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Abstract
Diffusion MRI is a non-invasive imaging technique that allows the measurement of water molecular
diffusion through tissue in vivo. In this paper, we present a novel statistical model which describes
the diffusion-attenuated MR signal by the Laplace transform of a probability distribution over
symmetric positive definite matrices. Using this new model, we analytically derive a Rigaut-type
asymptotic fractal law for the MR signal decay which has been phenomenologically used before. We
also develop an efficient scheme for reconstructing the multiple fiber bundles from the DW-MRI
measurements. Experimental results on both synthetic and real data sets are presented to show the
robustness and accuracy of the proposed algorithms.

Index Terms
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1. INTRODUCTION
Diffusion-weighted imaging (DWI) is a magnetic resonance (MR) imaging technique
exploiting the sensitivity of the MR signal to the Brownian motion of water molecules. It adds
to the conventional relaxation-weighted magnetic resonance imaging (MRI) the capability of
measuring the water diffusion characteristics in local tissue. The directional dependence of
water diffusion in fibrous tissues, like muscle and white-matter in the brain, provides an indirect
but powerful means to probe the microstructure of these tissues. As of today, DWI is the unique
noninvasive technique capable of quantifying the anisotropic diffusion of water molecules in
tissues allowing one to draw inferences about neuronal connections between different regions
of the central nervous system (CNS).

In diffusion MRI, most applications rely on the fundamental relationship between the MR
signal measurement S(q) and the average particle displacement probability density function
(PDF) P(r) which is given by the following Fourier transform [1]: S(q) = S0∫R3P(r) eiq·rdr
where S0 is the signal in the absence of diffusion gradient, r is the displacement vector and q
= γδGg, where γ is the gyromagnetic ratio, δ is the diffusion gradient duration, G and g are the
magnitude and direction of the diffusion sensitizing gradients respectively.
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Diffusion tensor MRI (DT-MRI or DTI), introduced by [2], provides a relatively simple way
of quantifying diffusional anisotropy as well as predicting the local fiber direction within the
tissue from multidirectional diffusion MRI data. DTI assumes a displacement probability
characterized by an oriented Gaussian probability distribution function, which leads to a signal
decay given by S(q) = S0 exp (−bgT Dg) where b = |q|2t is the diffusion weighting factor
depending on the strength |q| as well as the effective diffusion time and D is called the apparent
diffusion tensor. DTI model has been shown to be quite successful in regions of the brain and
spinal cord with significant white-matter coherence and has enabled the mapping of anatomical
connections in the central nervous system. However, the major drawback of diffusion tensor
MRI is that it can only reveal a single fiber orientation in each voxel and fails in voxels with
orientational heterogeneity (IVOH) [3]. This limitation of DT-MRI has prompted interest in
the development of both improved imaging measurement strategies and more sophisticated
reconstruction methods. Recently, [4] proposed the so called q-ball imaging (QBI) method, in
which radial integral of the displacement PDF is approximated by the spherical Funk-Radon
transform. [5,6] further reformulates QBI’s Funk-Radon transform in a spherical harmonic
basis. More recently, [7] introduced the diffusion orientation transform (DOT) which
transforms the diffusivity function into probability function by expressing the Fourier relation
in spherical coordinates and evaluating the radial part of the integral analytically. Multi-
compartmental models [3] have also been used to model the diffusion-attenuated MR signal.
Two problems accompany the use of these models. First, the number of such compartments
has to be pre-specified, presenting a model-selection problem. Second, the nonlinear fitting
procedure is unstable and heavily depends on the choice of the starting point because of the
local minima in the objective function.

In this paper, we present a novel statistical model which assumes that at each voxel there is an
underlying probability measure associated with  (the manifold of n × n positive definite
matrices). We make the interesting observation that the resulting continuous mixture model
and MR signal attenuation are related via a Laplace transform defined on . We also show that
the Laplace transform can be evaluated in closed form for the case when the mixing distribution
is a matrix-variate gamma distribution. The resulting closed form is a Rigaut-type function
which has been phenomenologically used before to explain the MR signal decay but never with
a rigorous mathematical justification until now.

2. THEORY
We assume that at each voxel there is an underlying probability measure associated with the
manifold of n × n symmetric positive-definite matrices, . Let f(D) be its density function with
respect to some carrier measure dD on . Then we can model the diffusion signal by:

(1)

Note that above equation implies a more general form of mixture model with f(D) being a
mixing density over the covariance matrices of Gaussian distributions. Clearly, our model
simplifies to the diffusion tensor model when the underlying probability measure is the Dirac
measure.

