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Purpose: To investigate the different components of full-field flash electroretinogram (ERG) responses in adult albino
and pigmented rats at various time intervals following optic nerve transection (ONT).

Methods: In adult Sprague-Dawley (SD, albino) and Piebald-Viral-Glaxo (PVG, pigmented) rats, the left optic nerve was
transected intraorbitally to induce retinal ganglion cell (RGC) death. ERG responses were recorded simultaneously from
both eyes beforehand and at 1, 2, 4, and 12 week intervals after ONT. The ERG a- and b-waves and the scotopic threshold
responses (STR) were analyzed in scotopic conditions. White light stimuli of intensities ranging from 1070 to 10 ¢d-s'm
~2 were used to record the positive and negative scotopic threshold responses (pSTR and nSTR), while stimulus light
intensities ranging from 10~* to 102 cd-s'm™2 were used to analyze the a- and b-wave amplitudes of standard ERG
recordings.

Results: In the albino rats, one week after intraorbital ONT, the STR mean amplitude decreased significantly, to
approximately 60% of the values registered for the contralateral eye (p<0.05), which had not been operated on; standard
ERG a- and b-waves showed a small reduction in amplitude—to approximately 85%. By two weeks after ONT, the STR
mean amplitude was approximately 40% that of the contralateral eye, while the a- and b-wave amplitudes had further
decreased to approximately 75%. Four weeks after ONT, the STR had fallen to 60% of that of the contralateral eyes,
whereas the a- and b-waves reached values of approximately 90%. Twelve weeks after ONT, the STR remained
significantly reduced to approximately 45%, whereas the a- and b-waves reached values of approximately 90%. In the
pigmented rats, one week after intraorbital ONT, the mean amplitude had decreased significantly, to approximately 60%
for the pSTR and to 80% for the nSTR of the values registered for the intact contralateral eye (p<0.05); while the standard
ERG a- and b-waves showed a small reduction in amplitude to approximately 90%. Two weeks after ONT, the STR mean
amplitude was approximately 55%, while the a- and b-wave amplitudes had further decreased to approximately 65%. Four
weeks after ONT, the STR also was significantly reduced, to only 40%, whereas the a- and b-waves reached values of
approximately 60%. Twelve weeks after ONT, the pSTR and nSTR remained significantly reduced to approximately 40%
and 70%, respectively; whereas the a- and b-waves reached values of approximately 80%.

Conclusions: Optic nerve injury results in transient reductions of the major ERG components, the a- and b-waves, as well
as permanent reductions of the early components of the ERG, the negative and positive scotopic threshold responses.
Because ONT induces massive RGC loss, it is likely that permanent reduction in the STR represents a lack of the RGC
population, thus highlighting the importance of the STR recordings as an electrophysiological tool for the assessment of
RGC function.

© 2009 Molecular Vision

An electroretinogram (ERG) measures full-field retinal
potential from the cornea and it is commonly used in retinal
function studies. Major components of the ERG are related to
specific retinal cell populations. Under scotopic conditions,
the initial negative wave recorded after a bright full-field
stimulus  (a-wave) is generated by photoreceptor
phototransduction; while the b-wave, the prominent positive
wave that follows the a-wave, is mainly generated by
depolarization of ON-bipolar cells and Miiller cells [1,2]. In
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addition to the a- and b-waves, oscillatory potentials (OPs) are
another main component of the ERG. OPs appear
superimposed on the b-wave and are thought to arise from
feedback circuitries as well as from amacrine cells [3].

Unlike these relations between ERG waves and retinal
cell populations, other neurons (i.e., retinal ganglion cells,
RGC) have not yet been definitively linked to any electrical
component of the ERG. Exposure to very dim light flash
stimuli in the dark-adapted retina induces a small ERG
response with a positive and negative component, with
specific implicit times; these two waves are known as positive
and negative scotopic threshold responses (pSTR and nSTR),
respectively, and apparently have their origin in the innermost
retina [4—6], where the RGC bodies are located. ERG studies
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performed in cats [4], pigmented rats [7], pigmented mice
[8,9], monkeys [10], and humans [11] indicate that the RGC
population is responsible at least in part for the generation of
the pSTR and nSTR responses, although these STR responses
may also contain a contribution of amacrine cells [8,9,11].

