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Abstract Although many clinical studies have found a
correlation of SPARC expression with malignant progres-
sion and patient survival, the mechanisms for SPARC
function in tumorigenesis and metastasis remain elusive.
The activity of SPARC is context- and cell-type-dependent,
which is highlighted by the fact that SPARC has shown
seemingly contradictory effects on tumor progression in
both clinical correlative studies and in animal models. The
capacity of SPARC to dictate tumorigenic phenotype has
been attributed to its effects on the bioavailability and
signaling of integrins and growth factors/chemokines.
These molecular pathways contribute to many physiologi-
cal events affecting malignant progression, including
extracellular matrix remodeling, angiogenesis, immune
modulation and metastasis. Given that SPARC is credited
with such varied activities, this review presents a compre-
hensive account of the divergent effects of SPARC in
human cancers and mouse models, as well as a description
of the potential mechanisms by which SPARC mediates
these effects. We aim to provide insight into how a
matricellular protein such as SPARC might generate
paradoxical, yet relevant, tumor outcomes in order to unify
an apparently incongruent collection of scientific literature.
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Abbreviations

bFGF Basic fibroblast growth factor
ECM Extracellular matrix

FAK Focal adhesion kinase

ILK Integrin-linked kinase

NSCLC Non-small cell lung cancer

PDAC  Pancreatic ductal adenocarcinoma

PDGF  Platelet-derived growth factor

SCLC Small cell lung cancer

siRNA  Small-interfering ribonucleic acid

SPARC  Secreted protein acidic and rich in cysteine
TGFp Transforming growth factor beta

VEGF  Vascular endothelial growth factor
Introduction

Historically, cancer research has focused on the molecular
genetics and cell-autonomous behavior of malignant cells.
However, understanding the interaction of cancer cells with
their microenvironment has emerged as an essential step
towards deciphering pathways that control transformation,
primary tumor growth, metastasis, immune tolerance and
therapeutic response (Desmouliere et al. 2004; Joyce and
Pollard 2009; Kumar and Weaver 2009; Liotta and Kohn
2001; Lorusso and Ruegg 2008; Shan et al. 2009; Wernert
1997; Whiteside 2008; Zalatnai 2006). Cancer cells com-
municate with and elicit responses from the microenviron-
ment at every stage of malignant progression. The tumor
microenvironment is composed of tumor cells, extracellular
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matrix (ECM), stromal cells, microvessels and immune cells
(Farrow et al. 2008; Jung et al. 2002). The ECM is an
extracellular protein scaffold that determines tissue architec-
ture and provides the structural framework for cells (Bosman
and Stamenkovic 2003). Furthermore, the ECM is a
remodeling network that regulates cell differentiation, sur-
vival, proliferation and migration (Larsen et al. 2006).

Deposition and remodeling of the ECM is regulated by a
functional family of extracellular proteins known as
matricellular proteins. Although primarily non-structural,
matricellular proteins define and contribute to the structural
integrity and composition of the ECM (Bornstein and Sage
2002). The capacity to influence assembly and turn-over of
the ECM is a governing attribute of matricellular proteins,
which is emphasized by their enhanced expression at sites
of tissue remodeling and during wound-healing (Bornstein
2001; Bornstein and Sage 2002). Matricellular proteins can
also direct cell fate, survival, adhesion and motility by
functioning as adaptors between the ECM and the cell surface
(Bornstein 2001; Bornstein and Sage 2002; Brekken and
Sage 2001).

SPARC (secreted protein acidic and rich in cysteine),
also known as osteonectin and BM-40, is a multifunctional
secreted glycoprotein that exemplifies the matricellular
class of proteins (Framson and Sage 2004). Expression of
SPARC during mammalian development and tissue differ-
entiation is robust but declines in the majority of organs
after maturation (Bradshaw and Sage 2001). Ultimately, the
expression of SPARC is limited post-development to tissues
with high ECM turnover, such as bone and gut epithelia
(Bradshaw and Sage 2001). However, SPARC is induced
during wound-healing, at sites of angiogenesis, and by the
stroma during tumorigenesis (Bornstein 2002; Mendis et al.
1998; Pen et al. 2007; Podhajcer et al. 2008; Reed et al.
1993). These observations suggest that SPARC functions as
a regulator of tissue remodeling. In fact, the phenotype of
SPARC-deficient mice validates the findings that SPARC
controls tissue remodeling and is required for proper
collagen matrix assembly and maturation (Bradshaw et al.
2003b; Brekken et al. 2003; Gruber et al. 2005). Mice
lacking SPARC exhibit early cataractogenesis, lax skin,
progressive osteopenia and a characteristic curly tail
reminiscent of ECM defects (Framson and Sage 2004).
Furthermore, collagen deposition and fibrillogenesis are
altered in the dermis and lens capsule of SPARC-deficient
mice (Bradshaw et al. 2003b; Yan et al. 2002).

