Wei et al, 2008) and have been shown to selectively target
tumours after intravenous injection: Salmonella (Low et al, 1999),

Escherichia (Yu et al, 2004; Stritzker et al, 2007), Clostridium
(Lemmon et al, 1997; Dang et al, 2001; Theys et al, 2006), and
Bifidobacterium (Yazawa et al, 2001). To improve their efficacy,
these bacteria have been engineered to express numerous proteins,
including cytosine deaminase (Theys et al, 2001; Dresselaers et al,
2003; Dubois et al, 2007), endostatin (Lee et al, 2004), thrombos-
pondin-1 (Lee et al, 2005), TNF-a (Nuyts et al, 2001b), interleukin-2
(Barbe et al, 2005), and antibodies against HIF-1-a (Groot et al,
2007). Among these, only TNF-a is directly toxic to cancer cells.
The facultative anaerobes, Salmonella and Escherichia, have an
advantage because they can be administered systemically in their
active form, which permits them to penetrate and chemotax
through tumour tissue to target specific microenvironments (Zhao
et al, 2005; Kasinskas and Forbes, 2006). Salmonella has particular
promise as a cancer therapeutic because it can be manipulated
to target quiescent, diffusion-limited regions in solid tumours
(Kasinskas and Forbes, 2007) that are p53 deficient (Yu et al, 2002)
and resistant to chemotherapeutics and radiation therapies
(Minchinton and Tannock, 2006; Tredan et al, 2007). In addition,
Salmonella has been shown to preferentially accumulate in tumours
over 1000 times more than other organs after systemic injection, a
characteristic that would reduce off-target toxicity from bacterially
expressed molecules (Low et al, 1999; Forbes et al, 2003).

Temporal control of gene expression has been previously
shown in Clostridium (Nuyts et al, 2001a, b) and viral vectors
(Senzer et al, 2004; Mezhir et al, 2006). Both of these systems
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use radiation to trigger gene expression because of its ability
to penetrate through tissue and trigger promoters that respond
to DNA damage (Anderson and Kowalczykowski, 1998). In
Clostridium, the prokaryotic promoter to RecA has been shown
to control TNF-a production after irradiation (Nuyts et al,
2001a, b). Similarly, temporal control of TNF-a expression has
been shown using an adenoviral vector that encodes the eukaryotic
Egr1 promoter upstream of TNF-a (Mezhir et al, 2006). In phase I
clinical trials, this system was well tolerated (Senzer et al, 2004)
and has shown to regress tumours (McLoughlin et al, 2005);
however, it requires intratumoural injection to ensure its local
effect, and is thus limited by access.

TNF-related apoptosis-inducing ligand (TRAIL) is a promising
cancer therapeutic because it has been shown to selectively induce
apoptosis in cancer cells when compared with normal tissue
(Yagita et al, 2004). TRAIL is effective in many cancer cells,
including colon, breast, lung, prostate, renal, ovarian, bladder,
glioma, and pancreatic tumours (Walczak et al, 1999; Hylander
et al, 2005; Shanker et al, 2008). Similar to TNF-a, TRAIL exerts
an effect by the death receptor pathway of apoptosis, which
activates caspase-8 and leads to activation of caspase-3, an
important apoptotic mediator (LeBlanc and Ashkenazi, 2003).
As an expressible peptide, TRAIL has great potential because
it is non-toxic to most normal tissues, unlike TNF-a (Ashkenazi
et al, 1999; Cretney et al, 2006), and because bacterially produced
TRAIL has been shown to be cytotoxic to cancer cells (Kim
et al, 2004). However, TRAIL has a limited role as a blood-borne
therapy because of its rapid renal clearance and short half-life
(Kelley et al, 2001). Despite its specificity towards tumours
over most tissues, TRAIL may also induce hepatic cell death
(Zheng et al, 2004), which suggests that an approach that allows
for its selective delivery into tumours would avoid potential
hepatotoxicity.

We have designed a targeted cancer therapy that provides
spatiotemporal control of cytotoxic protein delivery by using
Salmonella typhimurium as a vector to deliver TRAIL into
tumours. To create a radiation-inducible system, the TRAIL gene
was coupled to the promoter sequence for RecA, a gene involved in
the prokaryotic SOS response to DNA damage (Anderson and
Kowalczykowski, 1998). RecA promoter stimulation was shown
using fluorometry, and TRAIL expression, secretion, and function
were shown using immunoblotting and mammalian cell culture. A
syngeneic murine breast cancer model was used to show the ability
of radiation-inducible TRAIL secretion using S. typhimurium to
suppress tumour growth and enhance host survival. Because of the
ability to control the spatial and temporal delivery, TRAIL delivery
using S. typhimurium has a great potential to be an adjunctive
treatment strategy for solid tumours.

