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Introduction
Ligand-inducible phosphorylation and phospho-protein binding 
enable the rapid assembly of macromolecular protein com-
plexes and transmission of signals from the plasma membrane 
to the nucleus (Ptacek and Snyder, 2006; Pawson and Kofler, 
2009). Phosphorylation is often coupled to substrate ubiquity-
lation, creating a diverse array of recognition platforms for as-
sociation of these multicomponent protein complexes (Haglund 
and Dikic, 2005; Hunter, 2007; Schwartz and Ciechanover, 
2009). There is now a plethora of molecular evidence to suggest 
that signaling events that are initiated in the nucleus invoke 
similar strategies to execute acute responses to DNA damage 
(Harper and Elledge, 2007; Greenberg, 2008; Huen and Chen, 
2008). Phosphatidylinositol-3-kinase-related kinase (PIKK)-
dependent phosphorylation mediates assembly of several differ-
ent E3 ligase complexes at double-strand breaks (DSBs), each 
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synthesizing ubiquitin chains on different substrates. In essence, 
a multitude of parallel signaling processes must rapidly develop 
at DSBs, necessitating different structural cues to coordinate  
repair and checkpoint events. Emerging evidence indicates that 
ubiquitin signaling is essential to this process. A substantial 
number of DNA repair proteins are dedicated to the synthesis, 
recognition, and breakdown of ubiquitin chains with specific 
topologies, supporting the concept that a diverse and dynamic 
ubiquitin landscape arises at DSBs to strongly influence both 
the efficiency and specificity of DNA repair.

Principles of ubiquitin
Numerous cellular processes are regulated by the posttransla-
tional mark ubiquitin, including protein degradation, cell cycle 
regulation, DNA repair, transcription, and endocytosis. Specifi-
cally, the highly conserved 76–amino acid protein can alter the 
activity of its target in a variety of ways, from changing its lo-
calization or enzymatic activity to targeting it for degradation. 
Ubiquitylation, the process that involves the covalent attach-
ment ubiquitin to the target protein, creates a covalent isopep-
tide linkage in a variety of different topologies to affect these 
diverse processes.

Ubiquitylation is a highly regulated process involving a 
specific cascade of activities performed by the E1, E2, and E3 
series of enzymes (Hershko et al., 2000; Pickart, 2001). E1, or 
ubiquitin-activating enzyme, activates ubiquitin by forming a 
thiol ester link between the carboxy terminus of ubiquitin and 
the active site cysteine of E1 in an ATP-requiring step. The acti-
vated ubiquitin is then transferred to an E2 ubiquitin-conjugating 
enzyme, also through a thiol ester bond between ubiquitin and 
the active site cysteine of E2. E2, together with E3 or ubiquitin 
ligase, transfers the ubiquitin to its target, forming a covalent 
isopeptide linkage between the carboxyl terminus Gly-76  
of ubiquitin to a primary amine (usually the -amino group of 
lysine) of the target protein.

Ubiquitylation is among the more unique forms of post-
translational modification in that a single ubiquitin monomer 
can be further ubiquitylated (polyubiquitylated) through one of 
seven lysines or through the amino terminus to create polyubiqui-
tin chains (Fig. 1 A). Remarkably, different ubiquitin topologies  

The intimate relationship between DNA double-strand 
break (DSB) repair and cancer susceptibility has sparked 
profound interest in how transactions on DNA and chro-
matin surrounding DNA damage influence genome integ-
rity. Recent evidence implicates a substantial commitment 
of the cellular DNA damage response machinery to the 
synthesis, recognition, and hydrolysis of ubiquitin chains 
at DNA damage sites. In this review, we propose that, in 
order to accommodate parallel processes involved in DSB 
repair and checkpoint signaling, DSB-associated ubiqui-
tin structures must be nonuniform, using different linkages 
for distinct functional outputs. We highlight recent ad-
vances in the study of nondegradative ubiquitin signaling 
at DSBs, and discuss how recognition of different ubiqui-
tin structures may influence DNA damage responses.

