
Copyright � 2009 by the Genetics Society of America
DOI: 10.1534/genetics.108.099812

Testing for Spatially Divergent Selection: Comparing QST to FST

Michael C. Whitlock1 and Frederic Guillaume

Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

Manuscript received December 15, 2008
Accepted for publication August 13, 2009

ABSTRACT

QST is a standardized measure of the genetic differentiation of a quantitative trait among populations.
The distribution of QST’s for neutral traits can be predicted from the FST for neutral marker loci. To test
for the neutral differentiation of a quantitative trait among populations, it is necessary to ask whether the
QST of that trait is in the tail of the probability distribution of neutral traits. This neutral distribution can
be estimated using the Lewontin–Krakauer distribution and the FST from a relatively small number of
marker loci. We develop a simulation method to test whether the QST of a given trait is consistent with the
null hypothesis of selective neutrality over space. The method is most powerful with small mean FST,
strong selection, and a large number (.10) of measured populations. The power and type I error rate of
the new method are far superior to the traditional method of comparing QST and FST.

IN 1993, Spitze (1993) and Prout and Barker (1993)
introduced QST, a quantitative genetic analog of

Wright’s FST. Just as FST gives a standardized measure of
the genetic differentiation among populations for a
genetic locus, QST measures the amount of genetic vari-
ance among populations relative to the total genetic
variance. In the years since, QST has been frequently
used to test for the effects of spatially divergent (or less
commonly, spatially uniform) selection (see reviews in
Lynch et al. 1999; Merilä and Crnokrak 2001; McKay

and Latta 2002; Howe et al. 2003; Leinonen et al. 2008;
Whitlock 2008). In principle, the average QST of a
neutral additive quantitative trait is expected to be equal
to the mean value of FST for neutral genetic loci. FST

can be readily measured on commonly available genetic
markers, and QST can be measured as well with an ap-
propriate breeding design in a common-garden setting.
As a result, QST promises to be an index of the effect of
selection on the quantitative trait. If QST is higher than
FST, then this is taken as evidence of spatially divergent
selection on the trait. If QST is much smaller than FST,
then this has been taken as evidence of spatially uniform
stabilizing selection, which makes the trait diverge less
than expected by chance.

The comparison with FST is essential to rule out ge-
netic drift as an alternative mechanism for phenotypic
divergence among populations. Because finite popula-
tions may diverge genetically in the absence of selection,
divergence must be greater than expected by drift alone

if we are to conclusively demonstrate that divergent
selection has played a role in genetic differentiation
among populations. Therefore it has become common
practice to use FST of putatively neutral markers as a
control for the effects of genetic drift and to compare
observed QST values for traits to these neutral FST values.

These comparisons follow two separate methods,
to address related but distinct questions. First, many
studies of quantitative genetic differentiation measure
the QST of many traits and the FST of many loci, followed
by a comparison of the mean QST to the mean FST. Such
a comparison may judge whether the conditions are
suitable in that species for local adaptation, that is,
whether selective differences between populations are
large enough relative to gene flow to allow adaptive
differentiation (Whitlock 2008). We do not consider
this sort of comparison in this article.

The other type of comparison asks whether the QST of
a single trait is greater than expected by drift, as mea-
sured by FST. This type of comparison is most common,
but it is statistically difficult. Unfortunately, as empha-
sized in a recent review by Whitlock (2008), there is
great variation in the expected FST among neutral loci
and among the QSTof different neutral traits (see Figure
1). The majority of this variation results from evolution-
ary differences between loci and not sampling error
in the observations. Rogers and Harpending (1983)
imply that the distribution of QST of a single neutral trait
should be approximately equivalent to that for FST of a
single neutral locus, and this has been confirmed by
simulation for traits determined by additive loci com-
pared to biallelic marker loci (Whitlock 2008). The
two distributions are similar, but there is great hetero-
geneity among traits or loci. As a result, to show that
selection is acting on a trait, it is necessary to show that
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the value of QST has a low probability of being observed
given the distribution of neutral QST.