MATERIALS AND METHODS

Development of plasmid constructs

A series of prokaryotic-expression plasmids were created that
contained either murine TRAIL or the green fluorescent protein,
ZsGreen, under the control of the endogenous S. typhimurium
RecA promoter (Figure 1). Plasmid cloning was performed using
Escherichia coli DH5-a (Invitrogen, Carlsbad, CA, USA) and all
restriction endonucleases were obtained from New England
BioLabs (Ipswich, MA, USA). To create a prokaryotic expression
construct specific for S. typhimurium, the RecA promoter sequence
(�91 to þ 84) was PCR amplified from the S. typhimurium
genome (McClelland et al, 2001) using the forward primer 50-CAC
CAGCGGAAGAGCGACAGGCGACGACATA-30 (SapI restriction
site underlined) and the reverse primer 50-AGAACCCATGGACGC
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Figure 1 Radiation-inducible prokaryotic expression constructs for ZsGreen and TRAIL. (A) The plasmid construct, pRA-ZsG, has the S. typhimurium
promoter for RecA upstream of the green fluorescent protein, ZsGreen. The plasmid construct, pRA-TR, substitutes ZsGreen with the apoptosis-inducing
peptide, mTRAIL. (B) Fluorescence imaging shows green fluorescence from bacteria electroporated with pZsGreen and pRA-ZsG plasmid constructs.
(C) Fluorometry showing relative induction by the RecA promoter. S. typhimurium VNP20009 electroporated with pZsGreen and pRA-ZsG were induced
with 2 Gy g-irradiation or 5 J m�2 UV irradiation, and then grown at 37 1C, 250 r.p.m. for 4 h. Data were normalised to the bacterial absorbance at 600 nm,
and are reported as relative fluorescence of VNP pRA-ZsG compared with VNP pZsGreen. Gene expression is significantly increased with genotoxic
damage in comparison with the un-induced control (*Po0.05). (D) Immunoblot showing TRAIL secretion. 15% SDS–PAGE was performed on 20 mg
protein obtained from cytosolic (c) and supernatant (s) fractions of overnight bacterial culture transformed with plasmid constructs. After transfer to PVDF,
an immunoblot was performed using 1 : 200 Rabbit anti-TRAIL polyclonal antibody.
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TTTCAGTTTGTTTTC-30 (NcoI restriction site underlined). The
radiation-inducible, control plasmid, pRA-ZsG (Figure 1A) was
created from the pUC backbone of the prokaryotic expression

plasmid pZsGreen (Clontech, Mountain View, CA, USA) by
subcloning the RecA promoter into the SapI and NcoI sites to
substitute the lac promoter. Two plasmids for expression of
murine TRAIL were developed, pTRAIL and pRA-TR (Figure 1A),
by excising the murine TRAIL fragment from pORF5-mTRAIL
(InvivoGen, San Diego, CA, USA) using NcoI and NheI, and
subcloning into the NcoI and SpeI sites on pRA-ZsG.

The construct pQCXIN_mCh was developed by subcloning the
BamHI/EcoRI digested fragment from pRSET-B_mCherry into
the retroviral vector, pQCXIN (Clontech). Appropriate frame and
sequence of inserts was confirmed using an ABI Prism 3730xl DNA
Sequencer (Genewiz, South Plainfield, NJ, USA).

S. typhimurium transformation using electroporation

The msbB�purI�xyl�Salmonella typhimurium strain, VNP20009
(Vion Pharmaceuticals, New Haven, CT, USA), was grown in
Luria-Bertani (LB) media at 37 1C until mid-log phase, and then
harvested at 4 1C. Cells were made electrocompetent after serial
washes in ice-cold 10% glycerol, followed by resuspension in GYT
medium (10% glycerol, 0.125% yeast extract, 0.25% tryptone) at
2.5� 1010 cells ml�1. Electroporation was performed in 0.2 cm
cuvettes after mixing 40 ml competent cells with 25 ng plasmid
DNA using a Bio-Rad Micropulser with settings of 2.5 kV, 25 mF,
and 200O. Bacteria were selected and maintained in LB media with
50 mg ml�1 ampicillin.

Confirmation of RecA promoter function using imaging
and fluorometry

Bacteria electroporated with ZsGreen plasmid constructs were grown
until an OD600 of 0.5, and then exposed to 1.0 mM IPTG, 2 Gy
g-irradiation, or 5 J/m2 UV irradiation. Bacteria were incubated at
37 1C, 250 r.p.m. for 4 h. Fluorescence was observed using a Maestro
In-Vivo Imaging System (Cambridge Research & Instrumentation,
Inc., Woburn, MA, USA). Fluorescence intensity was quantified using a
microplate reader with 485 nm excitation and 535 nm emission filters.

