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Intervertebral disc degeneration: biological and biomechanical factors
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cluding cytokines, growth factors, enzymes, and enzyme
inhibitors, in a paracrine or/and autocrine fashion.1,2

Anabolic regulators include polypeptide growth fac-
tors, such as insulin-like growth factor (IGF), trans-
forming growth factor-β (TGF-β), and the bone
morphogenetic proteins (BMPs).1–4 Other small mol-
ecules, such as the synthetic peptide of link protein,
have also been reported to be regulators of matrix
synthesis.5 The catabolic process is mediated by various
enzymes, such as the matrix metalloproteinases
(MMPs),6–16 members of a disintegrin-like and meta-
lloprotease with thrombospondin motifs (ADAMTS)
family (aggrecanases),17–19 and cytokines.13,20–26 Disc de-
generation can result from an imbalance between the
anabolic and catabolic processes or the loss of steady-
state metabolism that is maintained in the normal disc.
With IVD degeneration, the gradual loss of large PGs,
such as aggrecan and versican, from the NP has been
reported; however, in the AF, there is an initial
upregulation of these proteins in the early stages of disc
degeneration, followed by a downregulation in the late
stage of disc degeneration.27 Therefore, therapeutic
strategies might be different depending on the stage of
disc degeneration and for the NP versus the AF. Thera-
peutic strategies for disc degeneration include an upre-
gulation of important matrix proteins, such as aggrecan,
or downregulation of proinflammatory cytokines and
matrix-degrading enzymes, such as the MMPs and
ADAMTSs, possibly by applying both strategies.

The importance of nutrition to the IVD, which is the
largest avascular tissue in the body, in the pathogenesis
of disc disease is well recognized.28–36 To maintain the
steady-state metabolism of the cells, the IVD requires
proper nutrition, mainly by diffusion from the vertebral
bodies and endplates.29 Trauma, cigarette smoking,
deposition of calcium crystal, and other factors that dis-
rupt the integrity of the endplates may affect diffusion
and disturb the nutrition of the disc cells.28 It is impor-
tant to assess the nutritional status of the degenerated

Introduction

There has been significant progress over the past two
decades in the surgical treatment of spinal disorders,
including advances in spinal instrumentation, minimally
invasive spine surgery, biomaterials, and artificial disc
replacement. Although improvements in surgical treat-
ments are on track, basic science research on the
pathogenesis of intervertebral disc (IVD) degeneration
and the mechanism of pain is nascent. A better under-
standing of the pathogenesis of IVD degeneration will
culminate in greater advances in treatment and improve
patient selection and indications for emerging tech-
niques and procedures. In this article, we review the
relevant literature on biological and biomechanical re-
search, including our own recent publications.

Biological factors

Although the exact pathogenesis is unknown, the me-
chanically-induced and biologically-mediated degen-
erative disc is conceptualized to be a consequence of
pathological or aging changes associated with genetic
background. The IVD consists of an outer anulus fibro-
sus (AF), which is rich in collagens that account for its
tensile strength, and an inner nucleus pulposus (NP),
which contains large proteoglycans (PGs) that retain
water for resisting loading by compression. Biologically,
disc cells residing in both the AF and NP actively regu-
late the homeostasis of IVD tissues by maintaining a
balance between anabolism and catabolism. Disc cells
modulate their activity by a variety of substances, in-
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disc before contemplating biological treatment because
such treatment will be ineffective if there is a complete
loss of diffusion or nutrition to the disc.