Comparing QST to the distribution inferred from FST

is difficult for two reasons. First, typical data sets rarely
include enough loci to directly infer the distribution of
FST without extra inferential steps. In our approach, we
use the distribution of QST predicted from the mean FST

and the x2 distribution by Lewontin and Krakauer

(1973) to bridge this gap. Whitlock (2008) has shown
that this distribution is appropriate for nearly all real-
istic situations for traits determined by additive genetic
effects. Second, QST for a trait is rarely measured with
high precision, so the position of a given estimated QST

value in the distribution cannot be known without error.
To test the null hypothesis that the spatial distribution

of a particular trait is not affected by selection, we wish
to compare the observed Q̂ST of that trait (marked with
a hat to indicate it is an estimate) to the distribution
of QST expected for neutral traits. Unfortunately, calcu-
lating the distribution of QST for neutral traits is not
straightforward, because the estimate of QST for a par-
ticular trait is variable for several reasons. The estimate
of QST is subject to measurement error, caused by the
finite samples of families and individuals in the quan-
titative genetic experiment. These cause error in the
estimate of the additive genetic variance within popula-
tions (VA,within) and the genetic variance among pop-
ulations (VG,among), which translate into error of the
estimate of QST. In addition, there is another source of
variation in QST among neutral traits, caused by the
idiosyncrasies of the evolutionary process in each local
population in the study. The true value of QST for the set
of populations being studied can vary tremendously
around its expectation, even for neutral traits, because
by chance a finite set of populations may drift in a
similar direction (Whitlock 2008). As a result, meas-
urements of QST can vary because of both statistical and
evolutionary variation.

Fortunately, these two sources of variation are fairly
well understood individually. The sampling error for the
estimates of the variance components can be estimated
from standard approaches, and this variation can be
well approximated using information from the mean
squares of the analysis of the breeding experiment
(O’Hara and Merilä 2005). The variation in neutral
QST that results from heterogeneity of evolutionary his-
tory can be approximated by the Lewontin–Krakauer
distribution (Lewontin and Krakauer 1973), if in-
formation is available on the mean QST of neutral traits
(Whitlock 2008). This approximation does not de-
pend on the demographic details of the populations in
question (Whitlock 2008), but the effects of deviations
from assumptions of additive gene effect have not yet
been tested. The mean of the distribution of values of
QST for neutral traits is usually not known, but fortu-
nately the mean of the distribution of FST of neutral
loci is expected to be approximately equal to the mean
QST of neutral traits (Spitze 1993), and this does not
depend on demographic details (Whitlock 1999).
Therefore the mean FST measured from a series of
genetic markers thought to be selectively neutral can be
combined with the Lewontin–Krakauer distribution to
predict the distribution of true neutral QST across the
range of possible evolutionary trajectories.

Given that the mean value of Q̂ST of neutral traits
is expected to equal the mean FST of neutral markers
under certain assumptions (discussed later), we will use
Q̂ST � �FST as a test statistic and compare the observed
quantity to the zero value proposed by the null hypoth-
esis. We will use a traditional hypothesis testing approach,
which means that we need to specify the sampling dis-
tribution of Q̂ST � �FST under the assumption of neutral-
ity. Traditionally, the sampling distribution of Q̂ST is
inferred from the data on the trait itself, for example,
using bootstrapping to infer the sampling distribution.
This is appropriate when calculating a confidence interval

Figure 1.—The distribution of FST for neutral loci and QST for neutral quantitative traits. The histograms show the results of
simulations of a set of 10 local populations each of 100 individuals, connected by 5% migration following island model assump-
tions. The solid line shows the distribution predicted by the Lewontin–Krakauer distribution. The distribution of QST for neutral
traits is very similar to the distribution of FST for single neutral loci, as can be seen by their mutual good fit to the Lewontin–
Krakauer distribution (Figure modified from Whitlock 2008).
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for QST but is a biased measure of the sampling variance
of neutral QST. The variance of the sampling distribu-
tion of Q̂ST varies with its expected value; larger values of
true QST have more variable sampling distributions than
traits with smaller true QST. This association between
QST and its sampling error is quite strong, as shown in
Figure 2. As a result, if the sampling properties of
neutral Q̂ST are inferred from a trait with high QST, the
estimate of the variance of the null distribution will be
too high, and the hypothesis test comparing Q̂ST to FST

will be conservative. On the other hand, if a low QST is
used to estimate the variance of the null distribution,
the estimated error will be too small, and the test will
reject true null hypotheses too often.

We address this problem by using FST from putatively
neutral maker loci in combination with estimates of the
additive genetic variance within populations to predict
the sampling variance that would be expected for the
QST of a neutral trait. We show that the power and type I
error rate of this test are greatly superior to traditional
methods.