Measurement of TRAIL expression using immunoblotting

Bacteria electroporated with plasmid constructs were grown
overnight in modified M9 Media (0.4% glucose, 1% tryptone,
200mM purine base, and 50 mg ml�1 ampicillin). Bacteria were
centrifuged at 15 000 g, with aspiration of the supernatant fraction.
Secreted proteins from media supernatants were precipitated with
0.1% sodium deoxycholate and 7% trichloroacetic acid, followed
by washes in acetone and resuspension in phosphate-buffered
saline (PBS). The cell pellet was incubated in bacterial lysis buffer
(50 mM potassium phosphate, 400 mM NaCl, 100 mM KCl, 10%
glycerol, 0.5% Triton X-100, and 10 mM imidazole, pH 7.8) at 4 1C
to extract cytosolic proteins. Protein concentration was deter-
mined using a BCA assay kit (Pierce, Rockford, IL, USA). With
20 mg of protein per well, 15% SDS–PAGE was performed, followed
by transfer onto PVDF membrane. Membranes were blocked in 5%
milk in Tris-buffered saline with 0.1% Tween-20 (TBST), and then
incubated overnight at 4 1C in 1 : 200 Rabbit anti-TRAIL polyclonal
antibody (Abcam, Cambridge, MA, USA). After serial washes in
TBST, membranes were incubated in 1 : 5000 HRP-conjugated goat
anti-rabbit polyclonal antibody, and then washed again and
visualised using Supersignal chemiluminescent substrate (Pierce).

Mammary tumour cell lines

Mammary carcinoma 4T1 cells (American Tissue Type Collection,
Manassas, VA, USA) were maintained at 37 1C, 5% CO2 in RPMI-
1640 with 10% fetal bovine serum. Using tumours composed of
syngeneic 4T1 cells in BALB/c mice was one of the few appropriate
cancer models. It was necessary to use immunocompetent mice
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Figure 2 In vitro effects of secreted proteins from transformed
S. typhimurium on 4T1 mammary carcinoma cells. Filtered supernatants
were acquired from VNP pRA-ZsG (ZsGreen sup.) and VNP pRA-TR
(TRAIL sup.) after growth for 4 h in minimal medium after induction with
5 J m�2 UV irradiation. Control supernatants were acquired from sterile
medium. (A) Caspase activity assays were conducted on 4T1 cells after
application of experimental supernatants or recombinant mouse TNF-a at
50 ng ml�1 for 24 h. Significant increases in caspase-3 and caspase-8
activities were observed after treatments with TNF-a and VNP pRA-TR
supernatants when compared with controls (*Po0.05). Addition of the
caspase-3 inhibitor, DEVD-fmk, significantly reduced activity. (B, C) Flow
cytometry for annexin-V-FITC and propidium iodide was conducted on
10 000 4T1 cells per treatment in triplicate after application of
experimental supernatants or TNF-a at 50 ng ml�1 for 48 h. (B) Flow
cytometry dot plots after treatment with control (left) and VNP pRA-TR
supernatants (right) indicate cell death (annexin-V and propidium iodide
positive) proportions of 5.7 and 12.6%, respectively. (C) Results of flow
cytometry indicate cell fractions undergoing cell death (annexin-V positive,
propidium iodide positive) and early apoptosis (annexin-V positive,
propidium iodide negative). Significant increases in cell death and early
apoptosis were observed in 4T1 cells after treatment with the VNP pRA-
TR supernatant (*Po0.05).
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because attenuated bacteria have deleterious effects on immuno-
compromised mice (Forbes et al, 2003). Because of rejection by the
immune system, only syngeneic tumours will form in immuno-
competent mice.

An attenuated mammary carcinoma cell line, 4T1/red, was
developed because implanted 4T1 cells invaded the peritoneum
and caused diffuse metastatic disease within 3 to 4 weeks. The
new 4T1/red cell line was developed by G418 selection after
retroviral infection of 4T1 with pQCXIN_mCh viral supernatants,
obtained after transformation of the EcoPack 2– 293 cell line
(Clontech). Tumours formed from 4T1/red cells had an increased
doubling time and no longer created pulmonary or hepatic
metastases, with decreased intraperitoneal invasion. Using 4T1/
red cells allowed for observation of growth of the primary tumour
without mice succumbing to bowel obstruction or diffuse
metastatic disease. Prevention of metastatic disease enabled a
more accurate test of the hypothesis that bacterial treatments
influence growth of the primary tumours. Immediately before in
vivo use, trypsinised 4T1/red cells were resuspended in PBS at
5� 106 cells ml�1.