For delivering therapeutic biologic agents, several
methods of administration can be considered. Protein
injection is relatively simple and practical; however,
efficacy, duration of action, and the possibility of
adverse effects should be thoroughly tested. In gene
therapy, DNAs that encode specific proteins are deliv-
ered into the cells by viral or nonviral transfection; the
transfected cells eventually produce proteins to, theo-
retically, prolong the duration of action. Both viral and
nonviral transfection methods have pros and cons.
Safety and immunological reactions as well as the con-
trol of expression in viral-mediated gene therapy are
potential problems. On the other hand, the transfection
efficiency of nonviral methods is generally inferior.37

Cell transplantation has the potential to regenerate the
disc matrix,38–40 but it involves cell procurement and its
efficacy has not been fully established.41,42 Depending on
the severity of disc degeneration, a combined approach
may be needed. It is assumed that matrix repair will
bring about the biomechanical restoration of the disc
and the functional motion segment, and, optimistically,
relieve the patient’s discogenic pain. These assumptions
are numerous; much needs to be done to test these
hypotheses and assumptions.

Growth factors and BMPs

When the clinical application of growth factors, includ-
ing BMPs, is contemplated, several factors, such as
indication, mode of delivery, dose, duration, and side
effects, should be taken into consideration to achieve the
greatest beneficial therapeutic effect. Each growth factor
may have a different effect on the NP and AF, and the
action at different stages of degeneration may be differ-
ent. An in vitro study using a validated method is essen-
tial to explore the therapeutic use of growth factors.

In vitro evidence for the feasibility of growth
factor application
Thompson et al. first reported the positive effects of
various growth factors, including TGF-β, epidermal
growth factor (EGF), and basic fibroblast growth factor
(bFGF),3 on PG synthesis; these effects were more pro-
nounced in the NP. Osada et al. have shown that IGF-1
stimulated PG synthesis by bovine NP cells in serum-
free conditions in a dose-dependent manner.4 Recently,
Tim Yoon et al. showed that recombinant human BMP-
2 (10–1000 ng/ml) increased cell proliferation, PG syn-
thesis, mRNA expression of type II collagen, aggrecan,
SOX9, and osteocalcin in the monolayer culture of rat
AF cells.43 Furthermore, these authors showed that the
stimulatory effect of BMP-2 (at 1–100 ng/ml) was inhib-

ited by the addition of nicotine (10–100µg/ml) in the
culture media in rat NP cell culture.44 These results sug-
gested that nicotine may contribute to the process of
disc degeneration by a direct effect on NP cells, possibly
by antagonizing the effect of BMP-2.

We have recently reported the in vitro stimulative
effect of osteogenic protein 1 (OP-1, otherwise known
as BMP-7) on PG and collagen metabolism in rabbit NP
and AF cells cultured in alginate beads.45 In both cell
types, recombinant human OP-1 (rhOP-1) stimulated
the synthesis of PG and collagens in a dose-dependent
manner (50–200 ng/ml) in the presence of 10% fetal
bovine serum (FBS) (Fig. 1). Although the responsive-
ness of IVD cells to IGF-1 and TGF-β has been shown
to decrease with increasing age in rabbit IVD cells,46

OP-1 effectively stimulated PG synthesis of fetal, adult,
and old bovine NP and AF cells.47 In fact, the IVD cells
of the older animals in this study were very responsive
to OP-1. The age-related and degeneration stage-re-
lated change in the response to growth factors is of
special interest for future studies because of the emerg-
ing trend to treat disc degeneration in adults or older
individuals by the local injection of growth factors.48

Several in vitro feasibility studies were performed to
test if growth factors can overcome a negative balance
of matrix homeostasis. To model the repair process af-
ter matrix depletion in IVD cells, degeneration of the
matrix of rabbit IVD cells was first induced by exposure
to the proinflammatory cytokine interleukin 1 (IL-1),
using the alginate culture system; subsequently, rhOP-1

