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N-1432 Ås, Norway, †The Roslin Institute (Edinburgh), Royal (Dick) School of Veterinary Studies, University of Edinburgh,

Roslin, Midlothian EH25 9PS, United Kingdom and §Geno Breeding and Artificial Insemination Association,
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ABSTRACT

Genomic Selection (GS) is a newly developed tool for the estimation of breeding values for quantitative
traits through the use of dense markers covering the whole genome. For a successful application of GS,
accuracy of the prediction of genomewide breeding value (GW-EBV) is a key issue to consider. Here we
investigated the accuracy and possible bias of GW-EBV prediction, using real bovine SNP genotyping (18,991
SNPs) and phenotypic data of 500 Norwegian Red bulls. The study was performed on milk yield, fat yield,
protein yield, first lactation mastitis traits, and calving ease. Three methods, best linear unbiased prediction
(G-BLUP), Bayesian statistics (BayesB), and a mixture model approach (MIXTURE), were used to estimate
marker effects, and their accuracy and bias were estimated by using cross-validation. The accuracies of the
GW-EBV prediction were found to vary widely between 0.12 and 0.62. G-BLUP gave overall the highest
accuracy. We observed a strong relationship between the accuracy of the prediction and the heritability of the
trait. GW-EBV prediction for production traits with high heritability achieved higher accuracy and also lower
bias than health traits with low heritability. To achieve a similar accuracy for the health traits probably more
records will be needed.

GENOMIC selection (GS) is a new technology that
is expected to revolutionize animal breeding. It

is distinct from traditional selection methods where
phenotype and pedigree information is combined to
predict breeding values and where at least one source is
necessary for a prediction. Estimation of GS breeding
value is based on the estimation of marker effects cover-
ing the whole genome and combines these estimates
with the marker genotypes to obtain breeding value
estimates. Given a sufficiently dense genomewide marker
map, all the genetic variance is expected to be ex-
plained by the markers, and all quantitative trait loci
(QTL) are in linkage disequilibrium (LD) with at least
one marker (Calus et al. 2008). This allows GS to pre-
dict genomewide estimates of breeding values (GW-
EBV) without the need of phenotyping the selection
candidates. A potential cost reduction of up to 90% can
be achieved for a breeding program by GS (Schaeffer

2006), because only a moderate number of individuals
are required to have both known marker genotypes and
phenotypes. These individuals form a reference data set
for the estimation of GW-EBV. The knowledge obtained
from the reference data set can be applied to the

calculation of GW-EBV for the selection candidates on
the basis of their marker genotypes, with an accuracy
that is found in the validation of the prediction
(Goddard and Hayes 2007).

For a successful application of GS, based on a ref-
erence data set, to a usually much larger population
of selection candidates without phenotypic records,
accuracy of the prediction is a key issue to consider
(Goddard and Hayes 2009). Since GS was first pro-
posed by Meuwissen et al. (2001), many research works
using simulated data have been performed on this
issue (Calus and Veerkamp 2007; Habier et al. 2007;
Kolbehdari et al. 2007; Calus et al. 2008; Solberg et al.
2008). The recent availability of genomewide dense
SNP marker maps has made GS with real data feasible.
Studies of the accuracy of genomic predictions have
emerged in some animal species, including mice (Lee

et al. 2008; Legarra et al. 2008), chickens (Gonzalez-
Recio et al. 2009), and cattle (Hayes et al. 2009), and in
plant species [for example, barley (Zhong et al. 2009)].
For GS applied to dairy cattle, accuracies for the GW-
EBV have been reported in North American Holstein
(VanRaden et al. 2009), Australian Holstein–Friesian
(Hayes et al. 2009), and New Zealand Holstein–Friesian
and Jersey dairy cattle (Harris et al. 2008).

In the present work we applied GS to Norwegian Red
dairy cattle to investigate the accuracy and possible bias
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of GW-EBV prediction for the phenotypes of milk
production, clinical mastitis, and calving ease, by using
real bovine genotyping data. Three methods, best linear
unbiased prediction, Bayesian statistics, and a mixture
model approach were used in the study, and their
accuracies and biases of the GW-EBV were compared.
To estimate the accuracy and bias of the GW-EBV the
approach of cross-validation was employed, making use
of estimates of breeding value from the Norwegian Red
dairy cattle breeding scheme.