Toxicity of bacterial secreted protein on mammalian cell
culture

Filtered supernatants were obtained from bacterial strains (VNP
pRA-ZsG and VNP pRA-TR) grown in modified M9 Medium
(0.4% glucose, 1% tryptone, 200mM purine base, and 50 mg ml�1

ampicillin) and resuspended in 4T1 media at a concentration
of 50 ng ml�1. The control treatment used sterile modified M9
Medium. Recombinant mouse TNF-a (Sigma, St Louis, MO, USA)
was also suspended in 4T1 media at a concentration of 50 ng ml�1.

Caspase activity assays

ApoAlert caspase activity assays (Clontech) were conducted on
4T1 cells after application of experimental supernatants or
recombinant mouse TNF-a (Sigma) at 50 ng ml�1 for 24 h. Cell
lysates were obtained from 2� 106 cells and incubated in caspase-3
substrate (DEVD-pNA) or caspase-8 substrate (IEDT-pNA)
according to the manufacturer’s directions. Validation of the
assays was performed by incubating cell lysates from the TNF-a
treatment group with DEVD-fmk, a caspase-3 inhibitor.

Annexin V-FITC/propidium iodide flow cytometry

4T1 cells were exposed to experimental treatments for 48 h. Cells were
prepared using an Annexin V-FITC apoptosis detection kit II (BD
Biosciences, San Jose, CA, USA), according to the manufacturer’s
directions. Flow cytometry was conducted on 10 000 cells per treat-

ment using a FACSCalibur flow cytometer (BD Biosciences). Normal-
isation and compensation were performed on unstained controls.

Syngeneic murine tumour model

Animal care was conducted in accordance with the National
Institute of Health guidelines for care and use of laboratory
animals. Previous approval from the institutional animal care and
use committee of the Baystate Medical Center was obtained. At
8 weeks of age, Balb/c mice received a subcutaneous injection
of 50 000 4T1/red cells using a 10 ml Hamilton syringe at the level
of the right third mammary fat pad.

Biodistribution

To determine bacterial biodistribution, 4T1 tumours were grown for
21 days. At this time, mice received systemic injection through tail vein
with 100 000 cfu g�1 VNP20009. Mice were killed after 48 h. The tumour
and liver samples were weighed and then minced in a known volume
of PBS until homogenous, followed by plating of serial dilutions on LB
agar. After 24- to 48-h incubation at 37 1C, colony-forming units (cfu)
were counted to determine bacterial concentration (cfu g�1).

Salmonella immunohistochemistry

Tumours were fixed in 10% neutral buffered formalin and
embedded in paraffin. Antigen retrieval was performed on
rehydrated equatorial tissue sections using an EZ Retriever System
with CitraPlus Antigen Retrieval Solution (BioGenex, San Ramon,
CA, USA). A DakoCytomation Autostainer (Carpinteria, CA, USA)
was programmed according to the manufacturer’s settings using
an Envision G/2 AP System. Sections were incubated in a 1 : 200
dilution of Rabbit Polyclonal Antibody to Salmonella (Abcam) in
0.2% BSA for 30 min. An alkaline phosphatase polymer was applied
for 30 min, followed by staining with Permanent Red. Sections were
counterstained with hematoxylin. Positive controls were performed
on a tumour with intratumoural injection of VNP20009.

Image acquisition

An Olympus IX71 Inverted Epi-fluorescence Microscope (Center
Valley, PA, USA) equipped with a Ludl Motorised Z-Stage (Hawthorne,
NY, USA), a monochromatic Hamamatsu cooled-CCD Digital Camera
(Hamamatsu City, Japan), and a CRI MicroColor trichromatic filter
(Woburn, MA, USA) was used to acquire images at � 10 objective lens
magnification from immunohistochemically-labeled slides. A script
in IPLab (version 3.71, BD Biosciences) was used to automate image
acquisition and assemble a tiled montage of individual images com-
prising three RGB channels, creating macroscopic composite colour
images of entire tumour sections.
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Figure 3 Spatial distribution of S. typhimurium after systemic administration. (A) Bacterial concentration (cfu g�1) in 4T1 mammary tumours and livers of
BALB/c mice at 48 h after systemic injection of 100 000 cfu g�1 VNP20009. (B) Band of bacteria in a 4T1 tumour (stained red with white arrows) identified
by anti-Salmonella immunohistochemistry. Scale bar is 100 mm. (C) Composite image of 4T1 tumour stained using Salmonella immunohistochemistry to
visualise bacteria (red with white arrows). Scale bar is 5 mm.
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Tumour response to bacterial treatment