Fig. 1. Effect of recombinant human osteogenic protein 1
(rhOP-1) treatment on proteoglycan (PG) synthesis by rabbit
nucleus pulposus (NP) and anulus fibrosus (AF) cells cultured
in alginate beads. In both rabbit NP and AF cultures, signifi-
cant dose-dependent increases in the rate of PG synthesis per
mg DNA were observed on the addition of rhOP-1 to the
medium [Dulbecco’s modified essential medium (DMEM)/
F12 + 10% fetal bovine serum (FBS)]. (From ref. 45, with
permission.) FRM, Further removed matrix; CM, cell-
associated matrix
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was applied in culture.49 OP-1 (100ng/ml) was effective
in promoting, in vitro, the repair of the damaged matrix
surrounding the NP and AF cells after exposure to IL-1.
A similar study was performed using a brief exposure to
the glycosidase chondroitinase-ABC (C-ABC) to de-
plete PGs and hyaluronan in the matrix around NP and
AF cells.50 After the matrices around the cells were
depleted by C-ABC digestion, the cultures were then
maintained in media containing 10% FBS and OP-1
(100ng/ml). As seen in the case of IL-1 exposure, OP-1
stimulated the repair of the C-ABC-treated matrix
around NP and AF cells, actually resulting in an in-
crease above the normal level of matrix molecules.
These two studies became the fundamental basis for our
strategy that growth factor injection therapy can be ap-
plied to repair the matrix of degenerated human IVDs
or to promote matrix repair in conjunction with
chemonucleolysis.

Because the cellular phenotypes of young animals,
especially rat and rabbit cells, are different from those
of adult human cells, studies using human disc cells are
essential for the clinical development of growth factor
therapy. There is considerable evidence in the recent
literature that human disc cells, healthy or degenerated,
will respond to growth factors and BMPs. Gruber et al.
reported that human AF cells in three-dimensional cul-
tures (agarose gel and alginate beads) produced and
accumulated more abundant extracellular matrix mol-
ecules, such as PGs, than those cultured in monolayer;
under those conditions; they also showed that cell pro-
liferation was stimulated by TGF-β.51

Imai et al. reported that OP-1 (100–200ng/ml) en-
hanced the production and accumulation of PGs by
human NP and AF cells cultured in alginate beads in the
presence of 10% FBS.52 Interestingly, AF cells, which
are more fibrochondrocytic, strongly responded to OP-
1, suggesting that OP-1 might be beneficial not only for
nucleus repair but for anulus repair as well.

Recombinant human BMP-2 (rhBMP-2) has been
shown to stimulate PG synthesis at relatively high doses
(67% at 300ng/ml and 200% at 1500 ng/ml rhBMP-2).53

Ahn et al. recently reported that both BMP-2 and BMP-
12 stimulated PG and collagen synthesis by human NP
cells from degenerated discs cultured in monolayer in
the absence of serum.54

A decrease in cell number is one characteristic of
aging IVD tissue.55 Growth factor therapy may be ben-
eficial to maintain functional cells in IVD tissues.
Gruber et al. reported a high incidence of apoptosis in
AF tissues.56 Furthermore, they found that the surviving
AF cells were not synthetically inactive but were,
rather, producing inappropriate matrix molecules dur-
ing aging and degeneration. Based on these initial
findings, they studied the effects of IGF-1 and platelet-
derived growth factor (PDGF) on apoptosis in human

AF cells grown in monolayer culture.57 In monolayer
cultures of human degenerative IVD cells, Wehling re-
cently reported that the combination of autologous IL-
1 receptor antagonist (IL-1ra)/IGF-1/PDGF proteins,
which was produced in vitro by stimulating monocytes
and thrombocytes, reduced the percentage of apoptosis
and the production of biochemical markers of disc de-
generation, such as IL-1 and IL-6.58

In vivo evidence of the feasibility of growth
factor application
Walsh et al. reported the in vivo effects of a single
injection of other growth factors, such as bFGF, growth
differentiation factor 5 (GDF-5), IGF-1, or TGF-β, in
the mouse caudal disc with degeneration induced by
static compression.59 An injection of GDF-5 was effec-
tive in promoting disc regeneration. Multiple injections
(four injections, once per week) of TGF-β showed a
stimulatory effect, although the other growth factors did
not show a significant enhancement of their original
effect.59