The ubiquitin landscape at DNA double-strand 
breaks

Troy E. Messick1 and Roger A. Greenberg1,2

1Department of Cancer Biology and 2Department of Pathology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104

© 2009 Messick and Greenberg  This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publica-
tion date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a 
Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, 
as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y



JCB • VOLUME 187 • NUMBER 3 • 2009� 320

for recognizing different surfaces on ubiquitin. Although no 
structures of other lysine-linked polyubiquitin chains have yet 
been structurally determined, mass spectrometry data suggest 
that these chains are formed through all lysine residues in vivo 
(Peng et al., 2003; Al-Hakim et al., 2008; Xu et al., 2009). Con-
sistent with the structural diversity of ubiquitin chains, a myriad 
of ubiquitin-binding domains exists that recognizes different 
features and topologies of ubiquitin. The majority of ubiquitin-
binding domains form -helical structures that recognize the 
hydrophobic patch centered around Ile44 of ubiquitin (Harper 
and Schulman, 2006; Grabbe and Dikic, 2009). Though the 
affinities of individually isolated ubiquitin-binding domains 
are low to moderate, this affinity may increase in vivo due to 
multiple ubiquitin-binding members in a complex recognizing 
polyubiquitin chains in a synergistic fashion.

The hydrolysis of the isopeptide bond connecting ubiqui-
tin to a substrate protein is performed by deubiquitinating en-
zymes (DUBs). DUBs act in a variety of regulatory processes, 
from “rescuing” previously targeted proteins from degradation 
to attenuating signaling pathways (Reyes-Turcu et al., 2009). 
Given the tight regulatory control of ubiquitin and the possi-
bility for many different linkages between ubiquitin moieties, 
it is perhaps not surprising that many DUBs exhibit specific-
ity for one type of ubiquitin chain isoform. There are generally 
two classes of DUBs that are distinguished on the basis of cata-
lytic mechanism (Reyes-Turcu et al., 2009). The first utilizes 
an active site cysteine nucleophile to hydrolyze the ubiquitin 
isopeptide bond, which is remarkably similar to the papain fam-
ily of cysteine proteases. The second class of DUB enzymes is  
the Jab1/MPN/Mov34 (JAMM) family of zinc-binding metallo
proteases. JAMM domains function by binding a highly electro-
philic metal (usually zinc) that delivers a hydroxide ion for 
nucleophilic attack on the isopeptide bond, performing iso-
peptide bond hydrolysis in a similar mechanism to the Zn2+- 
containing protease thermolysin.

Principles of DSB recognition
DSBs are potentially lethal lesions that can arise from endoge-
nous and exogenous sources. To protect the genome, cells use a 
vast network of proteins to monitor DNA integrity and mount a 
response to DSBs. This DNA damage response usually includes 
cell cycle arrest and activation of the DNA repair pathways. In 
extreme cases, when cells are unable to properly repair DSBs, 
apoptosis or senescence pathways may be triggered.

Recognition and signaling at DSBs proceeds rapidly, with 
a distinct temporal and spatial order of association and dissocia-
tion of numerous DNA repair factors with the site of the break 
(Lisby et al., 2003). DNA repair protein recruitment and reten-
tion is conveniently visualized by fluorescence imaging of re-
pair foci (often called ionizing radiation–induced foci [IRIF]). 
Foci are easily observed because many DNA repair proteins are 
retained at DSBs in suprastoichiometric ratios. It has been esti-
mated that individual breaks contains at least 1,000 molecules 
of each DNA repair protein (Lisby et al., 2004), revealing that 
many repair proteins are concentrated at repair sites by a fac-
tor of 103. The reasons for this stoichiometry are unknown,  
although it is speculated that high local concentrations of repair 

or linkages between ubiquitin moieties can lead to vastly dif-
ferent biological outcomes. For example, the canonical lysine-
48 (K48)-linked polyubiquitin targets the substrate protein for 
proteasomal degradation (Pickart and Cohen, 2004), whereas 
lysine-63 (K63)-linked polyubiquitin is often involved in local-
ization or signaling events (Chen and Sun, 2009). Polyubiquitin 
can be linked through one residue to create a homogeneous chain, 
or through multiple residues, forming branched ubiquitin chains 
(Kim et al., 2007b).