Consistent with its participation in ECM assembly and
turn-over, SPARC directly binds ECM proteins such as
collagen and influences the secretion and activation of
matrix metalloproteinases (MMPs) (Fujita et al. 2002;
Gilles et al. 1998; McClung et al. 2007; Sage et al. 1989;
Sasaki et al. 1998, 1999; Shankavaram et al. 1997).
Moreover, SPARC interacts with or indirectly regulates
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several growth factors involved in angiogenesis and tissue
remodeling including fibroblast growth factor (FGF),
vascular endothelial growth factor (VEGF), platelet-
derived growth factor (PDGF), and transforming growth
factor 3 (TGFp) (Francki et al. 2004; Hasselaar and Sage
1992; Kato et al. 1998; Kupprion et al. 1998; Motamed et
al. 2003; Raines et al. 1992).

By directing ECM deposition, cell-ECM interactions, and
growth factor signaling, SPARC is well placed to regulate
multiple hallmarks of cancer including angiogenesis, migra-
tion, proliferation and survival. As it is suggested that the
tumor microenvironment is reminiscent of a wound that never
heals and because SPARC is a prominent participant in
wound-healing, it is not surprising that many cancers exhibit
altered expression of SPARC (Clark and Sage 2008; Dvorak
1986; Framson and Sage 2004; Podhajcer et al. 2008).
However, published data on the function of SPARC during
tumorigenesis are inconsistent and often contradictory, even
among the same tumor types. Thus, it seems that the capacity
of SPARC to promote or inhibit tumor progression is
dependent on the initiating cell-type, the tumor stage, and
the context of the tumor microenvironment.

This article provides a comprehensive review of the
literature on SPARC in human cancers and mouse models.
We explore the function of SPARC in extracellular matrix
deposition and fibrillogenesis, as well as in integrin and
growth factor signaling. In an attempt to unify a divergent
field, we conclude by proposing a working model to
rationalize how SPARC contributes to seemingly paradox-
ical tumor outcomes.

Tumor promotion

SPARC displays oncogenic properties in many tumor types
including gliomas, astrocytomas, melanomas, ductal carci-
noma of the breast, colorectal carcinoma, clear-cell renal
cell carcinoma, pancreatic ductal adenocarcinoma, and
carcinoma of the prostate. Table 1 provides a list of those
human correlative studies, along with associated mouse
models and in vitro studies, which show evidence of
SPARC as a tumor promoter.

Extensive data are available that show an increase in the
expression of SPARC in glioblastomas, astrocytomas and
meningiomas relative to that in normal brain, and reveal
SPARC expression as a negative predictor of survival (Huang
et al. 2000; Pen et al. 2007; Rempel et al. 1998; Rich et al.
2005). Furthermore, in vitro experiments demonstrate that
endogenous and exogenous SPARC increase survival, adhe-
sion, migration and invasion of glioblastoma cell lines
(Golembieski et al. 1999, 2008; Kunigal et al. 2006;
McClung et al. 2007; Rempel et al. 2001; Rich et al. 2003,
2005; Schultz et al. 2002; Seno et al. 2009; Shi et al. 2004,
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2007). Forced expression of SPARC by non-invasive glioma
cells induces an invasive phenotype in mouse models of
glioblastoma (Rich et al. 2003; Schultz et al. 2002). On the
other hand, down-regulation of SPARC by siRNA in
invasive glioma cell lines abrogates dissemination into
surrounding brain regions after intracerebral injection into
mice (Seno et al. 2009).

In invasive ductal carcinoma of the breast, the expres-
sion of SPARC is enhanced in tumor tissue compared to
normal controls and an increased level of SPARC is
associated with higher histological grade and advanced
pathological stage (Amatschek et al. 2004; Barth et al.
2005; Bellahcene and Castronovo 1995; Bergamaschi et al.
2008; Helleman et al. 2008; Iacobuzio-Donahue et al. 2002;
Jones et al. 2004; Lien et al. 2007; Parker et al. 2004; Porter
et al. 2003, 1995; Sarrio et al. 2008; Watkins et al. 2005;
Woelfle et al. 2003). Both exogenous administration and
endogenous upregulation of SPARC enhance in vitro breast
cancer cell invasion (Briggs et al. 2002; Campo McKnight
et al. 2006; Gilles et al. 1998; Jacob et al. 1999; Zajchowski
et al. 2001). In orthotopic and intravenous lung metastasis
mouse models of breast cancer, SPARC expression is
increased at metastatic sites and confers enhanced meta-
static potential (Minn et al. 2005). Moreover, orthotopic
breast tumor growth and lung metastasis are impaired in
SPARC-deficient mice (Sangaletti et al. 2003, 2008).

Non-small cell lung cancers (NSCLC), including squa-
mous cell carcinoma and adenocarcinoma, display an
increased expression of SPARC relative to that in normal
lung (Amatschek et al. 2004; Siddiq et al. 2004). Elevated
SPARC expression by tumor stroma is associated with a
poor prognosis in NSCLC (Koukourakis et al. 2003).
Coculture of NSCLC cell lines with normal fibroblasts
stimulates expression of SPARC (Fromigue et al. 2003).
Furthermore, SPARC is upregulated during carcinogen-
induced transformation of bronchial epithelial cells and is
associated with enhanced anchorage-independent colony
formation (Siddiq et al. 2004).