As the first feasibility in vivo study on the effect of
OP-1, we reported that the in vivo intradiscal adminis-
tration of the growth factor OP-1 resulted in an increase
in disc height and in the PG content of the NP in normal
rabbits.60 At 2 weeks after the injections of OP-1 (2µg in
saline), the mean disc height index of the OP-1-injected
discs was 15% greater than that of the saline group, and
the increase was sustained for up to 8 weeks. Biochemi-
cally, a significant increase in the PG content of the NP
was observed in OP-1-injected discs when compared to
the saline-injected group at the 2-week time point. Us-
ing a defined-gauge needle puncture of the AF,61 we
conducted a study of the radiographic and magnetic
resonance imaging (MRI) changes in the rabbit IVD
after injection of OP-1 into the NP in the anular-
puncture disc degeneration model. Six weeks after the
OP-1 injection, a restoration of disc height and MRI
changes were observed and sustained for the entire ex-
perimental period, up to 24 weeks (Fig. 2).62 In another
degeneration model using C-ABC, 4 weeks following
the injection of C-ABC, OP-1 (100µg/disc) injection
restored the disc height up to 12 weeks after the OP-1
injection.63 These data suggest that OP-1 may be utilized
in patients with disc degeneration who had received
chemonucleolysis in the past that resulted in some loss
of disc height.

Gene therapy

Nishida et al. injected an adenovirus construct encoding
the TGF-β gene (Ad/CMV-hTGF-β1) into lumbar discs
of skeletally mature rabbits and showed the feasibility
of using the gene therapy approach to induce biological
changes in IVD tissues in vivo. The NP tissues from the
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discs injected with Ad/CMV-hTGF-β1 showed a
significant increase in production of active and latent
TGF-β1. They found that these tissues exhibited an in-
crease of 100% in PG synthesis when compared to in-
tact control tissues.64 However, the effect of TGF-β on
PG synthesis remains controversial. Wallach et al., from
the same group, recently reported the inhibition of PG
synthesis by the transduction of the TGF-β1 gene.65 The
authors suggested that the inhibitory response to TGF-
β1 may have resulted from increased cell-to-cell interac-
tions within the three-dimensional pellet culture, which
in turn may have produced higher, and potentially toxic,
TGF-β1 concentrations in the microcellular environ-
ment. More biologically relevant in vivo studies, such as
those using a large animal model, might be required to
reach a conclusion on the effect of TGF-β1. Ahn et al.
recently reported that the introduction of the BMP-12
gene into human IVD cells in pellet culture by an
adenoviral vector significantly increased cell prolifera-
tion and matrix production (PG and collagen).66 The
increase in mRNA for collagen types I, II, and VI in the
AF cells was more pronounced than that in NP cells.

Matsumoto et al. have also shown that the nonviral
gene transfer of the human OP-1 gene into bovine NP
and AF cells, using the gene gun (particle-mediated
gene transfer method), can stimulate PG synthesis.67 On
day 3 after transfection of the human OP-1 gene,
transfected cells synthesized PGs at a faster rate in both
the AF (+24%) and NP (+44%). In an in vivo experi-
ment, the injection of OP-1-transfected cells (allogenic

cells from a donor rabbit) into the NP induced a
significant preservation of disc height and retention of
PG content when compared to the control vector-
transfected group.68

Wang et al. showed that transfection of the GDF-5
gene into rabbit and human IVD cells with adenovirus
encoding the GDF-5 gene or the TGF-β gene induced a
significant increase of GDF-5 and TGF-β protein
production,69 respectively.

Paul et al. reported the successful adenovirus-
mediated gene transfer of the SOX9 gene and the BMP-
2 gene, both with green fluorescent protein (GFP), into
IVD cells obtained from human degenerated IVD tis-
sues70 with a steady expression over the 80% level for 7
days in culture and also with an increased level of type
II collagen synthesis. The in vivo transfection of the
SOX9 gene by adenoviral vector using the rabbit stab
model resulted in maintenance of a chondrocytic ap-
pearance over 5 weeks.70

Wallach et al. also reported that gene transfer of the
tissue inhibitor of metalloproteinase 1 (TIMP-1), an in-
hibitor of catabolic enzymes, can increase PG accumu-
lation in pellet cultures of human IVD cells.71 This study
introduced a new approach to modulate a course of disc
degeneration by inhibiting the catabolic pathway rather
than stimulating the anabolic pathway. The combined
use of anabolic factors with an inhibitor of a catabolic
enzyme is one way to induce regeneration of IVD disc
undergoing degenerative changes.