Even though polyubiquitin chains are made of the same 
basic ubiquitin unit, the structure of K63-linked chains is mor-
phologically different than K48-linked chains (Fig. 1, B and C).  
The K48-linked isoform of ubiquitin adopts a compact super
helical structure in which a hydrophobic patch consisting of Leu8, 
Ile44, and Val70 is buried within a repeating tetramer (Fig. 1 C;  
Eddins et al., 2007). In contrast, there is very little interaction 
between ubiquitin monomers in K63-linked polyubiquitin,  
allowing for a high degree of torsional freedom about the 
carboxy-terminal glycine–glycine axis, as confirmed by nuclear 
magnetic resonance studies (Fig. 1 B; Varadan et al., 2004). This 
“beads-on-a-string” model of K63-linked polyubiquitin allows  
K63-specific ubiquitin binding proteins a great deal of flexibility 

Figure 1.  Structural topology of ubiquitin chains. (A) Surface representa-
tion of ubiquitin. All seven lysines (K6, K11, K27, K29, K33, K48, and 
K63) and the amino-terminus (M1), shown in blue, can be conjugated to 
the carboxy terminus of another ubiquitin molecule. The hydrophobic patch 
(L8, I44, and V70), shown in green, is recognized by several ubiquitin-
binding proteins (PDB accession no. 1UBQ; Vijay-Kumar, et al., 1987).  
(B) Model of K63-tetraubiquitin (based on K63-diubiquitin, PDB accession 
no. 3A1Q; Sato et al., 2009). K63-tetraubiquitin forms long chains, ex-
posing the I44 hydrophobic patch in green, to ubiquitin-binding proteins.  
(C) Model of K48-tetraubiquitin (based on K48-diubiquitin, PDB accession 
no. 1F9J; Phillips et al., 2001). K48-tetraubiquitin forms a compact struc-
ture, where the I44 hydrophobic patch in green is largely buried.



321Ubiquitin and DNA repair • Messick and Greenberg

recruitment to DSBs. Notably, mutation in each of these DNA 
damage–associated ubiquitylation pathways is responsible for a 
human cancer susceptibility syndrome (Scully and Livingston, 
2000; Chenevix-Trench et al., 2002; Wang, 2007).

Fanconi anemia is a recessive monogenic disease in 
which patients display developmental abnormalities, bone mar-
row failure, and cancer predisposition phenotypes. Fanconi 
syndrome is comprised of 13 different genetic complemen-
tation groups, and at least three pathways (Wang, 2007). All 
Fanconi mutant cell lines display the common characteristic of 
sensitivity to DNA cross-linking agents. The classical Fanconi 
pathway culminates in monoubiquitylation of the FancD2 and  
FancI proteins at a single lysine residue on each protein  
(Garcia-Higuera et al., 2001; Sims et al., 2007; Smogorzewska 
et al., 2007; Wang, 2007). FancD2 ubiquitylation occurs in 
S phase in response to phosphorylation by the Rad3-related 
PIKK, ataxia telangiectasia and Rad3 related (ATR; Andreassen 
et al., 2004). Monoubiquitylation is critical for FancD2 and 
FancI localization to DSBs and chromatin association (Meetei 
et al., 2004; Wang et al., 2004; Sims et al., 2007; Smogorzewska 
et al., 2007). Though it is not clear how ubiquitylation controls 
Fanconi pathway activity, a carboxy-terminal FancD2-ubiquitin 
fusion protein strongly associated with DSBs and chromatin, 
whereas a fusion containing the Ile44Ala mutation in ubiquitin 
did not. Because most ubiquitin-binding domains require direct 
binding to Ile44 on ubiquitin, this result raises the possibility 
that a chromatin-bound ubiquitin receptor mediates ubiquity-
lated FancD2 and FancI localization (Matsushita et al., 2005).