After 21 days of tumour growth, Balb/c mice received systemic
injection through tail vein with 100 000 cfu g�1 VNP pRA-ZsG, VNP
pRA-TR, or PBS (control). After 2 days, subgroups of mice received
a single dose of 2 Gy whole-body g-irradiation by exposure to a
Gammator-50 137Cs Source (Radiation Machinery Co., Parsippany,
NJ, USA). This time point was determined from observations in 4T1
tumours showing that bacteria were furthest away from perfused
vasculature at 48 h. Tumour volume was determined every 2 days
with measurements obtained from an electronic vernier caliper
using the equation (length)(width)(height)p/6. Mice with tumours

o75 mm3 at 21 days of tumour growth were excluded from analysis.
Time of killing was determined when mice were moribund or tumour
volume exceeded 1000 mm3. Follow-up was limited to 30 days.

Statistical analysis

Data are reported as means with their 95% confidence intervals in
parentheses. Hypothesis testing was performed using Student’s
t-test with significance determined by Po0.05. Regression analysis
was performed according to logarithmic functions for tumour
growth. Survival analysis was performed using Kaplan–Meier
curves, with comparisons between groups made using the log-rank

PBS

VNP pRA-TR

VNP pRA-ZsG

T
um

ou
r 

vo
lu

m
e 

(m
m

3 )

T
um

ou
r 

vo
lu

m
e 

(m
m

3 )

1500

1000

500

0

PBS + 2Gy

VNP pRA-ZsG + 2Gy

VNP pRA-TR + 2Gy

1500

1000

500

0

No irradiation

2Gy irradiation

* * **

*†
*†

*†20

15

10

5

0T
um

ou
r 

do
ub

lin
g 

tim
e 

(d
ay

s)

PBS

1.0

0.8

0.6

0.4

0.2

0.0

Time (days)
0 5 10 15 20 25 30

C
um

ul
at

iv
e 

su
rv

iv
al

No irradiation

VNP pRA-ZsG VNP pRA-TR

Time (days)
5 10 15 20 25 30 0

No irradiation

2Gy irradiation

G
ro

w
th

 d
el

ay
 (

da
ys

)

25

20

15

10

5

0

2 Gy irradiation

PBS (n=11)

VNP pRA-ZsG (n=8)

VNP pRA-TR (n=11)

C
um

ul
at

iv
e 

su
rv

iv
al

1.0

0.8

0.6

0.4

0.2

0.0

0 5 15 20 25 3010
Time (days)

VNP pRA-ZsGPBS VNP pRA-TR

PBS + 2Gy (n=11)

VNP pRA-ZsG + 2Gy (n=6)

VNP pRA-TR + 2Gy (n=8)

5 10 15
Time (days)

20 25 30

Figure 4 Reduced tumour growth and enhanced survival from VNP pRA-TR with induction by g-irradiation. Balb/c mice received intravenous injection of
100 000 cfu g�1 VNP pRA-ZsG, VNP pRA-TR, or PBS at 21 days after establishing 4T1/red tumours. (A) Tumour volumes (mm3) after experimental
treatments in mice receiving no irradiation, and in mice receiving 2 Gy irradiation on day 2 (arrow). No significant differences were observed in initial tumour
volume between treatment groups. Mean tumour volume did not exceed 1000 mm3 in mice treated with VNP pRA-TR and 2 Gy at 1 month. (B) Tumour
doubling time and (C) growth delay, as determined from regression analysis of exponential tumour growth curves. Growth delay was determined from the
calculated time to tumour volume of 1000 mm3, normalised against the PBS control. *Po0.05 compared with PBS. wPo0.05 compared with PBS and 2 Gy.
(D) Kaplan–Meier survival curves after experimental treatments in mice receiving no irradiation, and in mice receiving 2 Gy irradiation on day 2 (arrow).
Survival analysis was based on follow-up until death or killing. Significant differences in 30-day survival were observed between mice receiving VNP pRA-TR
and PBS, and between mice receiving VNP pRA-TR and 2 Gy and PBS and 2 Gy (log-rank test, Po0.05).

Targeted TRAIL delivery using Salmonella

S Ganai et al

1687

British Journal of Cancer (2009) 101(10), 1683 – 1691& 2009 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s



test. Hazard ratios were determined using Cox’s proportional
hazards analysis.