MATERIALS AND METHODS

Genotypic and phenotypic data: There were 500 Norwegian
Red bulls selected for this study with 466 sons of 34 sires, with
no son also being a sire. Sons had been progeny tested
between 2001 and 2006, and sires tested before 2001. The
numbers of sons chosen for years 2006, 2005, 2004, 2003, 2002,
and 2001 are 36, 44, 98, 98, 100, and 90, respectively. All sons
and sires were genotyped at CIGENE (www.cigene.no), using
the 25K MIP-SNP chip array from Affymetrix (San Diego). All
data from an individual SNP were deleted if (a) pedigree
information exposed .2.5% non-Mendelian sire–offspring
inheritance patterns, (b) its genotype probabilities signifi-
cantly deviated from the Hardy–Weinberg proportions (P ,
0.01%), (c) across samples .25% genotypes were missing, or
(d) its minor allele frequency (MAF) ,2.5%. A total of 18,991
SNPs remained after filtering. The phenotypic data of all 500
bulls used for the study are daughter-yield deviations (DYDs)
(Wiggans et al. 1992) for the traits: metric tons of milk yield,
kilograms of milk fat yield, kilograms of milk protein yield,
calving ease, and clinical mastitis (cm). Clinical mastitis was
considered in three traits defined by period of first lactation:
cm1, 15–30 days in milk; cm2, 31–120 days in milk; and cm3,
121–305 days in milk. The data were based on the average of
1038 daughters, varying from 111 to 21,391, and were available
for all bulls for all traits. Accuracy of DYD for a trait is defined
as the average of the accuracies of the DYDs of 500 bulls for the
trait and was obtained together with DYD from BoviBank Ltd.
(www.bovibank.no). The accuracies of DYDs are listed in Table
1. The genotype data and phenotype data of all 500 bulls
constitute the complete data used in the present work.

Training data: The training data sets were each obtained
by masking the phenotype, i.e., setting the phenotype ‘‘un-
known,’’ for a defined number of individuals. The individuals
whose phenotype was masked were selected in two different
ways. The first way was through random selection: here 100
individuals at a time were randomly selected, without re-
placement, to produce five nonoverlapping training data sets;
i.e., every phenotype was masked precisely once in the training
data sets. In this article this way is referred to as ‘‘20% random
masking.’’ The second way was to select individuals on the basis
of their year of progeny testing: seven training data sets were
obtained for years 2006, 2005, 2004, 2003, 2002, 2001, and
before 2001. The number of phenotype-masked individuals in
a training data set for a year of testing is the number of bulls
selected for this year. We called this way of selection ‘‘cohort
masking.’’ The nonmasked data were analyzed by the models
described in the ‘‘data analysis’’ section to predict the masked
phenotypes. This resulted in each bull having a predicted
phenotype from each masking method and this was compared
to the realized DYD. The correlation coefficient between the
predicted and realized DYDs was calculated and used as a
measure of the accuracy of the GW-EBV predictions.

Additional training sets for production traits were gener-
ated to test the impact of increasing the random masking to

50% by randomly allocating each individual to one of two
training sets. This implies that there were only 250 individuals
with phenotypes in the training data set, instead of 400 as in
20% random masking. To obtain standard errors, for both
20% and 50% random masking the division into sets and all
the subsequent analyses described in the Data analysis section
were replicated six times.

Data analysis: Three models were used to estimate the
marker effects: best linear unbiased prediction (G-BLUP),
Bayesian statistics (BayesB), and MIXTURE. G-BLUP esti-
mates the effects of the markers by best linear unbiased
prediction (Henderson 1975), assuming that every marker
explains an equal proportion of the total genetic variance.
BayesB is described in detail by Meuwissen et al. (2001) and
estimates the variance explained by every marker, using a prior
distribution that assumes that this variance is small, denoted as
s2, with probability (1 � gB); i.e., the marker has virtually no
effect or comes from an inverse-chi-square distribution with
probability gB. The probability gB represents the probability
that a marker has a substantial effect and was varied in the data
analysis since it is generally unknown. Meuwissen et al.
assumed s2 ¼ 0 for markers with small estimated effects, but
by having s2 slightly larger than zero, the model can be im-
plemented as a Gibbs sampling algorithm, which has compu-
tational advantages. Here, the small variance s2 was estimated
from the data, i.e., from the genes with small effect. In the
Gibbs chain s2 was sampled from the conditional posterior,
which is SSax�2

n�2, where x�2
n�2 is a random deviate from the

inverse-chi-square distribution with n � 2 d.f.; n is the number
of SNPs with small effect in the current iteration of the chain;
SSa ¼ SIia