PIKK phosphorylation coupled to E3 ubiquitylation of 
tumor-suppressor repair proteins appears to be evolutionarily 
conserved. The breast cancer early onset 1 gene product, BRCA1, 
is a RING domain E3 ligase that pairs with its stoichiometric 
binding partner, the RING domain protein BARD1. Approxi-
mately 20% of the clinical missense mutations to BRCA1 occur 
in the RING domain and disrupt its E3 ligase activity (Brzovic 
et al., 2001). BRCA1-BARD1 heterodimers localize at DSBs 
and are necessary for a host of DNA damage response activi-
ties including homologous recombination and checkpoint activ-
ity. DNA damage induces an ATM and ATR kinase–dependent 
activation of BRCA1-BARD1 E3 ligase activity on chromatin 
in Caenorhabditis elegans and in human cells (Polanowska  
et al., 2006). The BRCA1 RING domain interaction with the 
E2 enzyme Ubch5c is necessary for autoubiquitylation via K6-
linked ubiquitin in vitro (Wu-Baer et al., 2003; Nishikawa et al., 
2004). K6-Ub foci are present at DSBs in both a BRCA1- and  
Ubch5c-dependent manner (Morris and Solomon, 2004;  
Polanowska et al., 2006), which suggests that BRCA1 deposits 

factors are necessary to amplify signals for repair and check-
point responses.

Robust foci formation occurs within minutes of DSB in-
duction, which dictates that molecular recognition must rapidly 
develop at the site of DNA damage for repair protein recruitment. 
At the pinnacle of this chain of events is phosphorylation of 
the histone H2A variant H2AX. DNA damage activates cellular 
ataxia telangiectasia mutated (ATM) kinase and related PIKKs 
to phosphorylate H2AX at its C terminus on Ser139. Phospho 
H2AX (-H2AX) formation occurs within minutes after dam-
age, and extends for up to a megabase from the site of the break 
in mammalian cells, providing a platform for subsequent DNA 
repair protein recruitment and amplification at DSBs. Indeed, 
H2AX-null cells demonstrate strongly reduced repair protein  
focus formation, which is consistent with H2AX being a master 
regulator of the recruitment of DNA repair proteins to chro-
matin at DSBs (Celeste et al., 2002). These findings provided 
a basis to understand repair factor–DSB stoichiometry. Thou-
sands of repair protein molecules associate along chromatin that 
contains -H2AX in cis to the DSB, which explains the supra-
stoichiometric relationship of repair proteins to DSBs.

Although -H2AX is a master regulator of visible foci 
formation, -H2AX deficiency does not eliminate all DNA  
repair protein recruitment to DSBs, which indicates that foci 
are just part of the DSB repair puzzle. During DSB repair, there 
is a clearing of -H2AX and nucleosomes directly adjacent to 
the DSB (Shroff et al., 2004; Berkovich et al., 2007). These 
dechromatinized regions are thought to be the site of the ma-
jority of DSB repair chemistry. For example, proteins that per-
form nonhomologous end joining do not form foci, presumably  
because they are present only at the DSB termini and not along 
chromatin that contains -H2AX. Conversely, proteins dedi-
cated to homologous recombination, such as the breast cancer 
early onset gene product BRCA1, are present at both non-
nucleosomal regions and at chromatin that contains -H2AX 
(Celeste et al., 2003; Bekker-Jensen et al., 2006). Thus, DSB 
recognition at different locales on both DNA and chromatin 
flanking the break is essential for repair and the maintenance of 
genome integrity.

Connections between PIKK activity  
and ubiquitylation

Ubiquitylation directs repair proteins to DSBs. 
Several prominent DNA repair pathways use a paired process  
in which PIKK-mediated phosphorylation is coupled to sub-
strate ubiquitylation (Table I). In each instance, ubiquitylation 
of a protein associated with DNA repair is essential for its  

Table I.  Connections between the DNA damage response and ubiquitin

Substrate PIKK Ubiquitin linkage E3 ligase E2 ligase DUB Function

FancD2 ATR Mono FancL Unknown USP1 DSB localization
FancI ATM/ATR Mono FancL Ube2T USP1 DSB localization
BRCA1 ATM/ATR K6 (in vitro) BRCA1-BARD1 Ubch5c Unknown Unknown
CtIP ATM Unknown BRCA1-BARD1 Ubch5c Unknown DSB localization
H2A, H2AX ATM/ATR/DNA-PK Mono, K63 RNF8, RNF168 Ubc13 USP3, BRCC36 Recruitment of factors to DSB