Since bgT Dg in Eq.(1) can be replaced by trace(BD) where B = bggT, the diffusion signal
model presented in the form of (1) can be exactly expressed as the Laplace transform (matrix
variable case) [8]:

(2)
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where ℒf denotes the Laplace transform of a function f which takes argument in .

Definition 1
[8] For σ ∈  and for p in , the matrix-variate gamma distribution γp,σ with scale
parameter σ and shape parameter p is defined as 1

where Γn is the multivariate gamma function and |·| denotes the determinant of a matrix.

It can be shown [8] that the Laplace transform of γp,σ is

Let f in (2) be the density of matrix-variate gamma distribution γp,σ with a fixed expected value
D ̂ = pσ. We have

(3)

This is a familiar Rigaut-type asymptotic fractal expression [9] which implies a signal decay
characterized by a power-law in the large-|q|, hence large-b asymptotic. This is the expected
asymptotic behavior for the MR signal attenuation in porous media [10]. Note that although
this form of a signal attenuation curve had been phenomenologically fitted to the diffusion-
weighted MR data before [11], until now, there was no rigorous derivation of the Rigaut-type
expression used to explain the MR signal behavior as a function of b-value. Therefore, this
derivation may be useful in understanding the apparent fractal-like behavior of the neural tissue
in diffusion-weighted MR experiments. Also note when p tends to infinity, we have S(q) →
S0 exp(−bgTD ̂g), which implies that the mono-exponential model can be viewed as a limiting
case (p → ∞) of our model.

3. METHOD
The Laplace transform relation between MR signal and the probability distributions on 
naturally leads to an inverse problem: to recover a distribution on  that best explains the
observed diffusion signal. This is an ill-posed problem and in general is not solvable without
further assumptions. We first propose a discrete mixture of matrix-variate gamma distribution

model where the mixing distribution in Eq.(2) is expressed as . In this model
(pi, σi) are treated as basis and will be fixed as described below. It leaves the weights w as the
unknowns to be estimated. Note here the number of components in mixture, N, only depends
on the resolution of the manifold discretization and should not be interpreted as the expected
number of fiber bundles. Then we assume that all the pi take the same value p = 2 based on the
analogy between the Eq.(3) and Debye-Porod law of diffraction [10] in three-dimensional
space. Since the fibers have an approximately cylindrical geometry, it is reasonable to assume
that the two smaller eigenvalues of diffusion tensors are equal. In practice, we fix the

1Note that the correspondence between this definition and the Wishart distribution Wn(p, Σ) is given simply by γp/2,2Σ = Wn(p, Σ).
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eigenvalues of σi to specified values  consistent with the
values commonly observed in white-matter tracts [3]. This rotational symmetry leads to a
tessellation where N unit vectors evenly distributed on the unit sphere are chosen as the
principal directions of σi. In this way, the distribution can be estimated using a spherical
deconvolution scheme [12]. For K measurements with qj, the signal model equation:

 yields a linear system Aw = s, where s = (S(q)/S0) is the
vector of normalized measurements, w = (wi), is the vector of weights to be estimated and A
is the matrix with Aji = (1 + trace(Bj σi))−p. Since the matrix A only depends on the sampling
scheme and therefore needs only onetime computation, the computational burden of this
method is light and comparable to that of diffusion-tensor MRI. However, the induced inverse
problem can be ill-conditioned due to the possible singular configurations of the linear system.
In practice, the damped least squares method as a regularization scheme is employed to
overcome the instability problem.

After the continuous distribution of tensors model is obtained, the displacement PDF can be
approximated by the Fourier transform P (r) = ∫E(q) exp(−iq·r)dq where E(q) = S(q)/S0 is the
MR signal attenuation. Assuming a continuous diffusion tensor model as in Eq.(1) with mixing

distribution , we have

(4)

where D ̂i = pσi are the expected values of γp,σi. Once the P(r) as a real-valued spherical function
is computed, the number of fibers, together with an orientation estimate at each voxel, can be
resolved by finding the peaks of P(r) as in [7].

4. RESULTS
4.1. Simulations

We empirically investigated the performance of our reconstruction method. Of special interest
is its accuracy towards fiber orientation detection in the presence of noise. To study this issue,
we first took the HARDI simulations of 1-,2- and 3-fiber profiles with known fiber orientations
and computed the probability profiles as shown in Fig. 1.2

In the case of noiseless signal, the proposed method as well as QBI are both able to recover
the fiber orientation quite accurately. The Q-ball orientation distribution functions (ODF) is
computed by using the formula given by [5] in terms of spherical harmonics expansion. Since
our method computes the probability values directly, we fit the resulting probability profiles
from proposed method using spherical harmonics basis for better surface rendering. The
existence of analytical angular derivatives of spherical harmonic functions also enables us to
apply fast gradient-based numerical optimization routines to find the peaks of the probability
surfaces.