Compared to pigmented rats, albino rats have poor vision
[12—14], which may be attributable to certain features of the
visual system of the albino rat, such as a smaller amount of
pigment in their ocular tissues, a smaller number of
photoreceptors [15], or a smaller ipsilateral retinal projection
[16,17]. Nevertheless, the albino rat has been the animal of
choice for many experimental models involving RGC injury,
including transient ischemia of the retina induced by elevation
of the intraocular pressure [18] or by selective ligature of the
ophthalmic vessels [19-24]; ocular hypertension induced by
laser photocoagulation of the limbar tissues [25,26]; and optic
nerve axotomy by complete crush [27] or transection [28—
30]. A classic model to study injury-induced RGC death
involves optic nerve lesions in the albino rat. Indeed, detailed
quantitative studies on the effects of the distance at which
axotomy is performed on the time course and amount of RGC
loss [27,28,30-32] have shown that optic nerve transection
(ONT) close to the eye induces two phases of RGC death
[28,31]: an initial rapid phase involving the loss of
approximately 80% of the RGC population between day 45
and day 14 after injury [28,31,33]; and a second, more
protracted phase involving the loss of 15%-20% of the
remaining RGCs and that extends for over a year after ONT
[28]. Although this type of injury to the visual system of the
adult albino rat results in several alterations in their functional
[34-37] and metabolic [38,39] properties, as well as in the
regulation of a substantial number of genes [30,40,41], the
long-term changes in the ERG relating to albino rat retina have
not been studied in detail.

It is commonly accepted that ONT results in the loss of
RGCs, but not of other retinal neurons [28,42]. Our
experimental design appears suitable to investigate the ERG
components that may be altered as a consequence of the loss
of this neuronal population. Therefore, for the present study,
we have extended our previous work on axotomy-induced
RGC death and investigated the different components of the
full-field flash ERG in the adult albino rat at various time
intervals after ONT. In addition, and to enable comparison
with previous studies [7,43,44], we have also studied these
responses in the adult pigmented rat. We found that optic
nerve (ON) injury results in transient reductions of the major
ERG components, the a- and b-waves, as well as in permanent
reductions of the early components of the ERG—the negative
and positive scotopic threshold (STR) responses. Overall, our
data are in agreement with previous studies of the pigmented
rat [7,44] and provides new and original information
regarding the adult albino rat.
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METHODS

Animals: Female adult albino Sprague-Dawley (SD; 180-220
g) and pigmented (Piebald-Viral-Glaxo, PVG; 180-220 g)
rats were treated according to institutional guidelines: the
European Union regulations for the use of animals in research;
the ARVO statement for the use of animals in ophthalmic and
vision research; and to the guidelines published by the
Institute for Laboratory Animal Research (Guide for the Care
and Use of Laboratory Animals). Rats, kept in a 12 h light-
dark cycle, were anaesthetized with an intraperitoneal (I.P.)
injection of a mixture of ketamine (70 mg/kg Ketalar®, Pfizer,
Alcobendas, Madrid, Spain) and xylazine (10 mg/kg
Rompun®, Bayer, Kiel, Germany) in 0.1 ml saline. Four
groups of albino rats, groups I (n=6), II (n=7), lII (n=9), and
IV (n=9) were processed at 1, 2, 4, and 12 weeks after ONT,
respectively; while four groups of pigmented rats, groups V
(n=8), VI (n=5), VII (n=6), and VIII (n=5) were also processed
at 1,2, 4, and 12 weeks after ONT, respectively.

Optic nerve transection: The left ON was sectioned close to
its origin in the optic disc, following the protocols mentioned
above that are standard in our Laboratory [21,22,26,27,29,
45-49]. In brief, to access the ON at the back of the eye, an
incision was made in the skin overlying the superior orbital
rim, the supero-external orbital contents were dissected, and
the superior and external rectus muscles were sectioned. The
dura mater of the ON was opened longitudinally, and the ON
was completely transected as close to the eye as possible. Care
was taken not to damage the retinal blood supply, which enters
the eye separately in the inferonasal aspect of the ON sheath
[50,51].