DNA-PK, DNA-dependent protein kinase.
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of any of the members of the complex results in failure of the 
other constituents to form DSB-associated foci, and increased 
sensitivity to ionizing radiation. Although structural evidence 
is needed to determine the actual degree of similarity to the 
proteasome, it is intriguing that multiple ubiquitin-binding 
domains would be present within the RAP80 complex (Wang  
et al., 2009). Perhaps these domains regulate BRCC36 catalytic 
activity or, alternatively, modulate the avidity of the complex 
for ubiquitin chains at DSBs. In vitro reconstitution of this com-
plex with recombinant proteins will be necessary to definitively 
address these possibilities.

PIKK activity has been linked to histone ubiquitylation, the 
putative DSB-associated ligand for the BRCA1–RAP80 complex 
(Huen et al., 2007; Kolas et al., 2007; Mailand et al., 2007; Zhao 
et al., 2007). As mentioned earlier, -H2AX serves as a signal 
to initiate recruitment of additional factors to DNA repair foci. 
Chief among them is the mediator of DNA damage checkpoint 1 
(MDC1). ATM phosphorylates MDC1 at an SQ/TQ-rich region, 
which is subsequently recognized by the E3 ubiquitin ligase 
RNF8, beginning the transition from primarily a phosphoryla-
tion cascade at DSBs to a series of ubiquitin-dependent signaling 
events. RNF8 works in conjunction with Ubc13 to ubiquitylate 
histones H2A and -H2AX. The RIDDLE syndrome E3 ligase 
RNF168 recognizes ubiquitin chains at DSBs synthesized by 
RNF8 through its two motif interacting with ubiquitin (MIU)  
domains which represent an inverted UIM (Doil et al., 2009; 
Stewart et al., 2009). RNF168, like RNF8, associates with Ubc13 
to direct ubiquitylated H2A and K63-Ub synthesis at DSBs.  
RNF8 or RNF168 deficiency abrogates BRCA1–RAP80 foci for-
mation, providing additional supportive evidence that ubiquitin is  
a DSB-targeting mechanism for the BRCA1–RAP80 complex.

RAP80 is not the only DNA repair protein that requires 
the combined efforts of RNF8 and RNF168 together with 
Ubc13 for DSB localization (Huang et al., 2009). The chromatin-
bound DNA repair protein, p53-binding protein 1 (53BP1), 
also depends on RNF8 and RNF168 DSB-associated ubiquity-
lation, yet no evidence exists that 53BP1 directly binds ubiq-
uitin. Instead, it appears to recognize methylated histones at 
DSBs (Huyen et al., 2004; Sanders et al., 2004; Botuyan et al., 
2006). These results suggest that DSB-associated ubiquitin 
influences chromatin structure in a manner necessary to unveil 
modified histone epitopes. The current data are therefore con-
sistent with ubiquitylation of DSB-associated proteins provid-
ing direct and indirect routes to damage site recognition for 
DNA repair proteins.

Structural basis for RAP80 K63-Ub 
specificity: a paradigm for DSB-associated 
ubiquitin recognition
The structural basis accounting for the K63-Ub specificity of 
the RAP80 tandem UIM domains was delineated in two recent 
papers (Sato et al., 2009; Sims and Cohen, 2009). Sims and 
Cohen (2009) measured the binding affinity for ubiquitin of the 
UIM1 and UIM2 to be quite modest (230 µM and 470 µM, re-
spectively). The binding affinity increased >10-fold (17–22 µM) 
when the tandem UIM domains were measured for the ability to 
bind K63-linked diubiquitin. Mutational analysis showed that 

K6-Ub chains on proteins at repair sites to execute at least a portion 
of its myriad DNA repair activities. Notably, these experiments 
were primarily performed with ubiquitin mutants that contain 
a single lysine residue, and it is currently unclear how K6-Ub 
influences recognition and signaling processes. It will be impor-
tant to readdress these findings upon development of K6-Ub– 
specific antibodies to more definitively understand the kinetics 
and relationship of K6-Ub to BRCA1 DNA repair activities.

