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Abstract

Diverse bacterial species produce pore-forming toxins (PFT) that can puncture eukaryotic cell membranes. Host cells
respond to sublytic concentrations of PFT through conserved intracellular signaling pathways, including activation of
mitogen-activated protein kinases (MAPK), which are critical to cell survival. Here we demonstrate that in respiratory
epithelial cells p38 and JNK MAPK were phosphorylated within 30 min of exposure to pneumolysin, the PFT from
Streptococcus pneumoniae. This activation was tightly regulated, and dephosphorylation of both MAPK occurred within
60 min following exposure. Pretreatment of epithelial cells with inhibitors of cellular phosphatases, including sodium
orthovanadate, calyculin A, and okadaic acid, prolonged and intensified MAPK activation. Specific inhibition of MAPK
phosphatase-1 did not affect the kinetics of MAPK activation in PFT-exposed epithelial cells, but siRNA-mediated
knockdown of serine/threonine phosphatases PP1 and PP2A were potent inhibitors of MAPK dephosphorylation. These
results indicate an important role for PP1 and PP2A in termination of epithelial responses to PFT and only a minor
contribution of dual-specificity phosphatases, such as MAPK phosphatase-1, which are the major regulators of MAPK signals
in other cell types. Epithelial regulation of MAPK signaling in response to membrane disruption involves distinct pathways
and may require different strategies for therapeutic interventions.
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Introduction

Epithelial cells lining mucosal sites are in constant contact with

microbial products. These cells are normally immunologically

quiescent but have the capacity to respond rapidly to microbial

threats by activating innate immune signaling. Some bacterial

species produce protein toxins that may disrupt eukaryotic

membrane integrity. These pore-forming toxins (PFT) are

essential to virulence for many pathogens, and their prompt

detection may be of benefit to the host. PFT are typically released

as soluble monomers and bind to eukaryotic cell membranes,

where they homo-oligomerize to form ring-shaped structures

followed by functional pores [1]. In sufficient concentrations, PFT

may lead to host cell cytolysis. We have previously demonstrated

that epithelial cells detect the osmotic stress associated with

sublytic concentrations of PFT and initiate immune responses

through phosphorylation of p38 mitogen-activated protein kinase

(MAPK) [2,3]. MAPK signaling is a conserved response to a

variety of cell stresses and is essential for survival of toxin-mediated

membrane disruption [4,5]. While PFT-induced osmotic stress has

been linked to activation of MAPK signaling, the mechanisms

involved in termination of this response are less clear. Proper

regulation of MAPK activation is important in order to prevent

excessive inflammatory responses that may lead to damage of host

tissues.

The archetypal deactivator of MAPKs is MAP kinase

phosphatase 1 (MKP1, also known as dual specificity phospha-

tase (DUSP)-1) [6]. Knockout of the mkp1 gene is associated

with prolonged MAPK activation and an increased likelihood

of endotoxic shock after bacterial challenge [7,8,9,10].

Upregulation of MKP1 expression is thought to be a major

regulator of MAPK signaling and a crucial component of the

termination of proinflammatory signaling. Here we show a

novel, MKP1-independent mechanism for the regulation of the

MAPK response to bacterial PFT. Using an important

respiratory pathogen, Streptococcus pneumoniae, and its cognate

PFT, pneumolysin (Ply), our studies demonstrate that epithelial

termination of PFT-induced MAPK signals involves protein

phosphatases 1 and 2A (PP1 and PP2A), but not MKP1. These

findings indicate that epithelial cells may utilize signaling

pathways for termination of immune responses that are distinct

from those used in other cell types, especially professional

immune cells, with implications for understanding homeostasis

at mucosal surfaces.
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Results

Pore Formation by S. pneumoniae Induces a Tightly
Regulated MAPK Response in Respiratory Epithelial Cells