METHODS

Testing neutrality: To generate the null distribution
of Q̂ST � �FST, we use a parametric simulation approach.
To calculate a Q̂ST � �FST value from data, we need esti-
mates of three quantities: �FST, VA,within, and VG,among. To
calculate the null distribution, we simulate random
sampling for each of these quantities under the assump-
tion that the null hypothesis that QST equals �FST is true.
We calculate Q̂ST � �FST from the simulated values, and
after repeating this 1000 times, we generate the sam-
pling distribution of Q̂ST � �FST assuming the null
hypothesis.

�FST is calculated from marker loci; we use the Weir

and Cockerham (1984) method in our test calcula-
tions. To simulate the sampling error in estimates of �FST,
for each replicate simulation we randomly sample with
replacement from the marker loci until the number of
loci in the simulated data set equals the number of loci
in the real data set. Mean FST is calculated from these
sampled loci using the method of Weir and Cockerham

(1984), and the observed value of their u is used as the
simulated �FST value.

VA,within is calculated from a quantitative genetic
breeding design. There are several suitable experimen-
tal designs for such estimates. In this article we assume
that the additive genetic variance is estimated by a half-
sib design, but the approach could easily be modified
for other designs. VA,within can be estimated from four
times the variance among sires; and to estimate the
variance among sires we need the mean squares of sires
(MSsires) and the mean squares of dams (MSdams). To
simulate estimates of VA,within, we use an approach anal-
ogous to a parametric bootstrap (O’Hara and Merilä

2005). As tested by O’Hara and Merilä (2005),

d:f:siresMSsires=MSsires and d:f:damsMSdams=MSdams should
be x2 distributed, where d.f. represents the degrees of
freedom associated with a particular level and the over-
bar indicates the true value of the mean square.
Therefore by multiplying the estimated MS=d:f. times a
random number from a x2 distribution for each of sires
and dams we can simulate the sampling distribution
of these quantities and therefore of VA,within. This pro-
cedure is implemented exactly as the parametric boot-
strap in O’Hara and Merilä (2005), except to avoid
a strong source of bias we do not constrain variance
component estimates to be positive.

VG,among is calculated from the variance among popu-
lations in the mean value of the trait when the organisms
are grown in a common environment. The novel aspect
of our design comes from how the sampling of VG,among

is simulated. As mentioned in the introduction, the
sampling variance for VG,among is correlated with the
true value of VG,among, and therefore if the null hypoth-
esis is true but VG,among incorrectly appears high by
sampling error, the estimate of its sampling distribution
will also be estimated poorly. If we were only estimating
the value of QST itself, this would pose no real problems,
but because we are trying to compare QST to the neutral
expectation, it can be a real source of bias in the cal-
culations. Our solution is to simulate the sampling dis-
tribution of VG,among assuming that the null hypothesis
is true. We therefore calculate the value of VG,among that
would be expected given the observed �FST and VA,within.
Given that QST is defined as QST ¼ VG;among=ðVG;among 1

2VA;withinÞ and that for neutral traits and neutral loci the

Figure 2.—The width of the estimated sampling distribu-
tion of Q̂ST varies with mean QST. The solid line shows the sam-
pling distribution of QST when the true mean QST value is 0.05.
The dotted line shows the sampling distribution that would
be estimated for QST from a trait that by chance was at the first
percentile of this distribution, and the dashed line shows
the sampling distribution that would be inferred from a value
taken at the 99th percentile. If the QST of a trait differs from the
expectation by chance, then the width of the sampling distribu-
tion will also be estimated with substantial error. In particular,
the error variance of Q̂ST is overestimated with QST estimates
that are too high and underestimated for small QST values.
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average values of QST and FST are approximately equal,
we can find the expected value of VG,among under
neutrality to be

V̂G;among ffi
2 �FSTVA;within

1� �FST
:

To simulate the sampling distribution around this ex-
pectation, we again assumed that the distribution
of trait means among populations follows a normal
distribution and multiply V̂G;among=d:f :populations times a
random number drawn from a x2 distribution with
degrees of freedom equal to the number of populations
(numpops) minus one. This sampling procedure is the
same as assumed by the Lewontin–Krakauer distribu-
tion shown to work well to approximate the distribution
of QST under a variety of demographic circumstances
(Whitlock 2008). Simulating the sampling error in this
way is identical to the approach taken by O’Hara and
Merilä (2005) in their parametric bootstrapping,
except for using the expected value of VG,among calcu-
lated from FST instead of the observed VG,among.