The identification of BRCA1-BARD1 E3 substrates will 
be critical to understand how BRCA1 ligase activity contrib-
utes to the DNA damage response. In this regard, BRCA1 me-
diated, DNA damage–inducible ubiquitylation of the BRCA1 
carboxy-terminal interacting partner, CtBP-interacting protein 
(CtIP), was reported in human cells (Yu et al., 2006). Interest-
ingly, BRCA1 RING mutations that disrupt E3 ligase activity 
or CtIP deficiency failed to support CHK1 phosphorylation 
via ATR, resulting in a defective ionizing radiation–induced 
G2 checkpoint. BRCA1 E3 activity and interaction with CtIP 
was necessary for CtIP ubiquitylation and IRIF formation. 
As with the case of FancD2 and FancI ubiquitylation, mecha-
nisms responsible for CtIP-Ub foci formation are not pres-
ently understood.

Evidence for ubiquitin recognition at DSBs. 
The concept of retention of DNA repair proteins at DSBs by 
ubiquitin receptors was finally validated in studies that revealed 
a molecular basis for BRCA1 DSB recruitment. BRCA1 is tar-
geted to DSBs via an interaction with a five-component complex 
containing RAP80, a DNA repair protein that contains tandem 
ubiquitin interaction motifs (UIMs; Kim et al., 2007a; Sobhian 
et al., 2007; Wang et al., 2007; Yan et al., 2007). These UIM  
domains preferentially recognize K63-linked ubiquitin over 
K48-linked structures, which suggests that BRCA1 would be tar-
geted to nondegradative ubiquitin signals (Sobhian et al., 2007).  
Indeed, K63-linked structures accumulate in DSB foci, whereas 
K48-linked chains do not (Sobhian et al., 2007; Doil et al., 2009; 
Stewart et al., 2009). RAP80 DSB localization requires -H2AX 
and MDC1, both of which are necessary for polyubiquitylation 
at DSBs. Interestingly, an in-frame deletion in RAP80 UIM1 
is associated with breast cancer in northern Finnish popula-
tions (Nikkilä et al., 2009). This RAP80 variant, RAP80E81, 
demonstrates reduced ubiquitin binding and DSB localization 
while maintaining all other protein interactions. Because of 
these properties, RAP80E81 functions as a dominant-negative  
allele by titrating BRCA1 away from DSBs.

RAP80 exists as a stable complex together with four other 
core components: BRCC36, BRCC45, Abraxas, and MERIT40/
NBA1 (Feng et al., 2009; Shao et al., 2009b; Wang et al., 2009). 
Bioinformatic analysis suggests similarity of the RAP80 core 
complex to the lid domain within the 19S subunit of the 26S 
proteasome (Wang et al., 2009). BRCC36 is a member of the 
JAMM family of metalloprotease DUB enzymes, and mutation 
of the zinc-binding residues results in increased sensitivity to 
DSBs, an impaired G2 checkpoint, and elevated levels of conju-
gated ubiquitin at DSBs (Shao et al., 2009a,b). This JAMM do-
main DUB specifically deubiquitylates K63-Ub, which matches 
the ubiquitin-binding preference of the RAP80 UIM domains 
(Cooper et al., 2009; Shao et al., 2009a). Generally, knockdown 
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orientation of the UIM domains can dictate specificity for dif-
ferent ubiquitin chain topologies (Sims and Cohen, 2009).