SPARC is expressed highly in pancreatic ductal adeno-
carcinoma (PDAC) at both primary and metastatic sites
(Guweidhi et al. 2005; Prenzel et al. 2006; Ryu et al. 2001).
In addition, patients with PDAC, whose tumor-associated
stroma express high levels of SPARC, have a worse
prognosis compared to those with no stromal SPARC
expression, which results in a relative hazard ratio of 1.89
(Infante et al. 2007; Mantoni et al. 2008). In vitro,
exogenous SPARC enhances, while SPARC knock-down
reduces, invasion of human pancreatic cancer cells
(Guweidhi et al. 2005; Mantoni et al. 2008).

An elevated expression of SPARC is also found in
primary and metastatic melanoma (Alonso et al. 2007;
Ledda et al. 1997a). The expression of SPARC in cutaneous
melanomas correlates significantly with an increase in

disease progression and metastatic incidence, as well as
with a decrease in survival (Alonso et al. 2007; Massi et al.
1999). Elevated SPARC levels are found in the serum of
patients with malignant melanoma, a marker used to
successfully identify 33% of melanoma patients including
those with early stage disease (Ikuta et al. 2005). Human
melanoma cell lines also express high levels of SPARC
(Ledda et al. 1997a). Forced expression of SPARC induces
motility of normal human melanocytes and enhances
invasion of melanoma cells (Robert et al. 2006; Smit et
al. 2007). Antisense suppression of SPARC reduces the in
vitro adhesive and invasive capacity of melanoma cell lines,
and abrogates in vivo tumor formation (Alvarez et al. 2005;
Ledda et al. 1997b; Prada et al. 2007; Robert et al. 2006;
Smit et al. 2007; Sosa et al. 2007). Lastly, metastatic
variants of mouse melanoma cell lines show differential
expression of SPARC; whereby, those with higher meta-
static potential or those that demonstrate aggressive
behavior express and/or secrete increased amounts of
SPARC relative to low-metastatic variants (Kato et al.
2000; Rumpler et al. 2003).

Tumor suppression

SPARC also shows characteristics of a tumor suppressor in
many cancers including acute myeloid leukemia, neuro-
blastoma, carcinoma of the breast, colorectal adenocarcino-
ma, hepatocellular carcinoma, non-small cell and small cell
lung cancer, carcinoma of the ovaries and pancreatic ductal
adenocarcinoma. Table 2 presents a comprehensive list of
human correlative studies, associated mouse models and in
vitro studies that support the capacity of SPARC to impede
tumor progression.

The promoter of the SPARC gene is hypermethylated in
many epithelial cancers, effectively reducing SPARC
production by tumor cells and supporting the idea that
SPARC is tumor-suppressive in a variety of cancers
(Table 2). SPARC promoter methylation is reported in
colorectal, non-small cell and small cell lung, ovarian,
pancreatic, prostate and uterine cancers (Brune et al. 2008;
Cheetham et al. 2008; Hong et al. 2008; Rodriguez-Jimenez
et al. 2007; Sato et al. 2003; Socha et al. 2009; Sova et al.
2006; Suzuki et al. 2005; Wang et al. 2005; Yang et al.
2007). In most cases, SPARC promoter methylation
correlates with a poor prognosis and/or decreased survival.

The SPARC promoter is hypermethylated in 80—
100% of colorectal adenocarcinomas and correlates with
a worse prognosis (Cheetham et al. 2008; Yang et al.
2007). In addition, approximately 71% of human colorec-
tal cancer cell lines are methylated within the SPARC
locus (Cheetham et al. 2008; Yang et al. 2007). Further
evidence comes from data showing chemoresistant human
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colorectal cancer cells significantly downregulate SPARC
production (Tai et al. 2005). More importantly, reexpres-
sion of SPARC or exogenous administration of SPARC
restores chemosensitivity in resistant cell lines and leads
to tumor regression in xenograft models when combined
with chemotherapy (Cheetham et al. 2008; Taghizadeh et
al. 2007; Tai et al. 2005).

SPARC gene methylation occurs in 71% of non-small
cell lung cancers (NSCLC) and 33% of small cell lung
cancers (SCLC) (Suzuki et al. 2005). The promoter
methylation status of SPARC is an independent adverse
prognostic factor with a relative risk of 4.65 in lung
adenocarcinoma (Suzuki et al. 2005). Similar to human
biopsies, 75% of NSCLC and 25% of SCLC cell lines show
evidence of SPARC methylation (Suzuki et al. 2005).
Furthermore, treatment of human lung cancer cells with the
nonsteroidal anti-inflammatory drug NS398 reduces inva-
sion by restoring SPARC expression through promoter
demethylation, an effect that is blocked by an anti-SPARC
antibody (Pan et al. 2008).