Yoon et al. reported that overexpression of LIM min-
eralization protein 1 (LMP-1),72 an intercellular protein,
using an adenoviral vector (AdLMP-1) in rat IVD cells
resulted in an increase of BMP-2 and BMP-7 gene ex-
pression and PG synthesis.73 BMP-2 and BMP-7 protein
levels increased by two- to threefold. The mRNA levels
of BMP-2 and BMP-7 were also upregulated. In addi-
tion, the in vivo injection of AdLMP-1 resulted in a
significant elevation of mRNA levels of LMP-1, BMP-2,
and BMP-7. Based on these findings, the authors sug-
gested that LMP-1 upregulates the gene expression of
BMP-2 and BMP-7 and that the increased level of BMP
production resulted in an increased PG synthesis.

Based on these studies, gene therapy has the poten-
tial to upregulate matrix synthesis and downregulate
catabolic processes by introducing cDNAs that encode
specific proteins. With any gene therapy, safety issues
should be resolved, as well as transfection efficiency and
duration of action. In addition, further research using
degenerated human IVD cells may be necessary before
taking this approach to a clinical setting.

Summary of the biological factors

In the treatment of degenerative disc diseases, no clini-
cal option currently exists between conservative thera-

Fig. 2. Changes in intervertebral disc height Index (DHI)
after anular fibrosus (AF) puncture and osteogenic protein 1
(OP-1) injection. The percent DHI (%DHI = postoperative
DHI/preoperative DHI × 100) was measured at each time
point to quantify changes in disc height. By 4 weeks after the
OP-1 injection, the mean %DHI of injected discs in the OP-1
group was significantly higher than that in the lactose control
group [P < 0.001, repeated analysis of variance (ANOVA)].
This significant difference in mean %DHI was maintained
during the follow-up period (P < 0.001). (From ref. 62, with
permission)62
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pies and more aggressive therapies, such as fusion or
disc replacement. The prevention of disc degeneration
and the stimulation of the biological disc repair process
by the injection of growth factors, cytokine inhibitors,
enzyme inhibitors, and cells transfected with therapeu-
tic genes will create a new category of therapy for
degenerative disc diseases. In addition, two or more
different approaches might be applied, resulting in the
prevention of disc degeneration and/or the active stimu-
lation of the repair process of the degenerated disc.
These therapies could produce an amelioration of pain
and restructuring of the degenerated disc.

Biomechanical factors

Kinematic and load-bearing characteristics are key fac-
tors describing the biomechanical behavior of the spine.
Spinal instability, which has been thought to be one of
the most important biomechanical factors in the degen-
erative IVD, is poorly defined and understood.74–82 It has
also been suggested that degenerative changes of the
IVD precede facet joint degeneration through an al-
tered load-bearing in the spine. The following sections
describe biomechanical changes in segmental move-
ment and load-bearing through the facet joint in the
degenerated lumbar spine.

Relationship between disc degeneration and segmental
instability of the lumbar spine