RESULTS

TRAIL expressed using S. typhimurium induces apoptosis
and cell death

Gene expression from the created plasmids was confirmed using
fluorescence imaging and immunoblotting (Figures 1B–D).
Figure 1B shows the presence of green fluorescence from VNP
pZsGreen and VNP pRA-ZsG. To assess the ability of the RecA
promoter to be triggered by genotoxic damage, the fluorescence of
VNP pRA-ZsG was compared with VNP pZsGreen. The ratio of
fluorescence induction by the RecA promoter to the lac promoter
significantly increased by 22% at 4 h after 2 Gy g-irradiation in
comparison with non-induced controls (Po0.05; Figure 1C).
Fluorescence present in the non-irradiated control is because
of the low-level constitutive expression of the RecA promoter
(Nuyts et al, 2001a). In bacterial cultures, immunoblots for
TRAIL protein showed that engineered S. typhimurium produced
TRAIL that was predominantly secreted into the media super-
natant and only minimally retained in the bacterial cytoplasm
(Figure 1D). Although not quantitative, this immunoblot shows
that pTRAIL and pRA-TR produce considerable amounts of
secreted mTRAIL.

Supernatant fractions from the bacterial vectors for TRAIL
delivery induced apoptosis and promoted cell death in 4T1 murine
mammary carcinoma cells (Figure 2). Supernatants derived from
VNP pRA-TR activated both caspase-8 and caspase-3, with
responses similar to those observed for TNF-a, (Po0.05;
Figure 2A). Addition of the caspase-3 inhibitor DEVD-fmk
significantly reduced the activity of both caspases, confirming
that the positive control, TNF-a, did activate caspase-3. Super-
natants from the negative control, VNP pRA-ZsG, did not activate
any of the two caspases (Figure 2A). Because the only difference
between VNP pRA-TR and pRA-ZsG was the mTRAIL gene, the

different cellular responses to the bacterial supernatants indicate
that activation of the death receptor pathway was specifically
dependent on mTRAIL expression. Annexin-V/propidium iodide
flow cytometry showed that bacterial supernatants from VNP pRA-
TR promote 4T1 cell death (annexin-V positive, propidium iodide
positive) and early apoptosis (annexin-V positive, propidium
iodide negative; Figures 2B and C). The proportion of cells
undergoing cell death was increased in comparison with the
control group (Po0.05), with more robust results than TNF-a. In
addition, VNP pRA-TR supernatants significantly increased the
annexin-V-positive fraction of cells (Po0.05; Figure 2C), indicat-
ing the early apoptotic stages of phosphatidylserine membrane
translocation (Corsten et al, 2006).

Different modes of action confer a functional benefit of
TRAIL over TNF-a. Although both act through the death
receptor pathway, TNF-a stimulates both pro-apoptotic signals
(through caspase-8) and mitochondrial-stabilising anti-apoptotic
signals (through NF-kB), leading to cells with resistance to
TNF-a-mediated apoptosis (Beg and Baltimore, 1996). TRAIL has
attenuated the induction of NF-kB, leading to a pronounced
death signal through p53-independent mechanisms (LeBlanc and
Ashkenazi, 2003). This may explain the increase in early apoptosis,
but overall lack of change in 4T1 cell death observed with TNF-a in
Figure 2C.

S. typhimurium VNP20009 preferentially colonises
tumours

In a syngeneic subcutaneous mammary carcinoma model,
systemic inoculation of 100 000 cfu g�1 VNP20009 resulted in the
preferential colonisation of bacteria within 4T1 mammary tumours
as compared with liver (Figure 3A). The average tumour density
was almost 1000-fold greater than the liver density, which is
similar to the numbers obtained in previous studies (Forbes et al,
2003). At both macro- and microscopic length scales, Salmonella
were present in all tumours that were analysed (Figures 3B and C).
At 48 h after administration, VNP20009 preferentially accumulated
in necrotic regions of 4T1 tumours (white arrows, Figure 3C).

Table 1 Regression analysis for treatment effects on tumor growth

Treatment n Growth curves, V(t) r Tumor doubling time (d) Growth delay (d)

PBS 11 ln(V)¼ 0.10t+5.50 0.99 6.6 (6.4–6.9) 0 (0–2.0)
PBS+2 Gy 11 ln(V)¼ 0.08t+5.52 0.98 8.5 (8.2–9.0)* 3.5 (0.1–7.0)
VNP pRZ 8 ln(V)¼ 0.08t+5.40 0.98 8.3 (7.9–8.7)* 4.5 (1.3–7.6)
VNP pRZ+2 Gy 6 ln(V)¼ 0.07t+5.44 0.98 10.4 (10.1–10.8)*,w 8.6 (5.3–12.0)*
VNP pRT 11 ln(V)¼ 0.09t+4.92 0.97 7.9 (7.6–8.2)* 9.1 (6.7–11.6)*
VNP pRT+2 Gy 8 ln(V)¼ 0.06t+5.07 0.95 12.2 (11.7–12.8)*,w 19.0 (15.0–23.1)*,w