We have previously shown that epithelial cells detect the

formation of membrane pores by bacterial PFTs, including Ply

from S. pneumoniae, via an intracellular signaling pathway involving

the phosphorylation of MAP kinases [3]. To investigate the

regulatory timeline of this detection mechanism, A549 respiratory

epithelial cells were treated with S. pneumoniae D39 or its isogenic

Ply-deficient mutant D39ply for up to 60 min and the time-

dependent phosphorylation of MAP kinases evaluated by

immunoblot analysis. Treatment of A549 cells with D39, but not

with an equivalent number of D39ply, led to the phosphorylation

of p38 and JNK kinases (Fig. 1A). Additionally, both kinases

underwent dephosphorylation within 1 hour after activation,

suggesting that this signaling pathway is subject to timely negative

regulation. To determine whether regulation of the MAPK

Figure 1. Subcytolytic pore-formation by S. pneumoniae leads to temporary activation of epithelial MAP kinases. (A) Confluent
monolayers of A549 cells were stimulated for the indicated times with 46104 cfu/ml sonicated S. pneumoniae D39 or its isogenic Ply-deficient
mutant, D39ply. Cells were subsequently lysed, and total and phosphorylated MAPK detected by western blot. Stimulation with D39, but not D39ply,
leads to temporary phosphorylation of p38 and JNK MAPKs. (B) Stimulation of A549 and D562 respiratory epithelial cells for the indicated times with
200 ng/ml of purified Ply toxin but not its toxoid, PdB, induces MAPK activation. (C) A549 Cell lysis was measured by LDH assay of cell supernatants
with triplicate samples. (D) Dose-dependent MAPK phosphorylation in A549 cells treated with indicated concentrations of Ply for 30 min.
doi:10.1371/journal.pone.0008076.g001

Regulation of PFT-Induced MAPK
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response is due to the effect of pore-formation, we performed a

similar experiment using purified Ply and the Ply toxoid, PdB,

which inserts and oligomerizes in membranes but does not form

functional pores [11]. Treatment of A549 and D562 respiratory

epithelial cells with purified Ply, but not the PdB toxoid, led to

similar p38 and JNK MAPK activation timelines (Fig. 1B),

indicating that the observed responses are not specific to a single

cell line. Treatment with D39, D39ply, Ply, and PdB all induced

activation of ERK1/2 kinases (Fig. 1A–B), but this property may

not be due to pore formation, as there was a similar response to the

Ply-deficient mutant and the PdB toxoid. The ng/ml concentra-

tions of Ply toxin used in this report did not affect cell viability as

determined by measurement of cellular LDH release (Fig. 1C).

Increasing concentrations of toxin led to a dose-dependent

increase in MAPK phosphorylation (Fig. 1D).

Termination of the Epithelial MAPK Response to Pore
Formation Is Mediated by Phosphatase Activity

MAPK phosphorylation is a reversible process that is controlled

tightly by the activity of protein phosphatases [12]. To explore a

functional role for phosphatases in the epithelial MAPK response

to Ply, we used sodium orthovanadate (NaVO4), a competitive

inhibitor of protein phosphatases. Compared with control cells,

those pretreated with NaVO4 exhibited more intense and longer

lasting MAPK phosphorylation after Ply stimulus (Fig. 2A),

indicating that phosphatase activity mediates negative regulation

of the Ply induced MAPK response. The effect of sodium

orthovanadate appeared to involve upstream kinases SEK1 and

MKK3/6 as well, indicating that the targeted phosphatases may

act at multiple levels of this signaling pathway.

Phosphatase Inhibition Enhances Epithelial Cytokine
Responses

Because of the relationship between MAPK activation and

stabilization of cytokine mRNAs, we investigated whether

phosphatase inhibition would alter toxin-induced epithelial IL-8

production. Treatment of cells with sodium orthovanadate primed

epithelial responses to pneumolysin, leading to a significant

increase in IL-8 production as measured by ELISA (Fig. 2B).

MKP1 Does Not Regulate the Epithelial MAPK Response
to Pore Formation

Proven to directly dephosphorylate p38 and JNK kinases in

numerous cellular signaling mechanisms [6], MKP1 was investi-

gated first in order to identify a negative regulator of the MAPK

response to pore-formation. Treatment of A549s with Ply induced

expression of MKP1 that corresponded temporally with deactiva-

tion of p38 and JNK. siRNA-mediated knockdown of cellular

MKP1 expression did not affect the magnitude or kinetics of

MAPK activation (Fig. 3).