For a given hypothesis test using a specific data set,
we generate 1000 simulated estimates of Q̂ST � �FST. For
each simulation, �FST, VA,within, and VG,among are ran-
domly drawn as specified above, and Q̂ST � �FST is
calculated from these simulated values. The distribution
of these 1000 simulated values is the null distribution of
the hypothesis test. Therefore by comparing the quan-
tile of the observed value of Q̂ST � �FST to the simulated
distribution, we may determine the P-value of the hy-
pothesis test of neutrality.

Supporting information, File S1 includes an R pro-
gram to implement this procedure.

Simulations: We tested the method using simulations
conducted with the population genetics simulation
software Nemo (guillaume and Rougemont 2006)
updated to include quantitative traits. Neutral marker
loci were simulated with 100 biallelic loci, with mutation
rates of 10�5 in either direction. One hundred loci
potentially affected the quantitative traits. Mutation
was based on an infinite allele model, where the allelic
effect of an allele was, if mutated, changed by a factor
randomly selected from a Gaussian distribution with
genomic mutational variance equal to 0.001. Mutation
rates for the quantitative trait loci were set at 10�5. Each
of 20 local populations had an effective population
size of 500 diploid individuals, and the migration rate
among populations varied from m¼ 0.05 to m¼ 0.001 to
produce different FST values, ranging from approxi-
mately FST¼ 0.01 to FST¼ 0.3. Measurements were taken
on the populations after 50,000 generations (or 25,000
generations for the neutral cases), allowing the popu-
lations to reach an approximate equilibrium before
sampling. The Q̂ST of 10,000 traits was simulated for the
neutral traits and 100 for each set of parameters with
selection.

In addition to the island model calculations that
make the bulk of the simulation tests, we also simulated
a one-dimensional, circular stepping-stone model with
60 local populations. Simulations with FST ¼ 0.04 were
performed, corresponding to a migration rate of 0.12.
Migration occurred only between adjacent (left and
right) populations in the stepping-stone model, and
at most, every third population was sampled for FST

and the QST calculations, as suggested by Beaumont

and Nichols (1996) and Whitlock (2008). For the
heterogeneous selection cases, the populations were
alternatively assigned to habitats in groups of five.

In some simulations, the quantitative trait was selec-
tively neutral, to allow tests of the type I error rates of the
method. In other simulations, the quantitative trait was
subjected to either uniform stabilizing selection (for
which all local populations had the same optimum with
Gaussian selection with VS ¼ 5) or heterogeneous
selection (for which the selective optimum for half of
the local populations was different from the optimum in
the other half of the populations.) The strength of
selection for the heterogeneous environment case was
calculated such that a perfectly adapted individual on
one environment would have a 5 or 50% reduction in
fitness in the other selective environment in the island
or stepping-stone model, respectively. The parameters
of the selection functions were VS ¼ 5, and the
difference between the habitat optimum phenotypes
was 0.716 in the island model, and 2.63 in the stepping-
stone model. There was no environmental effect added
to the genotypic values of the quantitative trait loci
(VE ¼ 0).

For each simulation, Q̂ST was calculated from a sim-
ulated half-sib breeding design. In the default configu-
ration, samples were taken from 20 populations, and for
each population five sires were mated to five dams each.
These numbers were varied to better understand the
power of the approach. Five offspring from each dam
were measured, and from the results Q̂ST was calculated
from the population and sire effects using an analysis of
variance.

For all parameter combinations, we tested the null
hypothesis of neutrality using the new method and with
the best method previously available, the parametric
bootstrap approach from O’Hara and Merilä (2005).
We refer to this latter approach as the ‘‘traditional
approach’’ throughout.

Simulation results: The simulations show that the
new method has a more accurate type I error rate and
more power than the traditional method. There is suf-
ficient power to detect high QST when the Q̂ST of a trait is
severalfold greater than the mean FST and when large
numbers of populations (10 or more) are included in
the analysis. However, large numbers of marker loci
are not necessary. On the other hand, it is difficult to
reliably detect the signal of homogeneous selection; the
power to discriminate significantly small QST values is
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low, even when the mean FST value is much higher than
expected for most intraspecific comparisons.