Electroretinography: The animals were dark adapted
overnight before the ERG recordings, and their manipulation
was done under dim red light (A>600 nm). The rats were
anaesthetized and bilateral pupil mydriasis was induced by
applying a topical drop of 1% tropicamide (Colircusi
tropicamida 1%®; Alcon-Cusi, S.A., El Masnou, Barcelona,
Spain) to both eyes. The light stimulation device used was a
Ganzfeld dome, which ensures a homogeneous illumination
anywhere in the retina, with multiple reflections of the light
generated by light emitting diodes (LED), which provided a
wide range of light intensities. For high intensity
illuminations, a single LED placed close (1 mm) to the eye
was used. Light intensity was calibrated by a dual-biosignal
generator device specifically adapted for ERG responses. The
recording system comprised Burian-Allen bipolar electrodes
(Hansen Labs, Coralville, IA) with a corneal contact shape; a
drop of methylcellulose, 2% (Methocel 2%®; Novartis
Laboratories CIBA Vision, Annonay, France) was placed
between the eye and the electrode to maximize conductivity
of the generated response. The reference electrode was placed
in the mouth and the ground electrode in the tail. Electrical
signals generated in the retina were amplified (x1000) and
filtered (band pass from 1 Hz to 1000 Hz) by a commercial
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amplifier (Digitimer Ltd, Letchworth Garden City, UK). The
recorded signals were digitized (Power Lab; ADInstruments
Pty. Ltd., Chalgrove, UK) and displayed on a PC computer.
Bilateral ERG recording was performed simultaneously from
both eyes. Light stimuli were calibrated before each
experiment, and the calibration protocol was set to assure the
same recording parameters for both eyes. The ERG responses
were recorded by stimulating the retina with light intensities
ranging between10¢ and 10* cd-s-m? for the scotopic
threshold response (STR), 10~ and 1072 cd-s-n1? for the rod
response, and 102 and 102 cd-s-nm? for the mixed (rod and
cone) response. For each light intensity level, a series of ERG
responses were averaged (from 40 ERG responses for the
dimmest stimulus intensities to 5 for the brightest stimulus),
and the interval between light flashes was adjusted to ensure
a timing that allowed response recovery (from 5 s for the
dimmest stimulus intensities to 60 s for the brightest stimulus).
At the end of each session the animals were treated with
topical tobramicine (Tobrex®; Alcon-Cusi, S.A.) in both
eyes. The analysis of the different recordings was performed
with the normalization criteria established for the
International Society for Clinical Electrophysiology of Vision
(ISCEV) for the measures of the amplitude and implicit time
of the different waves studied.

Analysis and statistics: The STR was analyzed for each
stimulus; pSTR was measured from baseline to the “hill” of
the positive deflection, approximately (ca.) 110 ms from the
flash onset; and nSTR was measured from baseline to first
“valley” after pSTR, ca. 220 ms from the flash onset. The a-
wave was measured from the baseline to the first valley, ca.
10 ms, from the flash onset; the b-wave amplitude was
measured from the bottom of the a-wave valley to the top of
the hill of the positive deflection. The time point of the b-wave
measurement varied depending upon the intensity used. The
implicit time was measured from the presentation of the
stimulus to the top of the b-wave. Data from operated and
unoperated eyes were compared; ERG wave amplitudes and
implicit times were calculated for each animal group and the
percentage difference between the operated and the
unoperated eyes was obtained for each stimulus and was
further averaged (mean+SEM). The results were analyzed
with SigmaStat® 3.1 for Windows® (Systat Software, Inc.,
Richmond, CA). Descriptive statistics were calculated, the
normality of the distribution of the data was examined with a
normality test, and parametric or non-parametric test were
used accordingly; t-test was used for the comparison between
the absolute response of both eyes prior and post ONT and for
the comparison of the percentage response of the operated eye
versus the unoperated eye prior and post ONT. As an attempt
to estimate a possible inter-relation between the progressions
of response along studied times, an analysis of variance
(ANOVA) on ranks test was used to compare the percentage
response between different animal groups. The statistic
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significance was placed in a p<0.05 for all tests, and the
statistic was always of two tails.