2
i , where Ii is an indicator variable taking values 1 if

SNPi belongs to the SNPs with small effects in the current
iteration and Ii ¼ 0 otherwise; and ai is the current solution of
the effect of SNPi. As mentioned above, if SNPs were assumed
to have substantial effect, they had an individual variance
estimated. If this individual variance was ,s2, the SNP effect
was removed from the set of SNPs with substantial effect, to
ensure that the substantial effect SNPs always had higher
variance than the small effect SNPs. This is similar to including
a polygenic term in the BayesB model (Calus and Veerkamp

2007; Solberg et al. 2008), but where the correlation matrix of
the polygenic effects is defined by the markers with small effect
instead of by the pedigree.

Since BayesB makes quite strong assumptions about the
prior distribution of the marker effects, which may not be true
in real data, we also used a model that attempts to estimate this
prior distribution. For the latter, we made use of a property of
mixtures of normal distributions, namely that they can be used
to approximate any other (prior) distribution (Silverman

1996). In the MIXTURE model we assumed that the marker
effects came from a mixture of two distributions: one distribu-
tion with large variance (accommodating large marker effects)
and one with small variance (accommodating small marker

TABLE 1

Heritability and accuracy of DYD for studied traits

Trait h2 Accuracy

Milk yield 0.277 0.972
Fat yield 0.235 0.968
Protein yield 0.213 0.965
cm1 0.030 0.803
cm2 0.008 0.583
cm3 0.015 0.668
Calving ease 0.030 0.812
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effects). This model was also implemented in a Gibbs sampling
algorithm as described by George and McCulloch (1996)
except that the variance of the small SNP effects is estimated
here. The distribution to which the marker belongs is sampled
from the Bernoulli distribution, with parameter gM. The pa-
rameter gM, which reflects the proportion of the markers
belonging to the large and the small variance distribution, is
sampled using a noninformative Beta distribution as a prior.
The variances of the two distributions underlying the mixture
(s1

2 and s2
2) are estimated using a noninformative chi-square

distribution (Sorenson and Gianola 2007).
The model of analysis that was used by G-BLUP, BayesB, and

MIXTURE was

y ¼ m 1
XNm

j¼1

Xjaj 1 e;

where y is a N 3 1 vector of phenotypes (DYDs); Nm is the
number of markers fitted; aj is the effect of the marker; Xj is a
N 3 1 vector denoting the genotype of the individuals for
marker j, with Xij ¼ 0 if individual i is homozygous for the first
allele at locus j, Xij ¼ 1=

ffiffiffiffiffiffi
Hj

p
if heterozygous, Xij ¼ 2=

ffiffiffiffiffiffi
Hj

p
if

individual i is homozygous for the second allele at locus j, and
Xij ¼ 2qj=

ffiffiffiffiffiffi
Hj

p
if the marker genotype is missing, where qj is the

frequency of the second marker allele and Hj is the marker
heterozygosity. The division by

ffiffiffiffiffiffi
Hj

p
standardizes the variance

of the marker genotype data to 1. The variance of aj is assumed
to be Vs/Nm for G-BLUP, is estimated by BayesB, and in
MIXTURE equals s1

2 or s2
2, depending on whether the marker

effect is small or large and s1
2 and s2

2 are both estimated. Since
the traits are DYDs, Vs is the sire variance, which is one-quarter
of the total genetic variance, and was obtained from Interbull
(http://www-interbull.slu.se) together with the trait heritabil-
ities (Table 1). Given the estimates of the marker effects and
the marker genotypes, genetic values for the masked individ-
uals are predicted as

GW-EBVi ¼
XNm

j¼1

Xij âj ;

where Xij is the marker genotype of individual i for marker j
coded the same as above, and âj is the estimated effect of
marker j. By adding the overall mean, m, to the GW-EBVi, and
assuming that the residual effect of the DYDs is on average 0, a
predicted phenotype was obtained for every bull (whose phe-
notype was masked). Since every bull’s phenotype was masked
once in one of the training sets, a total of 500 predicted
phenotypes were obtained for each model for a trait for a
masking strategy. The correlation coefficient between the
predicted and realized phenotypes was calculated and used
as a measure of the accuracy of the GW-EBV predictions. The
regression of the realized phenotypes on the predicted
phenotypes is used as a measure of the bias of the GW-EBV,
where a regression coefficient of 1 denotes no bias, ,1 implies
that extreme high (low) values of the GW-EBV over- (under)-
predict the realized phenotypes, and vice versa for a regression
coefficient .1. These summary statistics were examined both
overall and within each masked set.