Pharmacological Inhibition of Serine/Threonine
Phosphatases Enhances the Ply Induced MAPK Response

Several lines of evidence suggest that serine/threonine phos-

phatases, including PP1 and PP2A, deactivate MAPKs during

cellular stress responses [13,14,15,16,17,18]. To investigate

whether these phosphatases serve a regulatory role in the MAPK

response to pore formation, we used pharmacological inhibitors,

calyculin A and okadaic acid. A549 cells pretreated with either

calyculin A or okadaic acid exhibited greater Ply-induced MAPK

phosphorylation than untreated cells (Fig. 4). Both inhibitors

prolonged and enhanced p38 and JNK phosphorylation by Ply,

but calyculin A appeared to exhibit a greater effect on p38, while

okadaic acid had a greater effect on JNK. Taken together, these

data suggest that serine/threonine phosphatases may serve

important, not entirely redundant functions in the MAPK

response to Ply.

PP1 and PP2A Act as Negative Regulators of Ply iInduced
MAPK Activation

To ascertain whether PP1 could regulate MAPK activation by

Ply, siRNA targeting PP1 was transfected into A549 cells and

MAPK phosphorylation assayed. PP1 expression was reduced in

cells treated with PP1 siRNA, and Ply-induced phosphorylation of

p38 and JNK was concomitantly increased and prolonged

(Fig. 5A), though the effect appeared to be more pronounced on

JNK. Knockdown of PP2A was achieved using plasmid-mediated

Figure 2. Inactivation of the epithelial innate immune response
to pore-formation is mediated by phosphatase activity. (A)
Confluent monolayers of A549 cells were stimulated for the indicated
times with 200 ng/ml of purified Ply after pretreatment with either
100 mM sodium orthovanadate (lanes 6, 7) or vehicle control (lanes 4, 5)
for 30 min. As corresponding negative controls, cells were left
untreated (lane 1) or treated with sodium orthovanadate alone for 60
and 90 min (lanes 2 and 3, respectively). Sodium orthovanadate leads to
enhanced Ply-induced phosphorylation of p38, JNK, and their
respective upstream kinases, MKK3/6 and SEK1. (B) Pretreatment of
A549s with 100 mM sodium orthovanadate (30 min) leads to signifi-
cantly higher production of Ply-induced IL-8 than vehicle control (* =
#0.05, *** = #0.001 by ANOVA with Tukey post-test).
doi:10.1371/journal.pone.0008076.g002
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shRNA specifically targeting the different isoforms of subunit A

[19], an essential component of the heterotrimer phosphatase

[20,21]. Reduced expression of PP2A led to prolonged p38 but not

JNK phosphorylation after treatment with Ply (Fig. 5B). In both

cases, RNAi-mediated knockdown of the cellular phosphatases was

incomplete, but effects on MAPK activation states were observed.

Collectively, these data indicate an involvement of serine/

threonine phosphatases PP1 and PP2A in negative regulation of

the epithelial MAPK response to pore-formation.

Discussion

Epithelial cells lining mucosal surfaces may detect the

composition and density of the colonizing microbial flora and

subsequently initiate local innate immune responses. The

professional immune cells that are recruited may then reduce

the population size of potentially threatening microbes. However,

if the magnitude or duration of inflammation is inappropriately

large, the outcome may be detrimental to the host. Excessive

inflammation can damage local host tissues and render them

susceptible to chronic infection, as is the case in inflammatory

bowel disease and Crohn’s disease. Timely negative regulation of

innate immune responses thus serves a critical function in host

Figure 3. Regulation of the MAPK response to pore-formation
is MKP1 independent. (A) A549 cells were transfected with 2.5 mg of
MKP1 or scrambled siRNA per 16106 cells and stimulated 24 hrs post-
transfection with 200 ng/ml of purified Ply for the indicated times.
Transfection with MKP1 siRNA inhibited MKP1 expression but did not
have an effect on Ply-induced MAPK phosphorylation.
doi:10.1371/journal.pone.0008076.g003

Figure 4. Inhibition of serine/threonine phosphatases leads to
increased Ply-induced epithelial MAPK phosphorylation. Con-
fluent monolayers of A549 cells were stimulated for the indicated times
with 100 ng/ml of purified Ply after pretreatment with either 5 nM
calyculin A for 30 mins (lanes 8, 9), 250 nM okadaic acid for 60 mins
(lanes 10, 11), or vehicle control (lanes 6, 7) for 30 mins. As
corresponding negative controls, cells were left untreated (lane 1) or
treated with calyculin A alone for 30 and 60 mins (lanes 2 and 3,
respectively) or okadaic acid alone for 60 and 90 mins (lanes 4 and 5,
respectively). In both cases, pretreatment with serine/threonine
phosphatase inhibitors leads to prolonged and enhanced p38 and
JNK phosphorylation in response to Ply.
doi:10.1371/journal.pone.0008076.g004