RESULTS

Electroretinograms in control albino and pigmented rats: To
study the effect of ONT on ERG waves in albino and
pigmented rats, and as baseline measurements, simultaneous
ERG recordings were taken of the right and left eyes of each
animal before surgery. Figure 1 shows a representative
example of the ERG traces recorded in an albino (Figure 1A)
and pigmented (Figure 1B) rat in response to flash stimuli of
increasing intensity. The STR were elicited by weak light
stimuli (=5.4 to —4.02 log cd-s-n7?). The amplitudes of pSTR
and nSTR increased exponentially with the intensity of the
light stimulus both in albino and pigmented rats (Figure
2A,B). No ERG a-wave was observed for light intensities
below —2.36 log cd-s-m? (Figure 1). The b-wave elicited by
light intensities from —3.96 cd-s-ni? increased exponentially,
reaching its maximum for 2.03 cd-s-nr? (Figure 1). Figures
2C,D show averaged data of ERG a- and b-wave amplitudes
in albino and pigmented rats, respectively. No significant
differences in any of the above ERG amplitudes between left
and right eyes were observed in any of the animals of this study
before surgery. When the amplitudes obtained from the albino
group were compared to those of the pigmented, there were
no significant differences (t-test; p>0.05) for any of the waves
analyzed except for the pSTR (t-test; p<0.05), an unexpected
result for which, at present, we have no clear explanation.

Electroretinograms in experimental albino and pigmented
rats with left ONT: ERG recordings were taken
simultaneously from the right unoperated eye and the left
operated eye in albino and pigmented rats at increasing
survival intervals after ONT.

One week after ONT: ERG traces from albino animals in
group | (n=6) examined one week after ONT showed
reductions in the pSTR and nSTR responses of approximately
40% when compared to the unoperated contralateral eye (t-
test, p<0.001). At this time, scotopic and mixed ERG
recordings of the operated eye also showed reduced a- and b-
wave amplitudes when compared with the unoperated eye.
Moreover, the ERG recordings from pigmented animals in
group V (n=8), examined one week after ONT, showed mainly
adecrease in the pSTR response of approximately 40% (t-test,
p<0.001). At this time, the remainder of the responses
recorded in the operated eye also show reduced amplitudes
when compared with the unoperated eye.

Two weeks after ONT: Representative ERG traces from an
albino rat in group Il (n=7) recorded from operated (bold
trace) and unoperated (thin trace) eyes two weeks after left
ONT are shown in Figure 3A. Reduced pSTR and nSTR
responses from operated eyes amounted to 65% of those of
the unoperated eyes (t-test, p<0.001), and these are clearly
observed at two weeks after ONT (Figure 3A). At this time,
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scotopic and mixed ERG recorded in operated eyes also
showed reduced a- and b-wave amplitudes when compared
with the unoperated eye (#-test, p<0.001). Averaged data of

Figure 1. Scotopic electroretinographic recordings in albino and
pigmented rats. Examples of the ERG traces recorded in an albino
(A) and pigmented (B) rats in response to flash stimuli of increasing
intensity. Thin traces correspond to recordings obtained from the
right eye and bold traces correspond to recordings obtained from the
left eye. The intensity of the flash stimuli is indicated in log cd-s/
m? units at the left of the recording traces. The scotopic threshold
responses were elicited by weak light stimuli from —4.60 to —5.40
log cd's/m?®. Rod and mixed responses were elicited by light
intensities from —3.96 to 2.03 log cd-s/m2. No significant difference
in the ERG amplitudes between left and right eyes was observed in
any of the studied animals. Examples for the measurement of wave
amplitudes are shown in the albino rat recordings.

© 2009 Molecular Vision

ERG wave amplitudes from animals in group II are shown in
Figures 4A,C.