First, examine the cases where the null hypothesis is
true; that is, when the trait is evolving without the
influence of selection. The traditional method has an
overall type I error rate that is a bit high overall (Table
1), but it is seen to be particularly poor when the type I
errors are divided into the two tails. The type I error rate
for the traditional method with low QST values is 7.0–
7.8% (in contrast to the expected 2.5%), whereas the
type I error rate is far too low for high values of QST

compared to mean FST (0.41–0.44%). In all cases, the
one-tailed error rates are different from the stated 2.5%
with extremely small P-values (the largest being P¼ 4 3

10�59). In contrast, the new method has a much better
type I error rate. The total error rate for the new method
is always within the 95% confidence interval of the
expected value of 5%, and the errors are more evenly
divided into the two tails.

With heterogeneous selection in the island model,
the mean QSTranged from 0.026 to 0.564, depending on
the amount of migration among populations (see Table
2). The power of the method depends in part on the
relative value of the typical QST value in comparison to
the mean FST. When QST is expected to be much greater
than the mean FST, the method has substantial power
(Figure 3). Importantly, the new method has much
higher power to detect heterogeneous selection than
the traditional method (Figure 3). With small sample
sizes and low true differences between QST and FST,
neither method is able to detect the effects of selection,
and with extremely large samples both methods have
high power. But for intermediate (and realistic) sample

sizes with moderate QST values, the new method has
substantially more power to detect heterogeneous
selection than the traditional method. We also ran
simulations of stronger selection (where an individual
perfectly adapted to the other environment would have
a 10% fitness reduction), where QST is higher. In these
cases the power was very high for both methods, except
for the cases when there were only two populations in
the study. There again, the new method greatly out-
performed the traditional method (results not shown).

In contrast, under only rare circumstances was there
much power to detect that the QST value of a trait was
significantly smaller than expected under neutral dif-
ferentiation (Figure 4). Even when the mean neutral
FST is relatively high, the left tail of the distribution
of neutral QST is still relatively dense for small values,
making it difficult to separate a low QST from neutral
expectations.

These preceding calculations are based on moder-
ately large sample sizes for the quantitative genetic
measurements but not very many (10) marker loci for
the calculation of FST. Increasing the number of marker
loci increases power, but not dramatically (Figure 5a).
On the other hand, using more families per population
to estimate Q̂ST better has a beneficial effect (Figure 5b).
However, the power of the analysis is critically depen-
dent on the number of populations surveyed (Figure 3).
The variance of the expected Q̂ST distribution reduces
in proportion to the number of demes measured
(Whitlock 2008), and the reliability of Q̂ST estimates
increases strongly with number of demes (Goudet and
Büchi 2006). Reliable inference about the neutrality of
quantitative traits requires sampling of large numbers
of populations. The estimation of both QST and FST

depends critically on the estimate of the variance among
populations, and the power of the estimate of this
variance depends on the number of populations sam-
pled. In studies with small numbers of populations, the
Q̂ST estimates were also quite biased for both methods
(results not shown), explaining the apparently higher
power for the smallest sample sizes.

Results under the stepping-stone model are quite
similar. The mean QST for the stepping-stone simula-
tions was 0.638 with selection and 0.0488 for the neutral
case. The power of the analysis is largely dependent on

TABLE 1

Type I error rates for the island model simulations based on the island model with 20 populations and 20 sires in
the sample, for a two-sided test with a ¼ 0.05

Migration rate

Traditional method New method

Left tail (low QST) Right tail (high QST) Left tail (low QST) Right tail (high QST)

0.001 0.0706 0.0042 0.0244 0.024
0.01 0.0700 0.0044 0.0257 0.026
0.05 0.0784 0.0041 0.0245 0.0293

TABLE 2

Mean QST and FST values for different island
model parameters

Migration
rate

Mean FST

(neutral)

Mean QST

(heterogeneous
selection)

Mean QST

(homogeneous
selection)

0.001 0.318 0.564 0.044
0.01 0.045 0.232 0.015
0.05 0.009 0.026 0.005
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the number of populations sampled (Figure 6) and
varies in an equivalent way with the number of families
and neutral loci sampled (results not shown).