To provide a more quantitative assessment of the proposed method and its sensitivity to noise,
we add Rician-distributed noise by adding Gaussian noise on both real and imaginary parts of
all 1-, 2- and 3-fiber systems shown in Fig. 1, with increasing noise levels (σ = .02, .04, .06).

2The simulations employed the exact form of the MR signal attenuation from particles diffusing inside cylindrical boundaries [13].
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The simulations of the signal profiles with noise were repeated 100 times for each noise level
to provide a distribution of deviation angles. Table 1 reports the mean and standard deviation
of these distributions in degrees.

As expected, the deviation angles between the recovered and the true fiber orientations increase
with increasing noise levels and it is more challenging to accurately resolve the distinct
orientations when there are more fiber orientations. The statistics reported in Table 1 also
indicate that the proposed method has stronger resistance to noise than the QBI method.

4.2. Experiments
The rat optic chiasm is an excellent experimental validation of our approach due to its distinct
myelinated structure with both parallel and descussating optic nerve fibers. A HARDI data
from optic chiasm region of excised, perfusion-fixed rat nervous tissue was acquired at 14.1T
using Bruker Avance imaging systems. A diffusion-weighted spin echo pulse sequence was
used. Diffusion-weighted images were acquired along 46 directions with a b-value of 1250s/
mm2 along with a single image acquired at b ≈ 0s/mm2.

Figure 2 shows the displacement probabilities computed from the optic chiasm image. For the
sake of clarity, we excluded every other pixel and overlaid the probability surfaces on
generalized anisotropy (GA) maps [14]. As evident from this figure, our method is able to
demonstrate the distinct fiber orientations in the central region of the optic chiasm where
ipilateral myelinated axons from the two optic nerves cross and form the contralateral optic
tracts.

5. CONCLUSION
In this paper, we present a novel mathematical model which shows that the diffusion MR
signals and probability distributions for positive definite matrix-valued random variables are
related through Laplace transforms. We further show that in the case of matrix-variate gamma
distributions, a closed form expression for the Laplace transform exists and can be used to
derive a Rigaut-type asymptotic fractal law for the MR signal decay behavior which has been
observed experimentally in the past [11]. Moreover in this case, the traditional diffusion tensor
model is the limiting case of the expected signal attenuation. Then using this novel model, we
develop new methods for reconstructing the multiple fiber bundles from the diffusion weighted
MRI measurements. Experimental results on both synthetic and real data sets have shown the
robustness and accuracy of the proposed algorithms.
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Fig. 1.
Simulations of 1-, 2- and 3-fibers (b = 1500s/mm2). Orientations: azimuthal angles φ1 = 30,
φ2 = {20, 100}, φ3 = {20, 75, 135}; polar angles were all 90°. Top: Q-ball ODF surfaces;
Bottom: Probability surfaces computed using proposed method.
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Fig. 2.
Probability maps computed from a rat optic chiasm data set overlaid on axially oriented GA
maps. The decussations of myelinated axons from the two optic nerves at the center of the optic
chiasm are readily apparent. Decussating fibers carry information from the temporal visual
fields to the geniculate body. Upper left corner shows the corresponding reference (S0) image.
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Table 1

Statistics of the deviation angles ψ between the computed and true fiber orientations in presence of noise.
From proposed method

ψ(σ = .02) ψ(σ = .04) ψ(σ = .06)
1 fiber 0.65 ± 0.39 1.19 ± 0.65 1.66 ± 0.87

2 fibers 1.18 ± 0.66 2.55 ± 1.29 3.85 ± 2.12
1.30 ± 0.66 2.76 ± 1.34 3.63 ± 1.91

3 fibers
4.87 ± 3.23 8.59 ± 5.82 11.79 ± 6.86
5.81 ± 3.61 7.70 ± 5.02 11.27 ± 6.36
4.92 ± 3.32 7.94 ± 4.59 12.57 ± 7.09

From QBI
ψ(σ = .02) ψ(σ = .04) ψ(σ = .06)

1 fiber 1.28 ± 0.75 3.34 ± 1.97 5.94 ± 3.19

2 fibers 2.39 ± 1.26 4.82 ± 2.44 7.95 ± 4.45
2.30 ± 1.10 4.94 ± 2.15 7.49 ± 3.88

3 fibers
10.80 ± 5.59 12.15 ± 4.42 20.21 ± 11.10
11.59 ± 5.44 13.07 ± 4.74 19.54 ± 11.80
11.66 ± 5.18 12.25 ± 4.93 20.36 ± 11.50
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