Figure 3B shows ERG traces from a representative
pigmented rat in group VI (n=5) recorded from operated (bold
trace) and unoperated (thin trace) eyes two weeks after the
ONT. Reduced pSTR and nSTR responses from operated eyes
amounted to 55% of those of the unoperated eyes (#-test,
p<0.001). At this time, scotopic and mixed ERG recorded in
operated eyes also showed reduced a- and b-wave amplitudes
when compared with unoperated eyes (z-test, p<0.001).
Averaged data of ERG wave amplitudes from animals in
group VI are shown in Figures 4B,D.

Four weeks after ONT: Four weeks after ONT, differences in
ERG wave amplitudes between operated and unoperated eyes
were also observed in group III (n=9) albino rats. Figure SA
shows the ERG traces from a single representative animal of
group III illustrating the reductions in the pSTR and nSTR
responses of approximately 40% in the operated eyes versus
unoperated eyes (#-test, p<0.001). However, at this time, there
was an apparent recovery of the ERG wave amplitudes
observed for the scotopic and mixed responses. Averaged data
of ERG wave amplitudes from animals in group III are shown
in Figures 6A, C.

Four weeks after ONT, differences between ERG wave
amplitudes of operated and unoperated eyes were also

Figure 2. Electroretinographic amplitude measurements in albino
and pigmented rats. Averaged data (mean+SEM) of ERG amplitudes
versus stimulus intensities both from control albino (A, C; n=6) and
pigmented rats (B, D; n=8) is shown for the right eye (open symbols)
and left eye (filled symbols). A, B: Positive scotopic threshold
response (circles) and negative scotopic threshold responses
(triangles). C, D: Triangles correspond to the a-wave amplitude and
circles correspond to the b-wave amplitudes. When the amplitudes
obtained from the albino group were compared to those of the
pigmented, there were no significant differences (#-test; p>0.05) for
any of the waves analyzed, except the pSTR (z-test; p<0.05).
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observed in group VII (n=6) pigmented rats. Figure 5B shows
the ERG traces from a single representative animal of group
VII illustrating the reductions in the pSTR and nSTR
responses of approximately 60% in the operated eyes versus
unoperated eyes (¢-test, p<0.001). At this time, scotopic and

Figure 3. Scotopic electroretinographic recordings two weeks after
optic nerve transection. Examples of the ERG traces recorded in an
albino (A) and pigmented (B) rat in response to flash stimuli of
increasing intensity for the unoperated right eye (thin traces) and for
the operated left eye (bold traces) two weeks after optic nerve
transection. The intensity of the flash stimuli is indicated to the left
of the recording traces. Reduction in the pSTR and nSTR responses
from operated eyes versus unoperated eyes is clearly evident in both
albino and pigmented rats.

© 2009 Molecular Vision

mixed ERG recorded in operated eyes also show reduced a-
and b-wave amplitudes when compared with unoperated eyes
(t-test, p<0.001). Averaged data of ERG wave amplitudes
from animals in group VII are shown in Figures 6B,D.

Twelve weeks after ONT: Twelve weeks after ONT, changes
in ERG wave amplitudes were still observed in operated eyes
from group IV rats (n=9; Figure 7A). At this point after ONT,
the reduced pSTR and nSTR responses from operated eyes
were approximately 60% of those values recorded for the
unoperated eyes (#-test, p<0.001), while no other apparent
differences in ERG scotopic and mixed responses were
observed between operated and unoperated eyes. Averaged
data of ERG wave amplitudes from animals in group IV are
shown in Figures 8A,C.