SPARC also functions as a tumor suppressor in ovarian
carcinoma. Malignant epithelial cells in ovarian carcinoma
tissue samples exhibit reduced SPARC immunoreactivity
(Yiu et al. 2001). This reduction in SPARC expression in
the tumor compartment is due to epigenetic silencing;
whereby, 68% of ovarian carcinomas display aberrant
methylation of the SPARC promoter (Socha et al. 2009).
In fact, decreasing levels of SPARC protein in the
malignant cells corresponds with disease progression
(Socha et al. 2009). Ovarian cancer cell lines also show
reduced expression and secretion of SPARC compared to
normal ovarian epithelial cells, which express and secrete
high levels of SPARC (Mok et al. 1996; Socha et al. 2009;
Yiu et al. 2001). Moreover, forced expression or exogenous
addition of SPARC attenuates in vitro proliferation and in
vivo tumor growth of ovarian carcinoma cells (Mok et al.
1996; Socha et al. 2009; Yiu et al. 2001). In a mouse model
of peritoneal ovarian carcinomatosis, SPARC-null mice
experience diminished survival, enhanced peritoneal dis-
semination and increased accumulation of ascitic fluid
compared to wild-type animals (Bull Phelps et al. 2009;
Said and Motamed 2005; Said et al. 2007a, b).

In pancreatic ductal adenocarcinoma, malignant epithe-
lial cells within the tumor often downregulate SPARC
expression (Sato et al. 2003). SPARC methylation occurs in
91% of human infiltrating pancreatic adenocarcinoma, 88%
of primary human pancreatic carcinoma xenografts and
94% of human pancreatic cancer cell lines (Brune et al.
2008; Hong et al. 2008; Sato et al. 2003). Gradual loss of
SPARC expression and methylation in pancreatic ductal
epithelial cells is also seen in the progression of intraductal
papillary mucinous neoplasms, precursors to invasive
adenocarcinoma (Hong et al. 2008). Treatment with
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exogenous SPARC reduces pancreatic cancer cell prolifer-
ation (Guweidhi et al. 2005; Sato et al. 2003). Additionally,
subcutaneous and orthotopic tumor growth of murine
pancreatic adenocarcinoma cells is enhanced in SPARC-
null mice relative to wild-type counterparts (Arnold et al.
2008; Puolakkainen et al. 2004).

Lastly, SPARC expression is disregulated in uterine
cancers. In human cervical carcinoma, SPARC is aberrantly
methylated in 86% of cancer specimens and only in 5% of
normal tissue (Sova et al. 2006). Furthermore, the frequen-
cy of SPARC hypermethylation is significantly increased in
high-grade cervical lesions compared to low-grade neo-
plasias and normal cervical controls (Kahn et al. 2008;
Sova et al. 2006). Endometrial cancers also display SPARC
promoter methylation in 66% of human samples, as well as,
a reduction in the expression of SPARC by the malignant
epithelial cell compartment (Rodriguez-Jimenez et al.
2007).

Compartmentalized expression

Several epithelial cancers present with contradictory com-
partmentalized SPARC expression; whereby, SPARC is
upregulated by the intra- and peritumoral stroma but
downregulated by the malignant cells. This paradoxical
pattern of SPARC expression is observed in breast,
colorectal, lung, ovarian, pancreatic and endometrial can-
cers (Barth et al. 2005; lacobuzio-Donahue et al. 2002;
Paley et al. 2000; Rodriguez-Jimenez et al. 2007; Sato et al.
2003; Suzuki et al. 2005; Yang et al. 2007; Yiu et al. 2001).
Whereas SPARC is highly expressed by normal breast and
colonic epithelium, invasive ductal breast and colorectal
carcinoma show dramatically reduced expression by the
malignant epithelial cells (Fig. 1). However, the tumor-
reactive stroma displays intense SPARC immunoreactivity
(Fig. 1) (Barth et al. 2005; Yang et al. 2007). Although the
tumor compartment exhibits reduced SPARC production in
lung and pancreatic cancers due to promoter hypermethy-
lation, infiltrating stromal cells respond with a compensa-
tory upregulation of SPARC (Sato et al. 2003; Suzuki et al.
2005). Overall SPARC levels are elevated in endometrial
carcinoma, but this over-expression is limited to the stroma;
whereas, the tumor cells themselves display attenuated
SPARC expression (Rodriguez-Jimenez et al. 2007).

In regards to colorectal, lung, ovarian, pancreatic and
endometrial cancers, the contradictory compartmentalized
expression of SPARC is a result of the loss of SPARC
expression by the malignant epithelial cells due to promoter
hypermethylation, as discussed in the previous section (Barth
etal. 2005; Paley et al. 2000; Rodriguez-Jimenez et al. 2007;
Sato et al. 2003; Suzuki et al. 2005; Yang et al. 2007; Yiu et
al. 2001). Furthermore, tumor cells may act in a paracrine
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Mouse models or cell culture
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Methylation Description

References

Expression®

Detection

Classification

Site

et al. 2005; Puolakkainen et al.