Data are listed as means with their 95% confidence intervals in parentheses. Treatments of Balb/c mice with 21-day 4T1/red tumors were performed using intravenous injections
of PBS (control), 100 000 cfu g�1 VNP20009 pRecA_ZsGreen (VNP pRZ), or 100 000 cfu g�1 VNP20009 pRecA_TRAIL (VNP pRT). Regression growth curves summarise
volume (V, mm3) dependence on time (t, days) from initial treatment, with correlation coefficients indicated by r. Primary treatment dosing was at day 0, with or without 2 Gy
irradiation at day 2. Tumor doubling time was derived from exponential growth curves. Growth delay was determined by assessing the time interval to 1000 mm3 compared with
the PBS control. *Po0.05 compared with PBS. wPo0.05 compared with PBS and 2 Gy irradiation.

Table 2 Cox proportional hazards analysis for treatment effects on survival

Treatment n Median survival (d) Hazard ratios Hazard ratios, stratified by radiation treatment

PBS 11 14.0 (11.7–16.3) — —
PBS+2 Gy 11 14.0 (9.7–18.3) 0.97 (0.42–2.24) —
VNP pRZ 8 16.0 (12.3–19.7) 0.63 (0.24–1.65) 0.58 (0.22–1.55)
VNP pRZ+2 Gy 6 18.0 (11.2–24.8) 0.53 (0.18–1.54) 0.58 (0.20–1.74)
VNP pRT 11 22.0 (14.6–29.4) 0.41 (0.16–1.04) 0.38 (0.15–1.00)
VNP pRT+2 Gy 8 26.0 (14.9–37.1) 0.21 (0.07–0.63)* 0.24 (0.08–0.75)*

Median survival times and hazard ratios are listed with their 95% confidence intervals in parentheses. *Significance is indicated as Po0.05.
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S. typhimurium expressing TRAIL retard tumour growth in
mice

Treatment with bacterial vectors and g-irradiation synergistically
delayed tumour growth in 4T1/red tumour-bearing BALB/c mice
(Figure 4; Table 1). Mice were systemically injected with PBS
controls, control bacteria (VNP pRA-ZsG), or TRAIL-expressing
bacteria (VNP pRA-TR), both with and without activation by 2 Gy
g-irradiation at 48 h after infection. All treatments significantly
increased tumour doubling time compared with PBS controls
(Po0.05; Figure 4B; Table 1). At all time points, except the day of
injection, the tumour volumes of VNP pRA-TR with 2 Gy radiation
were significantly less than PBS controls (Po0.05; Figure 4A).
The combination of VNP pRA-TR with 2 Gy radiation increased
the tumour doubling time from 6.6 days (95% CI 6.4–6.9 days) to
12.2 days (95% CI 11.7–12.8 days; Po0.05; Figure 4B) and caused
a significant delay of 19.0 days (95% CI 15.0–23.1 days) for
tumour growth to 1000 mm3 compared with the PBS controls
(Po0.05; Figure 4C).

The delay in tumour growth for VNP pRA-TR with 2 Gy
radiation was significantly greater than the control treatments,
VNP pRA-ZsG with 2 Gy irradiation and VNP pRA-TR
alone (Figure 4C; Po0.05), indicating that both TRAIL expression
and induction by radiation were necessary for maximum growth
delay. The significant difference in growth delay between
irradiated VNP pRA-TR and VNP pRA-ZsG (Po0.05; Figure 4C)
indicates that TRAIL is produced in tumours. Although this
evidence is indirect, the only difference between the plasmids on
these two strains is the TRAIL gene. If TRAIL was not produced,
these two strains would have induced the same response.
Compared with VNP pRA-TR with 2 Gy irradiation, radiation
alone only delayed tumour growth by 3.5 days (95% CI 0.1– 7
days), whereas VNP pRA-TR alone delayed growth by 9.1 days
(95% CI 6.7–11.7 days), suggesting that the combined response
was synergistic rather than additive. This synergy shows that there
is activation of TRAIL expression by the RecA promoter as well as
stimulation of bystander effects by the combination of radiation
and TRAIL.