In pigmented rats, twelve weeks after the ONT, changes
in ERG wave amplitudes were still observed in operated eyes
from group VIII (n=5; Figure 7B). At this point after ONT,
the reduced pSTR and nSTR responses from operated eyes
amounted to approximately 55% of those values recorded for
the unoperated eyes (#-test, p<0.001), while no other apparent
differences in ERG scotopic and mixed responses were
observed between operated and unoperated eyes. Averaged

Figure 4. Electroretinographic amplitude measurements two weeks
after optic nerve transection. Averaged data (mean+SEM) of ERG
amplitudes versus stimulus intensity both from albino (A, C; n=7)
and pigmented rats (B, D; n=5) from recordings obtained two weeks
after ONT. Open symbols show data averaged from unoperated right
eyes and filled symbols show data averaged from operated left eyes.
A, B: Data corresponding to positive scotopic threshold responses
(pSTR) are shown as circles and that corresponding to negative
scotopic threshold responses (nSTR) are shown as triangles. C, D:
Amplitudes corresponding to the a-wave are shown as triangles and
those corresponding to b-wave are shown as circles. A significant
reduction in the wave amplitudes of the pSTR, nSTR, b-wave
scotopic response, and a- and b-wave was observed in the operated
eyes (#-test; p<0.001) when compared to the unoperated control eyes.
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data of ERG wave amplitudes from animals in group VIII are
shown in Figures 8B,D.

Our data suggest that reductions in the pSTR and nSTR
continue a long time after ONT, and thus appear to be
permanent (Figures 9A,B) for both albino and pigmented rats.
However, the changes observed in the a- and b-wave
amplitudes of the scotopic and mixed ERG are obvious at a

Figure 5. Scotopic electroretinographic recordings four weeks after
optic nerve transection. Examples of the ERG traces recorded in an
albino (A) and pigmented (B) rats in response to flash stimuli of
increasing intensity four weeks after optic nerve transaction. Thin
traces correspond to the unoperated right eye and bold traces
correspond to the operated left eye. The intensity of the flash stimuli
is indicated to the left of the recording traces. Reduced pSTR and
nSTR responses from operated eyes versus control eyes were clearly
observed for both strains, while an apparent recovery of the ERG
wave amplitudes was observed for the scotopic and mixed responses
in the albino rats.

© 2009 Molecular Vision

short time (1-4 weeks) but not a long time after surgery (12
weeks). Moreover, a comparison between data from albino
and pigmented rats show that the reductions in the scotopic
and mixed ERG responses observed at short intervals (1-4
weeks) recovered earlier in albinos than in pigmented rats
(Figure 9C,D).

DISCUSSION

Previous studies by our group have quantified the time course
and amount of RGC loss induced by ONT close to the eye
[27,28,30-32]. Here we have further extended our previous
work and investigated the relationship between RGCs and the
components of the full-field electroretinogram by performing
ONT and comparing the responses obtained in albino and
pigmented rats at different survival intervals ranging 1 to 12
weeks. Our results document that ONT induces transient
alterations of the major ERG components, the a- and b-wave;
and provokes permanent diminutions of the early components

Figure 6. Electroretinographic amplitude measurements four weeks
after optic nerve transection. Averaged data (mean+SEM) of ERG
amplitudes versus stimulus intensity both from albino (A, C; n=9)
and pigmented rats (B, D; n=6) is shown from recordings obtained
four weeks after ONT. Open symbols show data averaged from
unoperated right eyes and filled symbols show data averaged from
operated left eyes. A, B: Data corresponding to positive scotopic
threshold responses (pSTR) are shown as circles and that
corresponding to negative scotopic threshold responses (nSTR) are
shown as triangles. C, D: Amplitudes corresponding to the a-wave
are shown as triangles and those corresponding to b-wave are shown
as circles. A significant reduction in the wave amplitudes of the
pSTR, nSTR, b-wave scotopic response, and a- and b-wave was
observed in the operated eyes (#-test; p<0.001) when compared with
the unoperated eyes. The significant reduction of ERG wave
amplitudes in operated eyes versus unoperated eyes is evident only
in the pSTR and nSTR responses (p<0.001) in albino rats. A
significant reduction for the pSTR, nSTR, b-wave scotopic response,
and a- and b-wave of the mixed response was observed in pigmented
rats (p<0.001).
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of the ERG, the negative and positive scotopic threshold
responses. Overall, our results are in agreement with previous
studies of pigmented rats [7,44], and provide new information
regarding the adult albino rat.