(Arnold et al. 2008; Guweidhi
2004; Sato et al. 2003)

SPARC methylated in 949 cancer
cell lines; SPARC inhibited cancer
cell proliferation; Increased tumor

88-92%

(Brune et al. 2008;
Hong et al. 2008;

Inverse

SAGE; Microarray; SPARC methylation;
IHC; RT-PCR

Adenocarcinoma
(PDAC)

Ductal

Pancreas

Sato et al. 2003)

Correlation

growth in SPARC deficient mice
SPARC hypermethylated in cancer

(Wang et al. 2005)

Carcinoma

Prostate

cell lines compared to normal cells
Endogenous SPARC inhibited

(Prada et al. 2007)

Melanoma

Skin

migration and spheroid tumor

cell growth; SPARC knock-down
enhanced spheroid formation

66-86%

(Kahn et al. 2008;

Tinverse

Microarray;

Cervical &

Uterus

Rodriguez-Jimenez et al.

RT-PCR Correlation

Endometrial
Carcinoma

2007; Sova et al. 2006)

#Inverse Correlation refers to one of the following: 1) Tumors had decreased SPARC expression compared to normal tissue 2) Decreased SPARC expression correlated with increased tumor stage,

grade or metastasis 3) Decreased SPARC expression correlated with decreased survival or a negative prognosis 4) Increased SPARC expression correlated with increased survival or a positive

prognosis. This table combines, updates and expands the data presented in several previous reviews (Clark and Sage 2008; Framson and Sage 2004; Podhajcer et al. 2008)

fashion to induce SPARC expression by the surrounding
stroma. Indeed, fibroblasts isolated from normal pancreas
display augmented SPARC expression when cocultured with
pancreatic cancer cells (Sato et al. 2003).

Therefore, the heterogeneity and compartmentalization
of SPARC expression can explain contradictory results and
correlations with SPARC among identical cancers and
between differing tumor types. What the data suggest is
that the effect of SPARC on tumor progression and patient
outcome is both tumor-type and context dependent. In other
words, the source and localization of SPARC in the tumor
microenvironment contributes to the complexity of SPARC
influence during tumorigenesis.

Extracellular matrix

The primary function of the ECM is to maintain tissue shape
and to provide the cellular compartment with structural
support (Bosman and Stamenkovic 2003). However, the
ECM is not just a passive bystander. It is a remodeling
network that contributes substantially to tumor progression
and metastasis by influencing cell adhesion, migration,
differentiation, proliferation and survival (Engbring and
Kleinman 2003; Ioachim et al. 2002; Streuli 2009; Streuli
and Akhtar 2009; Timar et al. 2002). By binding to adhesion
receptors such as integrins, the ECM can communicate
directly with the cell and influence signaling responses
(Berrier and Yamada 2007; Juliano 2002; Moser et al. 2009;
Stupack 2007). The ECM can also regulate cell function by
harboring matrikines and dictating bioavailability of cyto-
kines (Schultz and Wysocki 2009). SPARC expression is
increased concomitantly with activation of ECM deposition
(Framson and Sage 2004). In addition, SPARC directly
interacts with the ECM by binding basement membrane
collagen IV and fibrillar collagens I, III and V (Sage et al.
1989; Sasaki et al. 1998; Sasaki et al. 1999).

There is ample evidence that SPARC is required for
proper secretion, deposition and fibrillogenesis of collagen
during development, wound-healing and tumor progression.
SPARC-deficient mice exhibit a range of phenotypes as a
result of disruption in ECM deposition and organization,
including early cataract formation, accelerated dermal
wound-healing, osteopenia and a curly tail (Bradshaw and
Sage 2001). Premature cataractogenesis is observed in two
independently generated SPARC-null mouse colonies, and
is caused by disorganized deposition of collagen IV and
laminin in the lens epithelial basement membrane (Gilmour
et al. 1998; Norose et al. 1998; Yan et al. 2002, 2003).
SPARC-null mice also show deficiencies in connective
tissue, such as decreased levels of collagen I in skin,
adipose, heart and bone (Bradshaw et al. 2003a, c¢; Delany
et al. 2003). In addition to the reduction in collagen
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Fig. 1 Compartmentalized SPARC expression in human cancer. a
Immunohistochemical staining of human biopsies of normal breast
and invasive ductal adenocarcinoma, adapted from Barth et al. (2005)
Copyright © Springer. Reprinted with permission of Springer-Verlag
Berlin Heidelberg New York, A member of BertelsmannSpringer
Science + Business Media GmbH (a) SPARC is expressed in
myoepithelial cells (arrow) and by a few stromal cells in the ducts
of normal breast. However, much of the stroma lacks SPARC
expression (arrowhead) (b) Staining for «-SMA in the tumor-
associated stroma (arrowheads) reveals activated fibroblasts also
positive for (¢) SPARC immunoreactivity (arrowheads). The arrow

deposition, collagen fibrils in the skin of SPARC-deficient
mice are uniformly smaller in diameter compared to the
heterogeneous fibrils found in wild-type dermis (Bradshaw
et al. 2003b). Reduction in collagen deposition and
fibrillogenesis in SPARC-null mice leads to accelerated
dermal wound-healing, presumably due to increased con-
tractility (Bradshaw et al. 2002, 2003c).