The basic concept of spinal instability is that excessive
motion beyond normal constraints causes either com-
pression or stretching of the neural elements or causes
abnormal deformations of ligaments, joint capsules, an-
nular fibers, or endplates, which are known to have a
significant number of nociceptors.80 Even though sev-
eral studies have indicated that excessive motion on
flexion–extension radiographs is associated with degen-
erative disc disease,83 other studies cite decreased mo-
tion in patients with degenerative changes.84,85 Lumbar
segmental instability may be associated with a spectrum
of clinical manifestations of degenerative changes in the
IVD.77,86,87 Intervertebral disc degeneration has been
studied using magnetic resonance (MR) imaging, and
grades of degeneration have been reported.87–89 There
also have been numerous biomechanical studies on
disc degeneration and instability.85,90–101 The relationship
between the types (or grades) of disc degeneration
and kinematic characteristics of the motion segment
has been studied using cadaveric spinal motion seg-
ments.102–107 Despite variations in results, likely because
of different loading conditions and methods of grading
degenerative disc changes, the overall results of these
studies indicate that the biomechanical characteristics

of the motion segment can become significantly altered
when degenerative changes develop in the IVD. In vitro
biomechanical studies by Fujiwara et al. determined the
changes in the rotational mobility of the lumbar motion
segment in relation to the degenerative changes in the
disc and facet joints.102 The authors found that segmen-
tal motion increased with increasing severity of disc
degeneration to grade 4 but decreased when the disc
degeneration advanced up to grade 5. Such segmental
motion changes were much greater in axial rotation
when compared to those in lateral bending, flexion, and
extension, demonstrating the importance of torsional
instability in diagnosing spinal instability. The results of
these studies are important for understanding the kin-
ematic changes in relation to the types or grades of disc
degeneration. However, these results were obtained in
vitro from cadaveric specimens. Therefore, we devel-
oped a noninvasive in vivo segmental lumbar motion
measurement system and clarified the relationship be-
tween the lumbar segmental motion and disc degenera-
tion, as indicated in the following sections.

In vivo measurement of lumbar segmental movement

Many methods have been used in an attempt to quantify
segmental instability in patients, but the most typical
method has been flexion–extension lateral radiographs.
The use of radiographs has been shown to be limited by
poor accuracy, and radiographic studies are impractical
to measure out-of-plane rotation.108,109 In addition, the
range of motion measured in many radiographic studies
is affected by the variability in voluntary efforts that the
subject applies at the time of examination and can also
be limited because of pain. Other two-dimensional (2D)
methods for measuring axial rotation, as opposed to
flexion/extension, have involved MR imaging scanning
of subjects in various rotated positions.109,110 Although
these studies were noninvasive and controlled for vol-
untary motions, they could only determine changes in
vertebral motion around one axis. It has been suggested
that coupled motions could play an important role in
determining spinal instability. To measure these cou-
pled motions, studies have been conducted to measure
3D motions in vivo. More invasive techniques involve
inserting wires into the spinous process of subjects to
determine 3D motion.94 Although this method has
proven more accurate than radiographs, its invasive
nature limits its widespread clinical use. Other research-
ers have used biplanar radiography, in which subjects
are filmed from two directions simultaneously and 3D
motions are determined from anatomical landmarks in
corresponding images.111,112 There has been some con-
cern about the accuracy of determining anatomical
landmarks for biplanar radiography, as well as a lack of
equipment for this method in typical clinical settings. To
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combat some of these limitations to 3D motion meas-
urement, Lim et al. developed a 3D imaging technique
using parallel computed tomography (CT) scans to de-
termine rotations and translations in individual cadav-
eric cervical vertebrae.108 The authors illustrated that
accurate measurements (±1mm and ±1°) can be made
using CT in vitro. We have expanded on this technique
to measure vertebral segmental rotations and transla-
tions, the motion between adjacent vertebral bodies, in
human lumbar spines in vivo.

Relationship between instability and disc degeneration

Most patients with segmental instability have disc de-
generation, but the relationship between instability and
degeneration has not been clarified. Disc degeneration
has been extensively studied, particularly with MR
imaging.113–116 Yu et al.116 described the MR imaging
appearance of degenerating discs as a change in signal
intensity associated with a radial tear of the AF.
Schiebler et al.115 showed that before the obvious MR
imaging signal changes, such changes as infolding of the
central fibers of the outer anulus and the central dot
may be early signs of disc degeneration. Recently, using
MR imaging, Hedman and Fernie113 reported that cer-
tain patterns such as a dark nucleus with annular tears
were highly associated with positive symptoms on dis-
cography. These studies indicate the ability of MR
imaging to identify anatomical changes in the IVD and
possibly identify dynamic changes of the disc with dif-
ferent loadings, and even, potentially, to identify symp-
tomatic discs. Takekuchi et al.117 presented a study using
MR images in which T1 relaxation time was decreased in
degenerative discs and the energy dissipated to axial
loading was linearly correlated with T1 relaxation time.
The authors attempted to correlate the intrinsic
biomechanical properties of the disc with MR imaging
findings, but no information could be derived about the
segmental motion characteristics from this study.