The need to understand and diagnose eye diseases in
which RGCs are affected has awakened a large interest in
developing techniques to assess these cells functionally. The

Figure 7. Scotopic electroretinographic recordings 12 weeks after
optic nerve transection. Examples of the ERG traces recorded in an
albino (A) and pigmented (B) rats in response to flash stimuli of
increasing intensity for the unoperated right eye (thin traces) and for
the operated left eye (bold traces) 12 weeks after optic nerve
transection. The intensity of the flash stimuli is indicated to the left
of the recording traces. Reduction in the pSTR and nSTR responses
from operated eyes versus unoperated eyes was clearly seen 12 weeks
after ONT, while no other apparent difference in ERG scotopic and
mixed responses was evident between the operated and unoperated
animals for both rat strains.

© 2009 Molecular Vision

flash ERG registers global retinal electrical activity after a
light stimulus and is used mostly to assess the function of
several neural populations of the retina, e.g., the
photoreceptors and bipolars, which are associated with the a-
and b-waves, the main waves of the ERG. In addition,
recording of scotopic threshold responses elicited with light
intensities several orders of magnitude smaller than those
needed to elicit the b-wave appears to be a fine and sensitive
functional test for the RGC population [4-9,11]. Indeed, in
adult pigmented rats, Naarendorp and colleagues (2001) [52]
injected 100 uM NMDA  (N-Methyl-d-Aspartate)
intraocularly to eliminate contributions by the inner retina to
the ERG response elicited with dim lights, and found
suppression of the STR recordings but not of the b-wave, thus
providing additional evidence for the inner retinal origin of
these potentials. Moreover, intraocular injection of
tetrodotoxin (TTX) in rats, or GABA in mice, induced
significant reductions in the STR amplitudes elicited with dim
lights, both in pigmented rats [7] and mice [9], providing
further evidence for the inner retinal origin of these
recordings.

Figure 8. Electroretinographic amplitude measurements 12 weeks
after optic nerve transection. Averaged data (mean+SEM) of ERG
amplitudes versus stimulus intensity both from albino (A, C; n=9)
and pigmented rats (B, D; n=5) from recordings obtained twelve
weeks after ONT. Open symbols show data averaged from
unoperated right eyes and filled symbols show data averaged from
operated left eyes. A, B: Data corresponding to positive scotopic
threshold responses (pSTR) are shown as circles and that
corresponding to negative scotopic threshold responses (nNSTR) are
shown as triangles. C, D: Amplitudes corresponding to the a-wave
are shown as triangles and those corresponding to b-wave are shown
as circles. A significant reduction of ERG wave amplitudes in
operated eyes versus unoperated eyes is observed for the pSTR and
nSTR responses (p<0.001) in both strains of rat. There was a small
reduction in the b-wave scotopic response and a- and b-wave of the
mixed response in pigmented rats (p<0.001).
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In our analysis of the functional changes of the albino
retina evolving from 1 to 12 weeks after ONT, we found a
decrease in both STR waves of approximately 40% at 1 week
and approximately 65% at 2 weeks after ONT. Moreover, in
both strains (pigmented and albino) the effects of the ONT on
the STR waves were comparable, that is, in both strains there
was an significant reduction of the STR waves—a conclusion
that is obtained from data analysis in which the values
registered from the operated eyes was compared with the
unoperated control eyes. The pSTR and nSTR responses at 12
weeks, the longest time examined, were comparable in the
pigmented and the albino rats (Figure 9). The decrease
recorded in STRs, which was first evident by 1-2 weeks after
ONT, coincides in time with the major wave of RGC loss that
follows ONT in the adult rat; indeed, approximately 80% of
the RGC population is lost during the first two weeks [27,
28,30,31,53]. A similar decrease in amplitude for STR waves
has been reported following optic nerve transection in the
adult pigmented rat [7]. In our experiments, the decrease in
STR wave amplitude was permanent, because 12 weeks after
ONT, the last time point examined in the present study, the
STR responses were still reduced, at approximately 40% of
the normal value, both in albino and pigmented rats. At this