For BayesB calculation, the length of the Gibbs chain was
15,000 iterations and 5000 iterations were used for burn-in.
For MIXTURE, the chain length was 12,000 iterations and
burn-in was 8000 iterations. To ensure the convergence of the
Gibbs chains used for BayesB and MIXTURE, 10 distinct
chains were run for milk yield and the estimated accuracy
was calculated from pooling the chains. It was found that
the estimated accuracy did not change to three significant
numbers after pooling 3 chains. This finding was tested for

other production traits and health traits. Consequently all
results presented for Gibbs analyses are the average of
3 distinct Gibbs chains.

RESULTS

Determination of the number of markers with
effects: The number of markers with a substantial effect
in BayesB calculation determines the probability gB of a
marker with substantial effect. In this study, this number
is defined separately for different ways of masking data
for each trait, by a set of BayesB calculations with dif-
ferent numbers of effective genes. For example, for the
random masking data for milk yield, we applied BayesB
to the data with the number of effective genes 800, 1600,
2400, 3200, 6400, 9600, and 12,800, respectively.

The result in Figure 1 shows that the accuracy for
GW-EBV prediction was affected little by the number of
markers with an effect. Accuracies varied from 0.56 to
0.58 with respect to numbers of effective genes used.
The maximum accuracy achieved for random masking
in Figure 1 suggests that 3200 was approximately opti-
mal, and thus gB ¼ 0.169 (3200/18,991) was used for
milk yield. The gB value for milk yield for cohort mask-
ing of data was determined similarly, and the lower value
of gB ¼ 0.126 was found to be slightly better than other
values of gB. For other production traits and health
traits, the same approach was applied to set gB, and the
values are shown in Table 2. Table 2 also lists gM values
for MIXTURE, together with s1

2 and s2
2 as the variances

of the two distributions underlying the model. In con-
trast to BayesB, optimal numbers of effective genes can
be determined during the MIXTURE calculations, and
Table 2 shows that the gM value for MIXTURE is mostly
lower than the gB for BayesB.

Accuracy of GW-EBV prediction: Table 3 shows the
accuracy of the GW-EBV prediction by the BayesB,
MIXTURE, and G-BLUP methods. For 20% random
masking, Table 3 shows the mean predictive accuracy

Figure 1.—Accuracy of GW-EBV prediction with the
BayesB method for the milk yield trait with respect to the
number of markers with effect.
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obtained for predicting the 100 individuals in the
validation set for analysis of the 400 in the training set.
The mean is therefore an average of 30 values, 5 from
each random division of the bulls into 5 sets of 100, and
then replicated six times. The standard error is based on
the variance between the replicate means. However, for
cohort masking, the accuracy is combined using the
single GW-EBV obtained for each of the 500 bulls. It is
shown in Table 4 that in cohort masking, accuracies vary
within a considerable range for offspring subsets with
different population size and year of progeny test. For
most traits, the prediction of the masked sire cohort
using phenotypes of their offspring cohorts achieved
higher accuracy than those of masked cohort offspring.

The general conclusion from Table 3 is that for the
traits studied the differences between the methods are
small, and are small compared to their standard errors.
For random masking, all three methods used give sim-
ilar mean accuracy and standard error. There is a trend
among the methods for G-BLUP to have a higher
accuracy than other methods for cohort masking. Among
the three production traits the accuracy for milk yield is
in general lower than that for fat yield and for protein
yield, but again the difference between the accuracies is
within the range of the standard error.

For health traits, Table 3 shows that the accuracies of
GW-EBV are considerably lower than the accuracies for
production traits. In addition, compared to the pro-
duction traits, the health traits show bigger differences
between mean accuracy and combined accuracy. This
can be seen in Table 3 by the difference between mean
accuracy and combined accuracy for cm1 and cm2,
which is beyond the range of standard error of the
accuracy.