Figure 5. PP1 and PP2A mediate inactivation of the epithelial
MAPK response to pore-formation. (A)A549 cells were transfected
with 2 mg PP1 or scrambled siRNA per 16106 cells and stimulated
54 hrs post-transfection with 100 ng/ml of purified Ply. Transfection
with PP1 siRNA leads to reduced PP1 expression and a corresponding
increase in Ply-induced p38 and JNK phosphorylation. (B) A549 cells
were transfected with 6 mg PP2Aa/b or control shRNA per 16106 cells
and stimulated 60 hrs post-transfection with 100 ng/ml of purified Ply.
Transfection with PP2Aa/b shRNA leads to reduced PP2A expression
and a moderate increase in p38 phosphorylation.
doi:10.1371/journal.pone.0008076.g005
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homeostasis and can influence the outcome of syndromes such as

septic shock [8,9].

When epithelial cells are exposed to subcytolytic concentrations

of bacterial PFT, a variety of host signaling pathways become

engaged. In some cases, receptor-based recognition of specific

toxin structures appears to be important in the initiation of host

responses [22]. However, conserved cellular activities in response

to membrane disruption (termed ‘‘cellular non-immune defenses’’

by Aroian and van der Goot [23]) likely constitute the initial

responses to PFT. Sensation of sublethal osmotic stress induced by

PFT leads to epithelial MAPK phosphorylation. Once activated,

these MAPKs continue a signaling cascade leading to the

production of pro-inflammatory cytokines [3]. Sublethal concen-

trations of PFT modulate a variety of other host cell signaling

pathways. Wiles et al. showed potent inhibition of host Akt and

protein kinase B signaling in response to HlyA, a PFT from E. coli,

as well as unrelated PFT [24]. This mechanism, which impacts

host cell survival, was dependent on the activation of phosphatases

in target cells. Our observations in these studies are in agreement

with their findings. The ability to briskly activate MAPK signaling

in response to bacterial PFT is a critical determinant of target cell

survival [4], and downstream signaling, including activation of the

unfolded protein response, has been shown to mediate such

survival [5]. Immunoglobulins targeting bacterial cytolysins may

alter cellular survival as well [25]. Other, non-MAPK signaling

including lipid metabolic pathways, caspase activation, and

membrane repair play major roles in the overall host cell response

to bacterial PFT [26,27,28].

While it has become increasingly understood that MAPK

signaling is an integral part of cellular non-immune defenses to

bacterial PFT, the mechanisms involved in temporal regulation of

these pathways are less clear. Regulatory pathways may be

complex and cell-type specific [29]. In other systems, dual

specificity phosphatases including MKP1 are critical for negative

feedback control of MAPKs [12]. We found that MKP1

expression was induced in epithelial cells treated with Ply (Fig. 3),

but our results indicated that it does not play a major role in

termination of MAPK signals in these cells. In contrast, our data

are most consistent with regulation of PFT-induced MAPK signals

by PP1 and PP2A serine/threonine phosphatases.

Both PP1 and PP2A have been shown to regulate MAPK

signaling under specific circumstances [13,14,15,16,17,18,30].

However, their roles are generally thought to be less important

than those of the dual-specificity phosphatases such as MKP1. We

have demonstrated overlapping but not completely redundant

roles for these phosphatases in termination of MAPK signaling

following toxin-induced membrane disruption. Given the impor-

tant role of MAPK signaling in mechanical lung injury, such

regulation may have implications for lung homeostasis in non-

infectious disease states as well [31]. These findings are important

for further elucidation of cellular non-immune defense pathways as

well as for charting and, ultimately, modulating host defense

pathways during infections such as pneumococcal pneumonia, in

which Ply is important and the balance between inflammatory and

anti-inflammatory signaling may be a critical determinant of

outcome [32].