In addition to retarding growth, treatment with VNP pRA-TR
and radiation improved mouse survival (Figure 4D; Table 2). To
maintain animals according to humane principles, death was not
used as a primary end point. For survival analysis, mice were killed
when moribund or when tumours measured 41000 mm3.
Although there was no difference in median survival between
PBS with and without irradiation, median survival was nearly
doubled by VNP pRA-TR with radiation (26 days) compared with
PBS controls (14 days), with a significant increase in the 30-day
survival from 0% to 37.5% of mice (log-rank test, Po0.05).
Treatment with VNP pRA-TR and 2 Gy radiation reduced the risk
of death by 76% when controlled against radiation treatment alone
(hazard ratio 0.24; 95% CI 0.08–0.75; Po0.05).

Redosing bacteria and irradiation accentuated the
therapeutic effect

Because a single dose of VNP pRA-TR activated by 2 Gy radiation
showed decreased growth for approximately 1 week, we reasoned
that additional redosing at 1 week would potentiate the therapeutic
effect (Figure 5). Additional mice received a series of two treat-
ments, with intravenous injection of VNP pRA-TR or PBS on days
0 and 6, followed by 2 Gy radiation on days 2 and 8 (Figure 5A).
The effects of redosing VNP pRA-TR with radiation were consi-
derable, delaying the expected time to tumour volume of 1000 mm3

by 30.3 days (95% CI 26.6–34.1 days; Po0.05; Figure 5B; Table 3).
The 30-day survival was 100% after redosing with VNP pRA-TR
and radiation, compared with 25% after redosing with PBS and
radiation (log-rank test, Po0.05), and 0% with PBS alone (Po0.05;
Figure 5C).
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Figure 5 Suppression of tumour growth and enhanced survival by
repeated dosing of VNP pRA-TR and g-irradiation. (A) Regression curves
for tumour growth after treatment with two doses of VNP pRA-TR and
radiation (n¼ 4), two doses of PBS and radiation (n¼ 4), and PBS
alone (n¼ 11). Experimental groups received intravenous injection with
PBS or VNP pRA-TR at days 0 and 6 (small arrows), followed by 2 Gy
irradiation 2 days after experimental treatments (days 2 and 8; large
arrows). Significant differences in tumour volume after redosing VNP pRA-
TR and radiation were observed at all time points except days 0 and 2 in
comparison with the PBS control group (Po0.05). (B) Estimates of time to
tumour volume of 1000 mm3 show a delay of 30 days after two doses of
VNP pRA-TR with irradiation in comparison with the PBS control
(*Po0.05; redosed VNP pRA-TRþ 2 Gy, in comparison with all other
groups). (C) Kaplan–Meier survival curves for the treatment groups
in (A). At 30 days of follow-up, 100% of mice survived with two treatments
of VNP pRA-TR with 2 Gy irradiation, compared with 25% after repeated
dosing with PBS and 2 Gy, and no survival from PBS controls (log-rank
test, Po0.05).
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DISCUSSION

These results show that S. typhimurium can express and secrete a
functional TRAIL protein, with control of expression by genotoxic
damage from a small dose of radiation. Secreted TRAIL, by
activating the death receptor pathway, can stimulate apoptosis in
carcinoma cells. Furthermore, S. typhimurium bearing pRA-TR
significantly decreases tumour growth and increases survival when
activated by radiation; an effect amplified by repeated dosing.

Complementary to these direct results, there are several added
benefits in our approach. Numerous tactics have been developed
with the intention of purposefully targeting cancers, including viral
gene therapy, liposomal delivery systems, monoclonal antibodies,
small-molecule protein inhibitors, and nanoparticle technologies;
however, the ability to achieve spatial and temporal control while
minimising toxicity has been limited. The first benefit of our
approach is the ability of S. typhimurium to effectively target
tumour microenvironments, with the ability to induce apoptosis
within regions of quiescence bordering tumour necrosis
(Kasinskas and Forbes, 2007). S. typhimurium has both tumour
tropism and microenvironment specificity, with patterns of
distribution within tumour microenvironments that are time
dependent, offering opportunity for both spatial and temporal
control of peptide delivery. The second benefit is the ability of
TRAIL to target cancer cells with specificity, allowing for induction
of apoptosis by p53-independent mechanisms while avoiding
toxicity to the host observed with TNF-a (Takeda et al, 2007).

The third benefit is the ability of the RecA promoter to act as a
switch, turned on by genotoxic damage from radiation, allowing
for temporal and spatial control of gene expression (Mitchell and
Gu, 2004). Fourth, radiation therapy can potentiate responses
to TRAIL delivery and influence the tumour microenvironment
through bystander effects (Belka et al, 2004; Mothersill et al,
2004). Finally, repeated dosing in the setting of limited toxicity
may provide a method to limit exponential growth in tumours.
Once fully developed, we envision that this bacterial cancer
therapeutic with spatial and temporal control of delivery will
provide considerable therapeutic benefit by enhancing efficacy
while limiting host toxicity.
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