Table 5 presents overall average accuracy and bias
based on mean accuracies and biases for six replicates
of 50% and 20% masking. Results in Table 5 show that
accuracy for 20% masking with 400 phenotypes in the

TABLE 2

Estimates of gB for BayesB and gM, s1
2, and s2

2 for MIXTURE for random masking and cohort masking

Trait

Random masking: Cohort masking:

BayesB MIXTURE BayesB MIXTURE

gB gM s1
2 s2

2 gB gM s1
2 s2

2

Milk yield 0.169 0.038 1.8 3 10�6 4.0 3 10�4 0.126 0.028 2.2 3 10�6 9.1 3 10�4

Fat yield 0.169 0.041 3.0 3 10�3 1.6 3 10�1 0.506 0.031 3.0 3 10�3 2.2 3 10�1

Protein yield 0.042 0.042 1.0 3 10�3 7.9 3 10�2 0.042 0.061 1.0 3 10�3 6.0 3 10�2

cm1 0.042 0.062 1.0 3 10�8 4.5 3 10�5 0.084 0.017 9.8 3 10�9 5.0 3 10�5

cm2 0.758 0.081 1.4 3 10�9 3.0 3 10�5 0.758 0.061 1.4 3 10�9 2.0 3 10�5

cm3 0.042 0.022 5.0 3 10�9 1.3 3 10�4 0.042 0.049 4.5 3 10�9 1.1 3 10�4

Calving ease 0.084 0.057 4.0 3 10�8 1.2 3 10�4 0.126 0.039 3.7 3 10�8 1.3 3 10�4

TABLE 3

Accuracy of GW-EBVs obtained by G-BLUP, MIXTURE,
and BayesB

Trait G-BLUP MIXTURE BayesB

Cohort maskinga

Milk yield 0.591 0.575 0.577
Fat yield 0.617 0.591 0.590
Protein yield 0.615 0.601 0.607
cm1 0.282 0.278 0.272
cm2 0.153 0.128 0.130
cm3 0.250 0.253 0.241
Calving ease 0.406 0.411 0.429

Random maskinga

Milk yield 0.583 0.584 0.580
Fat yield 0.609 0.610 0.588
Protein yield 0.603 0.612 0.601
cm1 0.238 0.247 0.241
cm2 0.195 0.192 0.189
cm3 0.265 0.276 0.263
Calving ease 0.382 0.392 0.401

Approximate SE 0.028 0.030 0.030

a The accuracy for cohort masking is shown as a combined
accuracy estimated for 500 selected individuals, while the ac-
curacy for random masking is shown as the mean of the accu-
racies for five training data sets and the pooled approximate
standard error.

TABLE 4

Mean, minimum, and maximum accuracies for six offspring
training subsets and accuracy for sire data set in GW-EBV

prediction for cohort masking with BayesB

Offspring

Trait Mean Min Max Sire

Milk yield 0.501 0.295 0.659 0.735
Fat yield 0.574 0.272 0.688 0.778
Protein yield 0.482 0.252 0.654 0.718
cm1 0.271 0.163 0.349 0.426
cm2 0.109 0.033 0.307 0.012
cm3 0.251 0.140 0.311 0.525
Calving ease 0.447 0.312 0.472 0.617
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training data set is significantly higher compared to 50%
masking with 250 phenotypes in the training data set.

Bias of GW-EBV prediction: The degree of bias from
the methods is judged by comparing the regression co-
efficients of phenotypes on predicted phenotypes with
the value 1. Table 6 presents the bias of the GW-EBV
prediction for the traits studied. As for the presentation
of accuracy, for random masking, Table 6 shows the
overall mean and the standard error of the bias of the
predictions for six replicates of five training data sets,
while for cohort masking, it is the combined bias esti-
mated for all 500 selected individuals. The results show
that for production traits the GW-EBV predictions for
random masking had a lower bias compared to those for
cohort masking, but these differences were within the
standard errors. It is observed for the three mastitis
traits in Table 6 that there is less bias if the prediction is
more accurate. For example, for cm1, Table 3 shows the
combined accuracy of the prediction for cohort masking
is higher than the mean accuracy for random masking,
and Table 6 shows the combined bias of cohort mask-
ing is lower than the mean bias for random masking.
Among the four health traits, GW-EBV prediction for
calving ease has the highest accuracy (Table 3), and the
prediction is in general least biased (Table 6).