Results of the in vitro studies of segmental motion
characteristics and disc degeneration done by Fujiwara
et al. demonstrated that torsional motion was most sig-
nificantly affected by the degenerative changes in disc
and facet joints. In addition, some investigators advo-
cate the importance of torsional loads and stability on
the injuries and degeneration of the motion seg-
ments.118,119 However, torsional instability in relation to
the degenerative changes in the disc had not been well
investigated in vivo, mostly because of difficulties in
measurements.

To resolve the accuracy problems in spinal motion
measurements and to establish a meaningful relation-
ship between segmental instability and degenerative
changes in the disc and facet joints, we have established
a method to measure 3D vertebral motion noninva-

sively using CT images of the vertebrae.108 We have
developed an in vivo measurement system of lumbar
segmental motion with an accuracy of less than 0.2 mm
in translation and 0.2° in rotation (Fig. 3). We also de-
veloped a fixture to apply axial rotation to the lumbar
spine in a controlled manner with minimal voluntary
effort of the subjects (Fig. 4). Using the new techniques,
we found that a relationship exists between the severity
of IVD degeneration and increases in torsional and
flexion–extension movements in vivo, which was previ-
ously demonstrated only in cadaveric studies.120

Facet joint degeneration associated with
disc degeneration

Facet load transmission
Facet joints are described as motion limiters having a
role in injury prevention.101 The facet joints also contrib-
ute to load transmission in the motion segment. Many
studies have evaluated the loads carried by the facets
during physiological motion using indirect methodolo-
gies.121–128 These methods have used proportions of
loads in cadaver studies or predicted loads in math-
ematical models. Yang and King measured facet loads
indirectly by calculating the difference between disc
load and total applied loads in cadaver lumbar motion
segments.129 The authors determined that facet loads in
two body motion segments increased with extension
posture (30% of applied load) from neutral (25% of
applied load) or flexion postures (22% of applied load).
In addition, the authors determined that facet loads
increased with the presence of facet osteoarthritis in
two specimens (49% of applied load) in extension pos-
tures. Similarly, Adams and Hutton130 determined that
the facets supported 16% of the applied load through
the lower facet joints in a “standing” posture by com-
paring load-deformation curves of specimens with and
without facets. In another paper, Adams and Hutton
determined that the facets are major contributors to the
resistance to torsion because of bony interactions.131

Using strain gauges applied to the exterior facet surface,
Schendel et al.132 determined locations of peak forces on
the facets for various motions. They calculated that
flexion resulted in no measurable facet forces whereas
extension produced the greatest forces. The facet load
versus applied extension moment was biphasic in that
measured facet stiffness changed slope after 4.5–6.0 Nm
of applied load. This pattern was not seen with torsional
or lateral bending moments. The authors explained that
this change in stiffness in extension loading could be
caused by impingement of one facet on the other. Peak
forces were located on lateral and inferior margins of
the superior facet.