DISCUSSION

The QST of neutral traits is potentially extremely
variable from trait to trait, especially when the number
of populations in the system (or in the study) is small.

This distribution is approximately predictable with knowl-
edge of the mean FST of neutral marker loci for the same
populations (Whitlock 2008). A simple function of
QST [equal to (numpops �1)QST/ ��Q ST] is approximately
distributed by a x2 distribution with numpops� 1 degrees
of freedom; this derives from the Lewontin–Krakauer
distribution. Given that for traits determined by addi-
tively acting alleles the mean QST is approximately equal
to the mean FST, the sampling distribution of neutral
QST can be predicted.

Most studies of QST explicitly compare Q̂ST of a trait
to FST, as a test of whether spatially heterogeneous or
homogeneous selection affects the distribution of the
trait. These studies use the observed properties of Q̂ST to
predict its sampling distribution. However, when testing
the null hypothesis of neutrality, we need to infer the
sampling properties of Q̂ST for neutral traits, not of traits
with high or low expected QST’s. The difference matters
because the width of the sampling distribution of Q̂ST

depends on its mean value (Figure 2).
We have developed a new method to test for selective

neutrality using the difference between Q̂ST and mean
FST. We account for the expected distribution of QST

under neutrality using a distribution inferred from
the mean FST. Compared to the traditional method,
the new approach works extremely well. The traditional
method, which infers the distribution of Q̂ST from the
observed Q̂ST, has very poor false positive rates (type I
error). High QST rejects the null hypothesis far too
rarely, and low QST rejects the null hypothesis too often

Figure 3.—The power of the new approach
(left graphs) compared to the traditional ap-
proach (right graphs), as a function of the num-
ber of populations included in the sample.
Results are shown for the island model for three
different migration rates. The populations expe-
rienced spatially heterogeneous selection; an in-
dividual that is perfectly adapted to one habitat
will have a 5% reduction in fitness in the other
habitat. Each habitat contains half of the popula-
tions. Each population was measured for 5 (top
graphs) or 20 (bottom graphs) sires, each mated
to five dams, with five offspring per dam for the
Q̂ST estimates, and FST was calculated from 10
loci. When FST is high (with low migration rates),
it is more difficult to distinguish a high QST value
caused by heterogeneous selection, and the
power of the test is very weak if a small number
of populations are measured in the study. The
new simulation method has much better power
than the traditional comparison of QST and FST.

Figure 4.—Power of QST to detect homogeneous selection.
The trait experienced stabilizing selection in each population
with a uniform optimum. Stabilizing selection was strong, with
VS¼5. Sample sizes are the same as in the top panels in Figure 3.
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(Table 1). This is because the error variance is over-
estimated for high QST and underestimated for low QST

(Figure 2). The type I error rate for our new method is
close to the stated values, and it is symmetric in the
upper and lower tails as is desirable.

The new method is also more powerful than the
traditional method for detecting spatially heteroge-
neous selection. Both the new and traditional methods
work well when QST is much greater than FST and with
data from many populations, and both fail with too few
data (e.g., when the number of populations is two).
However, in intermediate cases with moderate QST and
moderately large sample sizes, the new method has much
more power than the traditional approach. With homo-
geneous selection, the traditional method appears to
have more power, but this is largely due to its inflated type

I error rate. Positive results are not reliable for homoge-
neous selection and small numbers of populations.

Unfortunately, in some biologically interesting cir-
cumstances, there are a limited number of populations
that exist in nature, and in these circumstances it is
simply not possible to reliably show that even a large
Q̂ST is different from the neutral expectation. This is
especially true when the mean FST of neutral markers is
also high. For example, some applications of the QST

approach have been made comparing a pair of sub-
species. In these cases, the mean FST is typically high (or
the two populations would not have been given sub-
specific status) and the total number of such popula-
tions in nature is just two. In this case, there is little hope
of finding significant evidence of selective differentia-
tion via the QST approach. For example, when there are
only two populations, the 97.5 percentile of the distri-
bution of FST or QST is approximately five times the
mean of the distribution, according to the Lewontin–
Krakauer distribution. Even with no error in estimating
QST, a trait would have to have a QST value five times as
large as the mean FST to be significantly in the tail of the
distribution, for the two-population case. QST is never
estimated with such small error, so in practice the Q̂ST of
the trait would have to be much larger than five times
the mean FST to find statistical evidence of selection.