Accuracy and bias for a subset of markers: To in-
vestigate the effect of the number of markers fitted on
the accuracy of the GW-EBV, for production traits, we
randomly removed markers in the complete data sets
and repeated the analyses described in materials

and methods. In this work, 25, 50, and 75% of 18,991
markers were randomly selected and removed. This
process was replicated six times to obtain standard errors

and results for cohort masking are shown in Tables 7
and 8. In general the results for the reduced marker
data sets show similar features to those for the complete
data with respect to the different traits, methods of
analysis, and masking of the phenotypes. As expected,
the accuracy of the prediction reduces as the number of
markers becomes smaller. However, the decrease of the
accuracy was small. For example, for G-BLUP applied to
the three production traits, the combined accuracies
of the GW-EBV decrease ,9% of their original value for
the subset with 75% of the markers removed.

DISCUSSION

This study applied genomic selection to real rather
than simulated phenotypes in a setting in which it would
be used in practice and where the predictive accuracy
can be assessed by comparison with relatively precise
estimates of breeding values obtained from phenotypic
measurements and genetic evaluation using pedigrees.
The existence of a relatively precise comparison allowed
this study to compare the effectiveness of the different
methods that might be employed. A total of �519,000
measurements were made on individual dairy cows, to
obtain the 500 DYD phenotypes on individual bulls used
in the analysis. The GW-EBVs for individual bulls were
calculated from the estimates of effects of 19,000 SNP
markers alone and the accuracy of the estimates was
determined by the correlation between predicted and
realized DYDs, rDYD,GW-EBV. The estimates of the marker

TABLE 5

Accuracy and bias of GW-EBV prediction for random masking
with 250 DYDs and 400 DYDs in the training data set

Overall mean
accuracya

Overall mean
biasa

Trait 250 DYDs 400 DYDs 250 DYDs 400 DYDs

G-BLUP
Milk yield 0.547 0.599 1.010 1.022
Fat yield 0.569 0.611 0.999 1.033
Protein yield 0.550 0.594 1.006 1.035

MIXTURE
Milk yield 0.542 0.595 1.018 1.026
Fat yield 0.564 0.610 1.001 1.051
Protein yield 0.545 0.594 1.004 1.037

BayesB
Milk yield 0.538 0.585 0.957 0.967
Fat yield 0.552 0.590 0.927 0.970
Protein yield 0.546 0.589 0.954 0.973

Approximate SE 0.011 0.005 0.020 0.010

a The accuracy and bias are shown as the overall mean ac-
curacies and biases for five training data sets and six replicates
and the pooled approximate standard error.

TABLE 6

Bias of GW-EBVs obtained by G-BLUP, MIXTURE,
and BayesB

G-BLUP MIXTURE BayesB

Cohort maskinga

Milk yield 1.037 1.047 1.008
Fat yield 1.075 1.119 1.020
Protein yield 1.080 1.106 1.044
cm1 0.693 0.849 0.502
cm2 0.550 0.546 0.323
cm3 0.718 0.831 0.475
Calving ease 1.192 0.932 0.998

Random maskinga

Milk yield 0.984 0.995 0.951
Fat yield 1.034 1.056 0.967
Protein yield 1.046 1.075 0.992
cm1 0.628 0.842 0.467
cm2 0.693 0.814 0.466
cm3 0.771 0.921 0.525
Calving ease 1.104 0.953 0.862

Approximate SE 0.089 0.119 0.070

a The bias for cohort masking is shown as a combined bias
estimated for 500 selected individuals, while the bias for ran-
dom masking is shown as the mean of the biases for five train-
ing data sets and the pooled approximate standard error.
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effects came from training data sets and rDYD,GW-EBV

derived from using cross-validation.
Generally, the estimated accuracies will underpredict

the observed accuracy of selection, i.e., the correlation
between GW-EBV and true breeding values, rGW-EBV,TBV,
because the realized DYDs are not perfectly predicting
the true breeding values. The expected correlations
between the DYDs and genetic value, rDYD,TBV, are given
in Table 9. A better estimate of the accuracy of the

GW-EBV (rGW-EBV,TBV) may be obtained by calculating
rDYD,GW-EBV/rDYD,TBV, where rDYD,TBV equals the accuracy
of DYD (Table 1). In Table 1, there is a strong relation-
ship between heritability and the accuracy of DYD, i.e.,
rGW-EBV,TBV. This suggests that data sets of .500 bulls
are needed to achieve comparable accuracies for the
less heritable traits, i.e., the health traits as shown by
Daetwyler et al. (2008).