Not only do SPARC-deficient mice display alterations
in the ECM during development and normal tissue turn-
over but, in the absence of SPARC, there is also a
diminished foreign-body and tumor response in regard
to encapsulation. Implantation of foreign material into
mice elicits a stromal response that essentially encapsu-
lates this material in a wall of ECM. However, the
collagen capsule deposited in response to foreign-body
implantation is markedly reduced in thickness in
SPARC-null compared to wild-type mice (Puolakkainen
et al. 2003). Furthermore, analogous to the alterations
observed during development, the collagen fibrils border-
ing the implanted material are uniformly smaller in
diameter and less mature in the absence of SPARC relative
to fibers deposited in wild-type mice (Puolakkainen
et al. 2003).

points to malignant epithelial cells lacking SPARC expression. b
Immunohistochemical analysis of SPARC expression in colonic
mucosae and colorectal carcinomas, adapted from Yang et al. (2007)
Copyright © 2005 Wiley-Liss, Inc. Reprinted with permission of
Wiley-Liss, Inc., A Wiley Company. (¢) Normal colonic epithelial
cells (arrow) strongly express SPARC, while there is only minimal
SPARC expression in the surrounding stroma (arrowhead). (b, c)
SPARC expression by the carcinoma cells (arrows) is dramatically
reduced or absent, while tumor stromal cells display strong expression
of SPARC (arrowheads) (c) Higher magnification

Similarly, many solid tumors show encapsulation de-
marcating the tumor from normal tissue. Subcutaneous
tumor models of murine lung carcinoma, lymphoma and
pancreatic adenocarcinoma present with enhanced growth
in SPARC-null mice compared to wild-type controls
(Brekken et al. 2003; Puolakkainen et al. 2004). Moreover,
tumors grown in the absence of host SPARC exhibit deficits
in collagen deposition and fibrillogenesis at the tumor
capsule, as well as in intratumoral connective tissue
highways (Brekken et al. 2003; Puolakkainen et al. 2004).
There are also alterations in the composition of non-
collagenous ECM proteins, such as laminin, in tumors
grown in SPARC-null animals (Brekken et al. 2003). In
addition, murine pancreatic cancer cells injected orthotopi-
cally into SPARC-null mice grow larger and metastasize
more frequently than those in wild-type mice, thus
highlighting the importance of SPARC function and ECM
composition in tumor progression (Arnold et al. 2008). The
fact that the tumor cells, but not the infiltrating stromal
cells, express and secrete SPARC in the aforementioned
studies also supports the observation that the effect of
SPARC on tumorigenesis is context- and cell-type-
dependent (Arnold et al. 2008; Brekken et al. 2003;
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Puolakkainen et al. 2004). Thus, SPARC can influence
tumor progression and metastasis by controlling deposition
and composition of the ECM. Moreover, the diverse actions
of SPARC in differing tumors may be a result of distinctive
ECM profiles.

Integrin signaling

The ECM directly interacts with cells through a family of
cell-surface receptors known as integrins (Moser et al.
2009). Integrins anchor cells to the ECM, signal in response
to ECM ligation (“outside-in” signaling) and regulate the
interactions of the ECM in response to intracellular cues
(‘inside-out’ signaling) (Moser et al. 2009). Integrin
signaling pathways substantially interact with growth factor
receptor pathways to dictate cellular events, such as
survival, proliferation, adhesion and migration, all of which
contribute to tumor growth and metastasis. Integrin com-
plexes can also cluster directly with growth factor recep-
tors. Furthermore, proper cytokine responses require intact
integrin activation and signal propagation (Eliceiri 2001;
Porter and Hogg 1998; Somanath et al. 2009; Streuli and
Akhtar 2009).

Numerous studies suggest that SPARC regulates
integrin signaling and the ability of integrins to interact
with structural components of the ECM. SPARC induces
cell rounding or an intermediate state of adhesion in
several cell types, in vitro, including endothelial and
mesenchymal cells (Bradshaw et al. 1999; Sage et al.
1989). This effect is due to disruption of focal adhesions
(Bradshaw et al. 1999). In addition, many studies
contribute to the emerging idea that SPARC influences
downstream components of integrin signaling, specifically
the activation of integrin linked kinase (ILK). Fibronectin-
induced ILK activation and stress-fiber formation are
reduced in primary lung fibroblasts isolated from
SPARC-null mice and restored by forced SPARC expres-
sion (Barker et al. 2005). Furthermore, SPARC promotes
cell survival of lens epithelial cells under serum-
deprivation by enhancing ILK activation (Weaver et al.
2008). Moreover, recent publications report that SPARC
binds integrin (31 with its copper-binding domain; thereby,
directly affecting integrin/ILK signaling (Nie et al. 2008;
Weaver et al. 2008).