There is little power in typical data sets to test for
spatially uniform stabilizing selection using Q̂ST � FST

Figure 5.—Power to detect heterogeneous selection as a
function of (a) the number of marker loci examined and
(b) the number of sires per population. All other sample sizes
and parameters are the same as in Figures 3 and 4, with 20
(filled symbols) or 5 (open symbols) populations sampled.
The power of the analysis is not much affected by the number
of marker loci examined, but increasing the number of fam-
ilies per population can increase power.

Figure 6.—The power of the simulation method applied to
simulated data from a stepping-stone model. Sixty popula-
tions on a linear stepping stone were simulated with N ¼
500 and m ¼ 0.12. FST averaged 0.04. In the heterogeneous
selection case, each population experienced one of two selec-
tive environments, chosen at random for each population
with equal probability. The resulting QST was approximately
0.6 on average. In the homogeneous selection case, the QST

was �0.008. The method was applied using data from popu-
lations separated by at least two intervening populations, sam-
pling 5 (solid lines) or 20 (dashed lines) populations.
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comparisons. It has been suggested that small values
of QST relative to FST may indicate strong stabilizing
selection with the same optimum in all populations,
because such selection would oppose genetic drift and
maintain approximately the same mean in each local
population. However, the distribution of neutral Q̂ST

includes a dense left-hand tail in most intraspecific
comparisons, because, with a small mean FST and a few
populations sampled, a large number of loci with small
FST (or neutral traits with small QST) are expected just by
chance. Only with very strong selection and levels of FST

that verge on interspecific values (FST ¼ 0.2) have we
found even moderate power to detect spatially uniform
selection (Figure 4).

There are a few other caveats that need to be kept in
mind when applying this method, in common with all
interpretations of QST. It is crucial that FST and QST are
both estimated without bias, and there are many sources
of bias that affect most Q̂ST measures (Whitlock 2008).
In particular, it is important that Q̂ST is estimated from a
breeding design and not just from phenotypic data.
Furthermore, it is essential that the study organisms are
grown in a common garden to avoid conflating pheno-
typic plasticity with local adaptation.

Importantly, the simulations conducted here all
assumed that traits are determined by alleles that
interact additively, both between and within loci. Dom-
inance variance can under some circumstances cause
mean QST to be greater than mean FST, even for neutral
traits. There is controversy over whether the effects of
dominance will typically lead to increased values of QST

(Lopez-Fanjul et al. 2003, 2007; Goudet and Büchi

2006; Goudet and Martin 2007), but importantly the
distribution of QST among neutral traits has not been
investigated for traits affected by dominance or epista-
sis. Our ability to use the distribution predicted from
the FST of marker loci depends on the distribution
being similar for QST, and this has not been investi-
gated for traits with dominance. This method, and
indeed any comparison of QST and FST, requires
stringent assumptions about the additive basis of the
quantitative trait.

The method also relies on the assumption that we are
able to identify neutral markers to use for FST to
generate the null distribution. With a large number of
marker loci, the chances may be high that at least some
of the loci are affected by spatially heterogeneous
selection. If such loci can be identified by a procedure
such as fdist2 (Beaumont and Nichols 1996), then
removing them from the analysis is probably best,
although this may make the test less conservative.
Alternatively, all marker loci could be left in the analysis,
on the assumption that the loci affecting quantitative
traits may sometimes differentiate by pleiotropic effects
or by linkage to other selected loci. Keeping the full
spectrum of marker loci potentially would control for
these extraneous effects.

Finally, there are some specific issues with the new
simulation method that limit its breadth of application.
The method given here uses the Lewontin–Krakauer
distribution to infer the distribution of neutral QST from
mean FST. According to simulation results this should
work fine for typical values of mean FST (less than�0.2).
However, the Lewontin–Krakauer distribution is based
on a x2 distribution, and its right tail extends to positive
infinity and is not constrained to be less than one. As a
result, for large values of mean FST the probability of the
right tail of this Lewontin–Krakauer distribution be-
comes an inaccurate representation of the true tail
probability.

To use QST to test for selection, we have to compare an
individual trait’s Q̂ST to the distribution of possible
values of QST under neutrality. By doing so, we have
developed a method that has much better type I error
rates and higher power for detecting spatially hetero-
geneous selection than traditional approaches.
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