Other researchers have used more direct methods for
measuring facet loads. In an early study, Lorenz et al.121
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Fig. 3. Lumbar segmental motion in vivo measurement sys-
tem. The vertebral body in the neutral position (a) was virtu-
ally rotated and translated toward the real rotated position

(b). The roughly merged position (c) was further rotated and
translated with 0.1° and 0.1-mm increments, respectively, until
the highest value of volume merge was calculated (d)

Fig. 4. A torsion control apparatus (TCRA) to apply axial rotation to the lumbar spine. A TCRA with a subject shown in the
neutral position (left) and with a right rotation of 50° (right)
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used pressure-sensitive film to determine the propor-
tion of load carried by the facets during axial compres-
sion and extension loading. The authors calculated that
a greater proportion of load was carried in the upper
(L2–L3) versus the lower (L4–L5) facets for similarly
applied external loads. Furthermore, a decrease in total
percent loads supported by the facets at higher axial
compressive loads was observed with greater peak pres-
sures at the facets, illustrating the phenomenon of
compressive preload affecting measured facet loads.
More recently, Hedman and Fernie measured facet
loads with an inserted load cell in combination with Fuji
film for determination of facet load area.133 The authors
measured relative mean facet loads of 50 N for exten-
sion postures compared to 5.6 N in flexed postures at
L4–L5 in lumbar spinal segments. The authors noted
that the combined transducers placed in the facet joint
resulted in joint distraction and that only 56% of
the facet loads passed through the sensitive area of
the load cell, creating a “relative” versus total load
measurement.122

Mathematical models have also confirmed that the
loss of disc height anteriorly results in a dorsal load
transfer to the posterior elements.95,104,134 Shirazi-Adl135

predicted that vertebral body motions under torsion
were decreased with larger facet gap distances, indicat-
ing the presence of a healthy facet. This model pre-
dicted a linear increase in facet contact force with
increasing axial torque.

Facet joint degeneration
Facet joints are synovial articulations and undergo de-
generative changes similar to those of other weight-
bearing joints.96,104,136–138 In healthy facets, the articular
surfaces allow smooth motion between vertebrae.
These surfaces consist of a thin layer of hyaline car-
tilage with synovial fluid allowing for a low-friction
articulation. Alterations in contact pressures as a result
of disc degeneration may create areas of focally in-
creased contact, hastening facet cartilage catabo-
lism.104,105,121,124,125,139–143 Clinically, it has been observed
that disc degeneration precedes facet degeneration.
Butler et al. demonstrated the occurrence of facet de-
generation following IVD degeneration using MR
imaging analysis.144

Relationship between disc degeneration and
facet degeneration
Biomechanical alterations in motion resulting from
IVD degeneration and their ensuing effects on facet
kinematics have been largely ignored. The facet joints
are one of the primary structures for stability in the
spinal motion segment.90,99,100,121,123–125,130,136,140,145–156 Load-
displacement relationships in the intervertebral motion
segments are a complex interaction involving at least six

degrees of freedom and structural and material
nonlinearity.126,157 As such, alteration in the load-bearing
role of the facet joint most likely occurs with IVD de-
generation because of the alterations in the structural
properties of the disc.97,135,141,158

However, it was not until the work of Fujiwara
et al. that the association between segmental motion
characteristics of the IVD and the facet joints was
analyzed.102,159–161 The most pronounced association was
found between segmental motion and the severity of
subchondral sclerosis. The authors believed that the se-
verity of subchondral sclerosis reflected the magnitude
of applied stresses on the involved facet joints. How-
ever, a mechanistic relationship between disc degenera-
tion and facet joint degeneration still remains unclear.
Further studies are needed to understand facet joint
degeneration associated with disc degeneration.

Summary of the biomechanical factors

The newly developed noninvasive 3D analytical method
to determine segmental motion of the lumbar spine
permitted the demonstration of a relationship that ex-
ists between the severity of IVD degeneration and in-
creases in segmental lumbar motion in vivo. Abnormal
motions could accelerate the facet degeneration proc-
esses and may lead to facet osteoarthritis. A better
understanding of the effects of IVD degeneration on
alternations in facet kinematics and load-bearing would
provide a clear understanding of the pathogenesis of the
facet degeneration derivative of IVD degeneration. A
clarification of the relationship between structure and
the mechanical properties of the degeneration of the
disc and facet joints would also provide a strategy for
treatment modality selection at different IVD degen-
eration levels.
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