Figure 9. Evolution of electroretinographic wave amplitudes over a
12-week time period. Average data (mean=SEM) of the reduction in
the ERG wave amplitudes is represented as the percentage between
operated and unoperated eyes for 1, 2, 4, and 12 weeks after ONT,
both from albino (A, C) and pigmented rats (B, D). A, B: Close
triangles show averaged amplitudes for the positive scotopic
threshold response (pSTR) and open triangles show averaged
amplitudes for the negative scotopic threshold responses (nSTR).
C, D: Open circles show averaged data for the a-wave amplitudes
and closed circles show averaged data for the b-wave amplitude. A
permanent reduction in the pSTR and nSTR was observed for the 12-
week time period both for pigmented and albino rats. The reduction
in the a-wave and b-wave amplitudes recovered earlier in albino rats
than in pigmented rats.

© 2009 Molecular Vision

time after ONT, the population of RGCs surviving in the retina
is approximately 5%—-10% of the original RGC population
[28,54], thus it is conceivable that the main reduction of
approximately 50%—-60% of the STR responses is due to the
loss of RGCs, the main neuronal population affected by ONT.
Indeed, previous work has suggested that ONT does not affect
the survival of non-RGC neurons [28,42,55], although the
possibility of retrograde transneuronal degeneration of first
and second order neurons in the retina following ONT cannot
be completely discounted [56-58]. We didn’t look at how
much of the 40% amplitude of the STR could be elicited by
the residual population of RGCs surviving in the adult rat
retina at 12 weeks, and it is plausible that the population of
amacrine cells, which are not affected by ONT, also contribute
to this wave, as previously shown in other species (e.g., mice,
cats, and humans; 7, 10) as well as in transgenic mice lacking
RGCs [59]. Thus, overall, the progressive diminution in the
amplitude of the STR waves observed shortly after ONT, and
its persistence 12 weeks later, highlights the importance of the
STR recordings as an electrophysiological tool for the
assessment of RGC function in these laboratory animals.

One week after ONT there was a significant reduction in
the a- and b-waves, these reductions were still present two
weeks after ONT in albino and pigmented rats, but had
recovered to almost basal levels by 4 weeks in the albinos and
by 12 weeks in the pigmented rats. A similar trend for
diminution and recovery of the a- and b-waves was found in
pigmented rats with their ON transected [7,43], in which the
a- and b-waves were reduced to approximately 80%—85% of
their normal amplitude when compared to the unoperated eye.
The release of trophic factors by macro and microglia
activation in these injured retinas [33] may play a role in the
amplitude of these waves as previously suggested [43], but it
is also possible that transient down-regulation of
photoreceptor-specific genes after ONT could explain the
reduction of the major ERG components. Indeed, recent work
from this laboratory has shown that several genes whose
transcription products are involved in phototransduction, such
as rhodopsin, opsin, or recoverin, are transiently down-
regulated [40] as soon as 12 h after ONT, when gene
transcription is severely halted and mRNA levels diminish to
approximately one half of their normal values. Interestingly,
the basal values of these mRNAs recover slowly within the
next weeks [39].

The adult rat is widely used in a range of experimental
models for several neurologic diseases involving RGC injury,
and several morphological techniques are available to
quantify the effects of these injuries on the survival and rescue
ofrat RGCs ex vivo [26-30,49,60] and in vivo [61]. However,
there are few functional techniques to assess the RGC
population in vivo, including the multifocal ERG [62] or the
pattern ERG [63], thus highlighting the importance of the STR
recordings to identify this population of neurons in the adult
albino or pigmented rat retina. Our present studies on albino
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and pigmented rats, as well as those of others on pigmented
rats [7], underline the potential use of the STR components of
the ERG as a functional index to demonstrate in vivo RGC
dysfunction in several experimental models involving RGC
injury, such as an acute [64,65] or chronic increase in
intraocular pressure [66—68].

In summary, we examined the alterations induced in the
STR components of the ERG and found a clear and persistent
diminution of these components over time following ONT in
the albino and pigmented rat. This functional approach could
be of great interest for several animal models covering
degeneration of the RGC population, for which, to date, there
have been few functional tests.
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