The influence of SPARC on integrin/ILK responses is
also observed in several cancer cell lines. SPARC increases
survival and induces an invasive phenotype in human
glioma cells (Schultz et al. 2002; Shi et al. 2004, 2007).
However, targeting SPARC with short-hairpin RNA
reduces cell survival and invasion, as well as attenuates
the activity of ILK, focal adhesion kinase (FAK) and
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protein kinase B (Akt) (Shi et al. 2007). Moreover, SPARC-
induced invasion and survival is abrogated by down-
regulation of ILK and FAK (Shi et al. 2007). Total ILK
expression is also found to be increased in glioma cells that
are forced to express SPARC (Golembieski et al. 2008). In
human ovarian cancer cells, SPARC inhibits adhesion,
invasion and proliferation by reducing the surface localiza-
tion and/or clustering of v, 31, 33 and 5 integrins (Said
et al. 2007a). SPARC attenuates integrin ov- and f1-
induced proliferation in murine ovarian cancer cells.
Furthermore, murine ovarian cancer cells adhere more
readily to peritoneal explants and peritoneal mesothelial
cells isolated from SPARC-null mice compared to wild-type
counterparts (Said et al. 2007b). This effect is blocked by
antibodies against oov(33 and (1 integrins (Said et al.
2007b).

Together, these data reveal that SPARC influences
integrin clustering and activation, as well as the ability of
integrins to interact with structural components of the
ECM. Moreover, SPARC potentially dictates if and how
integrins converse with and reinforce other signaling
cascades. Therefore, it is not surprising that SPARC elicits
such diverse effects on tumorigenesis, given the fact that it
possesses the ability to control the pleiotropic interactions
and functions of integrins.

Growth factor and cytokine signaling

Cross-talk between malignant cells and the surrounding
stromal compartment induces ECM remodeling, angio-
genesis, immune recruitment and metastasis (Davis and
Senger 2005). Growth factors and their associated recep-
tors are one way by which communication occurs between
cellular compartments. It is established that SPARC
modulates the activity of several growth factors including
basic fibroblast growth factor (bFGF), platelet-derived
growth factor (PDGF), vascular endothelial growth factor
(VEGF), and transforming growth factor beta (TGFf})
(Francki et al. 2004; Hasselaar and Sage 1992; Kupprion
et al. 1998; Raines et al. 1992). Although SPARC does not
bind bFGF directly, it inhibits bFGF-induced migration of
endothelial cells (Hasselaar and Sage 1992). SPARC binds
PDGF and dose-dependently inhibits ligand binding and
activation of PDGF receptors on human dermal fibroblasts
(Raines et al. 1992). In addition, PDGF-stimulated
proliferation of human arterial vascular smooth muscle
cells is decreased in the presence of SPARC (Motamed et
al. 2002).

Similar to PDGF, SPARC binds VEGF directly and
prevents activation of VEGFR1 (Kupprion et al. 1998;
Nozaki et al. 2006). This interaction attenuates VEGF-
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induced proliferation of microvascular endothelial cells
(Kupprion et al. 1998). On the other hand, VEGF induces
the expression of SPARC in human vascular endothelial
cells (Kato et al. 2001). Therefore, the induction of SPARC
by VEGF stimulation might be a negative regulatory
feedback mechanism. In support, VEGF production is
enhanced in dermal fibroblasts and subcutaneous polyvinyl
alcohol sponges from SPARC-null mice relative to wild-
type controls, which results in a greater angiogenic
response in the absence of SPARC (Bradshaw et al.
2001). When injected into the brain of nude rats,
SPARC-expressing human glioblastoma cells reduce
VEGF expression and angiogenesis related to tumor
formation in comparison to SPARC-negative glioma cells
(Yunker et al. 2008). In a mouse model of ovarian cancer,
peritoneal dissemination and lethality is augmented in the
absence of host-derived SPARC, which corresponds to
VEGF accumulation in ascitic fluid (Said and Motamed
2005; Said et al. 2007b).

SPARC is also implicated in the regulation of TGFf3
(Francki et al. 2004; Schiemann et al. 2003). TGFf3 is a
master regulator of wound-healing and fibrosis by induc-
ing the synthesis of several ECM proteins including
collagen and fibronectin (Verrecchia and Mauviel 2007).
Ample data demonstrate that TGF induces SPARC
expression (Ford et al. 1993; Pavasant et al. 2003; Reed
et al. 1994; Wrana et al. 1991). However, there is also
evidence that SPARC regulates the expression and activity
of TGFf3, suggesting that there is a reciprocal regulatory
feedback loop between SPARC and TGF(. SPARC
induces the expression and secretion of TGF@1 in rat
mesangial cells in vitro and in vivo (Bassuk et al. 2000).
The synthesis of collagen I and TGFf3-1 is diminished in
mesangial cells isolated from SPARC-null mice compared
to those from wild-type mice, but is restored by the
exogenous addition of SPARC (Francki et al. 1999).
Moreover, SPARC enhances the stimulatory effects of
TGFf(1 on mesangial cells by directly interacting with the
TGFB/TGFRRII complex (Francki et al. 2004). Likewise,
SPARC augments the inhibitory functions of TGF(31 in
epithelial cells by stimulating smad2/3 phosphorylation
(Schiemann et al. 2003).