Methods

Bacterial Strains and Products
S. pneumoniae strains D39 [33] and its Ply-deficient derivative

D39ply [34], kindly provided by D. Briles (University of Alabama),

were grown as described [35,36]. Recombinant Ply was produced

as described [2]. PdB (Ply-W433F) was made by site directed

mutagenesis of the pET29a/Ply plasmid using a Quik-change II

XL kit (Stratagene) and primers PLYW433F-F (59-TAGA-

GAGTGTACCGGGCTTGCCTTTGAATGGTGGCGTACG-

GTTTAT-39) and PLYW433F-R (59-ATAAACCGTACGC-

CACCATTCAAAGGCAAGCCCGGTACACTCTCTA-39).

Epithelial Cell Lines and Culture Conditions
A549 (CCL-185) and D562 (CCL-138) cells were obtained from

ATCC and grown in modified Eagle’s medium (MEM) (Invitro-

gen) supplemented with 1 mM sodium pyruvate, 10% fetal

bovine serum (HyClone), and 10 mg/ml of ciprofloxacin. Cells

were weaned from serum and antibiotics for 24 hrs prior to

experiments.

Phosphatase Inhibitors
General phosphatase activity inhibitor, sodium orthovanadate,

was purchased from Sigma-Aldrich (St. Louis, MO). Serine/

threonine phosphatase inhibitors, calyculin A and okadaic acid,

were purchased from Cell Signaling (Danvers, MA) and

Calbiochem (San Diego, CA), respectively.

Plasmids and Transfections
Transfections. To maximize transfection efficiencies, A549

cells were transfected using the Amaxa Nucleofector II system

(Lonza, Germany) as described by their cell type-specific protocols.

siRNA and shRNA
MKP1 siRNA was from Dharmacon (Lafayette, CO). PP1 and

scrambled siRNAs were from Santa Cruz Biotechnology (Santa

Cruz, CA), and PP2Aa/b and GFP control shRNA were

constructed by William Hahn and obtained from Addgene

(Cambridge, MA) (Addgene plasmids 10676, 15249, and 15250)

[19].

Stimulation of Epithelial Cells, LDH Assay, Western
Blotting, and ELISA

A549 and D562 respiratory epithelial cells were grown to

confluence in 12-well plates and were weaned from serum and

antibiotics prior to treatment. Sonicated bacteria were prepared as

previously described [3] and 46104 colony-forming unit equiva-

lents/ml of S. pneumoniae were added to the epithelial monolayer.

Where indicated, phosphatase inhibitor pretreatments were

prepared by dilution with MEM and remained present during

exposure to Ply. All pretreatments, bacteria and bacterial toxins

were incubated with epithelial cells at 37uC and 5% CO2 for the

indicated durations. To confirm given treatments as subcytolytic,

supernatants were collected and lactate dehydrogenase release

assessed using a commercial kit (Cytotoxicity Detection Kit Plus;

Roche Applied Science). After washing with sterile PBS, cells were

lysed on ice in RIPA lysis buffer with protease and phosphatase

inhibitors. Aliquots with equal amounts of protein were loaded

and separated on a 4–12% bis-tris gel (NuPAGE; Invitrogen).

Proteins were transferred to polyvinylidene difluoride membranes

(Immobilon P; Millipore) and probed using specific phosphatase

and phospho-MAPK antibodies as indicated. To control for

loading amounts, blots were subsequently stripped and reprobed

to detect actin or total MAPK. Western experiments were

performed a minimum of three times, and a representative

experiment is presented. Antibodies against phospho-p38, total

p38, phospho-JNK, total JNK, phospho-ERK, total ERK,

phospho-SEK1, and phospho-MKK3/6, and the catatytic subunit

of PP2A were purchased from Cell Signaling (Danvers, MA).

Antibodies against MKP1, PP1 and actin were from Santa Cruz

Regulation of PFT-Induced MAPK
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Biotechnologies (Santa Cruz, CA). For experiments involving Ply-

induced interleukin (IL)-8 production, cells were treated with

200 ng/ml Ply for 1 hr, the Ply-containing medium was removed,

the cells were washed three times and then incubated in fresh

medium overnight. The concentration of IL-8 in cell supernatants

was determined by ELISA (BD OptEIA) according to the

manufacturer’s instructions.
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