The G-BLUP method gave overall the highest rDYD,GW-EBV

and little bias of the GW-EBV. The G-BLUP method
makes no assumptions about the distribution of the sizes
of the SNP effects. BayesB and MIXTURE assumed that
some SNPs explain more variance than others. This
outcome suggests that the distribution of true effects is
sufficiently spread among loci, that there is insufficient
benefit from fitting the more complex models, that at
least the majority of the SNPs explain a small amount of
genetic variance, and that accounting for some outlier
SNPs that explain substantially more variance, as in the
BayesB model, does not improve GW-EBVs. The latter is
probably because there are too few such outlier SNPs
and the genetic variance they explain is too small rel-
ative to that explained by all the SNPs with small effects.
A contributing factor to this outcome may be that the
SNP density is also too low for the benefits of BayesB or
MIXTURE to be fully apparent. In the absence of se-
quence data, the causative SNPs are unlikely to be in the
data and at low density more SNPs will be required to
capture a QTL. This result that most genetic effects are
small agrees with a recent large-scale genomewide as-
sociation study conducted for height in humans, where
20 variants were detected that explained together only
3% of the variation (Weedon et al. 2008).

For a trait whose genetic variance can be explained by
a small number of genes, BayesB might be expected to
do better than G-BLUP. For example, a previous study
with the Holstein–Friesian cattle breed (Riquet et al.
1999) identified a QTL for milk production traits,
especially milk fat. The positional candidate cloning of
the QTL identified the candidate gene coding acylcoA:

TABLE 7

Accuracy of GW-EBV prediction for cohort masking with
25, 50, and 75% of all markers masked

% of all markers masked

25 50 75

G-BLUP
Milk yield 0.587 0.581 0.554
Fat yield 0.611 0.608 0.589
Protein yield 0.610 0.603 0.596

MIXTURE
Milk yield 0.571 0.563 0.538
Fat yield 0.588 0.584 0.567
Protein yield 0.596 0.586 0.576

BayesB
Milk yield 0.562 0.553 0.518
Fat yield 0.563 0.569 0.539
Protein yield 0.595 0.577 0.544

Approximate SE 0.003 0.004 0.006

The accuracy is shown as the average combined accuracies
across six different replicated marker maskings (see results)
and the pooled approximate standard error.

TABLE 8

Bias of GW-EBV prediction for cohort masking with 25, 50,
and 75% of all markers masked

% of all markers masked

25 50 75

G-BLUP
Milk yield 1.028 1.013 0.981
Fat yield 1.064 1.049 1.011
Protein yield 1.082 1.061 1.060

MIXTURE
Milk yield 1.035 1.016 0.976
Fat yield 1.109 1.095 1.061
Protein yield 1.088 1.070 1.038

BayesB
Milk yield 0.962 0.926 0.826
Fat yield 0.976 0.969 0.878
Protein yield 1.003 0.956 0.873

Approximate SE 0.006 0.007 0.010

The bias is shown as the average combined biases across six
different replicated marker maskings and the pooled approx-
imate standard error.

TABLE 9

Accuracy of the GW-EBV prediction (rDYD,GW-EBV), the
expected correlation between the DYDs and genetic
value (rDYD,TBV), and rGW-EBV,TBV for studied traits

Trait rDYD,TBV rDYD,GW-EBV
a rGW-EBV,TBV

Milk yield 0.972 0.591 0.608
Fat yield 0.968 0.617 0.637
Protein yield 0.965 0.615 0.637
cm1 0.803 0.282 0.351
cm2 0.583 0.153 0.262
cm3 0.668 0.250 0.374
Calving ease 0.812 0.406 0.500

a rDYD.GW-EBV is represented by the combined accuracy of
the G-BLUP method applied to the cohort masking data set.
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diacylglycerol acyltransferase 1 (DGAT1) (Grisart et al.
2002). One may expect that BayesB might achieve higher
accuracy than G-BLUP for the prediction of breeding
values for milk production traits of Holstein–Friesians.
However, so far there is no published result available
showing the segregation of the DGAT1 gene in the
sample of Norwegian Red cattle used for the present
work. It may be that the DGAT1 gene is not segre-
gating in Norwegian Red cattle, the genetic variance
in all the milk production traits of Norwegian Red cattle
might be explained by many small genes, and hence
G-BLUP might be in favor of achieving higher
accuracy for the GW-EBV prediction than BayesB as ob-
served here.