Considering that growth factors such as bFGF, PDGF,
VEGF and TGF( are important contributors to tumor
progression, angiogenesis and metastasis, it is clear that the
interaction of SPARC with these signaling pathways
influences its ability to dictate many aspects of tumorigen-
esis. In addition, SPARC interaction with growth factors,
such as TGFf3, that have a dichotomous effect on the
progression of solid tumors, explains the ability of SPARC
to influence human cancers in such apparently paradoxical
ways (Tian and Schiemann 2009).

Conclusions

SPARC can modulate ECM assembly, integrin activity and
growth factor signaling; thereby, controlling a range of
cellular functions including adhesion, proliferation, survival
and migration. Therefore, it is not surprising that the
expression of SPARC is dysregulated in many human cancers
and that this dysregulation contributes to patient outcome.
Although there is no unifying mechanism, as yet, for the
effects of SPARC in tumorigenesis, this protein clearly
influences the microenvironment and signaling pathways
involved in disease progression. The concept that SPARC
regulates cell function through modulation of integrin binding
and activation is provocative, since integrin receptors have
also been implicated in each of the cellular processes
influenced by SPARC. To date, no bona fide signaling
receptor has been identified for SPARC. However, given that
SPARC directly binds to the ECM, integrins and growth
factor/receptor complexes, we propose that SPARC functions
as an extracellular scaffolding protein; whereby, SPARC
dictates the activating threshold at which integrin and growth
factor-signaling processes propagate cellular events (Fig. 2). It
is known that there is extensive cross-talk between integrin-
and growth factor -signaling pathways, and that integrin
signaling is required for proper cellular responses to cytokine
stimulation (Eliceiri 2001; Porter and Hogg 1998; Somanath
et al. 2009; Streuli and Akhtar 2009). In addition, integrins
can associate directly with growth factor receptors (Eliceiri
2001; Porter and Hogg 1998; Somanath et al. 2009; Streuli
and Akhtar 2009). By controlling the clustering and
activation of integrins, as well as, the association and cross-
talk with growth factor receptors, SPARC might function as
a rheostat for cellular signaling and behavior. Thus, factors
controlling the effects of SPARC on any particular cell
would consist of the ECM composition, integrin profile,
cytokine milieu, cell type (e.g. mesenchymal, endothelial or
epithelial), and SPARC concentration/cell-surface localiza-
tion. This concept provides a potential explanation for how
SPARC modulates so many cellular events, and for why the
considerable data collected in regard to SPARC during
tumorigenesis have failed to elucidate any specific and
consistent mechanism.

It is difficult to determine a mechanism when numerous
confounding factors are involved, and when many groups
publish seemingly contradictory data on the function of
SPARC. However, we propose that this collection of
incongruous data is a result of the dependence of SPARC
function on multiple factors associated with its role as an
extracellular scaffolding protein and signaling rheostat.
Future experiments should aim to validate whether
SPARC controls the formation of integrin- and growth
factor-receptor complexes and, if so, to clarify how these
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Fig. 2 SPARC as an extracellular scaffolding protein and rheostat. We
propose that SPARC (SP) acts as an extracellular scaffolding protein;
whereby, SPARC controls the interactions and cross-talk between the
extracellular matrix (ECM), integrins (x, (3) and growth factor
receptors (RTK). By controlling integrin clustering and activation, as
well as, integrin communication with growth factor receptors, SPARC
can function as a rheostat for signaling and cellular response. (Leff)
SPARC may decrease the activating threshold of certain growth
factors (GF) by enhancing complex formation and cross-talk between
integrins and growth factor receptors. Integrin-linked kinase (/LK),
Pinch, and Nck2 link integrins and growth factor receptors, intracel-
lularly, to form localized signaling cascades, while SPARC acts as an
extracellular scaffold to reinforce this complex. Focal adhesion kinase
(FAK) is just one example of a signaling molecule located downstream

associations control cellular responses to various cyto-
kines. Additionally, it is pertinent to determine how
SPARC dictates the activities of each cell type in the
tumor microenvironment. Given that SPARC contributes
to such a diverse and conflicting range of activities,
targeting SPARC globally in human cancer has the
potential to present with adverse off-target effects. There-
fore, clarification of the molecular mechanisms that
involve the role of SPARC during tumorigenesis is
necessary in order to develop effective strategies that can
target SPARC therapeutically and exploit the idea of
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Integrin

No Cross-Talk

No Signal Amplification
Raised Threshold

Reduced Cellular Response

of both integrins and growth factor receptors whose activation is
influenced by SPARC. Ultimately, integrin-growth factor receptor
cross-talk leads to signal amplification and enhanced cellular
responses. (Right) SPARC may also increase the activating threshold
of integrins and growth factors by inhibiting the binding of certain
integrins to the ECM, opposing integrin-growth factor receptor
clustering, and/or sequestering growth factors in the extracellular
milieu. All of these effects result in a loss of communication and
signal amplification of integrins and growth factor receptors, which
reduces cellular responses. ECM composition, integrin profile,
cytokine profile, cell-type and SPARC concentration/cell-surface
localization are all factors dictating this differential response to
SPARC

manipulating the tumor microenvironment to control
cancer growth and metastasis.
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