When reducing the number of markers by a factor of
2 or 4, rDYD,GW-EBV was not much reduced (Table 7). This
may be because the G-BLUP, which was found to give the
highest rDYD,GW-EBV, merely uses the markers to estimate
the relationship between the bulls, i.e., to estimate the
fraction of alleles the animals have in common (Habier

et al. 2007). Thus the use of fewer markers did not reduce
the accuracy of the estimate of the relationship matrix
much (Hayes et al. 2003), which is central to G-BLUP.
The SNP detection method may also have affected this
result, in that the sequencing of small chromosomal
segments results in some of the detected SNPs being very
close to each other; i.e., the SNPs are unevenly distributed
across the chromosome and clusters of very closely linked
SNPs occur. If one or a few of the SNPs within such a
cluster are omitted, this would not reduce the marker
information content very much, since often several SNPs
remain within the cluster in close LD with the one omit-
ted; i.e., the cluster is still informative.

Daetwyler et al. (2008) studied factors that affect the
accuracy of a prediction, using a genomewide approach.
With the formula derived by the authors we can cal-
culate an estimate of the number of independent loci
that contribute to the genetic variance for a trait (nG) by
the accuracy of the breeding value prediction (r), the
number of phenotypes used for the prediction (nP), and
the heritability of the trait (h2, obtained here as square
of the accuracy of DYD in Table 1) as nG¼ nP[h2/r2� h2].
We applied the formula to the result of G-BLUP for
random masking of data for milk yield and got nG¼ 734.
We also had available a smaller data set of Holstein cattle
and we used the estimate of nG to predict what accuracy
might be obtained for milk yield using the methods
described here, from a training set of 255 records. When
this was done, we obtained a predicted value of 0.46,
which compares to the observed value of 0.39. This gives
us some optimism that a degree of predictability of these
accuracies might be obtained.

Cohort masking, grouping the DYDs by year of prog-
eny test of the bulls, in the cross-validation more closely
resembles the practical application of genomic selec-
tion, where GW-EBV of contemporaries is required. The
decreasing accuracy for the mean of the cohorts is first

explained by the smaller variance of the EBVs within a
cohort, �80% of the whole set: assuming a constant
regression line, then the first approximation of this
impact is to reduce the accuracies, being correlations,
by �10%. Further reductions of the correlation within
each cohort might be expected because of changes in
haplotype and allele frequencies arising from genetic
change over time in this selected population and incom-
plete mixing of alleles over the different year groups.
Overall our results indicated that cohort masking was
not substantially worse than random masking of the
data, which suggests that the population structure for
predicting GW-EBV of contemporary bulls is approxi-
mately as equally suited to genomic selection as the
prediction of a random set of Norwegian Red bulls. The
latter may be different in different species, breeds, and/
or selection programs.

In general, the accuracies of the GW-EBV vary widely
between 0.12 and 0.62, where the lower accuracies apply
to the mastitis traits that have low heritability, i.e., down
to as low as 0.008. An accuracy of �0.75 is probably
sufficient for the (pre)selection of young bulls at a
young age (Schaeffer 2006). To achieve this for the
population structure of the 500 bulls, it is predicted that
a training set of 1000 bulls would be required for milk
production traits, using Daetwyler et al. (2008), and
more bulls for health traits. However, in practice larger
training sets would be required, first to be confident of
achieving comparable accuracies within a cohort and
second to achieve accuracies for health and fitness
traits that are comparable to those for milk production.
Therefore this article demonstrates the feasibility of
developing GW-EBV in practice, but at the same time
indicates the scale of training data sets required to com-
pete with existing pedigree and phenotype approaches
in dairy cattle breeding. Such approaches in dairy cattle
are generally considered to be well optimized, and so
in other species and for other objectives the size of
the training set may not necessarily be as large to be
competitive.

This article represents the authors’ views and does not necessarily
represent a position of the European Commission, who are not liable
for the use made of such information. Helpful comments of two
anonymous reviewers are gratefully acknowledged. This research proj-
ect has been cofinanced by the European Commission, within the 6th
Framework Programme, contract no. FOOD-CT-2006-016250 (‘‘SAB-
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