Evidence for a heterogeneous ubiquitin 
landscape at DSBs
Several lines of evidence argue against a homogeneous ubiqui-
tin response at DSBs (Fig. 3). The most compelling of which 
is that (1) different types of ubiquitin linkages have been de-
tected at DSBs, and (2) that repair proteins that bind to ubiquitin 
display different kinetics of DSB foci formation. Comparison 
of RNF168 and RAP80 foci formation strongly suggests dif-
ferential ubiquitin recognition at DSBs. Like RAP80, recruit-
ment of RNF168 to DSBs is dependent on its ubiquitin-binding 
domains and RNF8. RNF168 DSB association appears before 
BRCA1–RAP80 and is necessary for both RAP80 and 53BP1 
focus formation (Doil et al., 2009; Stewart et al., 2009). Expres-
sion of a RING domain RNF168 mutant revealed that it does 
not require its own catalytic activity for retention at DSBs (Doil 
et al., 2009). RNF8 E3 activity is thus sufficient for RNF168 
DSB retention but insufficient for recruiting either RAP80 or 
53BP1, again supporting the argument that the RAP80 UIM do-
mains differ in their DSB recognition from RNF168 MIUs. The 
RAP80 UIMs selectively recognize K63- and K6-linked ubiq-
uitin but exhibit much lower affinity for either monoubiquitin or 
K48-linked ubiquitin (Sobhian et al., 2007). It is thus unlikely 
that the increase in mono-ubiquitylated H2A is what attracts 
RAP80; the more likely culprit is K63-ubiquitin chains at DSBs. 
RAP80 specificity for K63-linked ubiquitin is encoded in part 
via a linker region between each UIM (Sims and Cohen, 2009). 
The RNF168 MIU domains have a much larger intervening se-
quence, and although in vitro ubiquitin binding to K63-Ub has 
been described (Penengo et al., 2006), the exact configuration 

the linker region between the two UIMs was important for bind-
ing K63-linked polyubiquitin. Sato et al., (2009) recently de-
scribed the mouse RAP80 tandem UIM domain structure bound 
to K63-linked diubiquitin (Fig. 2 A). The structure reveals that 
these domains consists of a single 60-Å long -helix (Sato et al., 
2009). Interestingly, the inter-UIM region adopts an -helical  
secondary structure, as predicted by Sims and Cohen (2009). 
Each UIM domain binds to the hydrophobic patch surrounding 
Ile44 of the respective ubiquitin. The torsional freedom of K63-
linked diubiquitin about the carboxy-terminal axis of the distal  
ubiquitin is evident when one compares the RAP80 bound and 
unbound structures. In the unbound structures (Datta et al., 
2009; Komander et al., 2009), the Ile44 hydrophobic patches 
are rotated 100° from each other. Upon binding to RAP80, the 
hydrophobic patches of the two ubiquitins align along one face 
rotated just 10° from one another (Fig. 2 B; Sato et al., 2009). 
Combining the structural information with the mutational 
analysis reveals the inter-UIM region as more than just a linker 
between the two UIM domains. It serves as a molecular ruler 
measuring the distance between K63-linked ubiquitin and orients 
the hydrophobic regions to lie on one side. These findings led  
to a model of linkage-specific avidity, in which linker region 

Figure 2.  Structural basis for the specificity of RAP80 binding to ubiquitin. 
(A) RAP80 UIM1 and UIM2 bound to K63-diubiquitin. The UIM domains 
of RAP80 (magenta) recognize the I44 hydrophobic patches (green) of 
ubiquitin. The inter-UIM region (pink) adopts an -helical fold. (Sato et al., 
2009) (B) Comparison of the RAP80 bound and unbound forms of K63-
linked diubiquitin. The distal ubiquitin was superimposed to show differ-
ences in the proximal ubiquitin between bound (yellow) and unbound (pale 
blue) of K63-linked diubiquitin. RAP80 induces an 45° rotation about 
the carboxy-terminal region glycine–glycine axis of K63-linked diubiquitin 
(Komander et al., 2009; Sato et al., 2009).

Figure 3.  Model for differential ubiquitin-related recognition and repair 
activities at DSBs. Ubiquitin chains of differing topologies, as indicated, 
covalently linked to different substrate proteins create a varied ubiquitin 
landscape at DSBs. Differential recognition of this ubiquitin environment 
by DNA repair proteins targets repair and checkpoint activities to the 
appropriate location adjacent to DSBs.
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CtIP with BRCA1 and Mre11. The BRCA1–CtIP complex inter-
acts with Mre11 in a DNA damage–inducible manner (Greenberg 
et al., 2006; Chen et al., 2008), and this supercomplex has been 
implicated in nucleolytic degradation of double-stranded termini 
(Fig. 3; Sartori et al., 2007; Yun and Hiom, 2009). As previously 
discussed, CtIP is polyubiquitylated after DNA damage in a man-
ner dependent on its interaction with BRCA1 (Yu et al., 2006). 
CtIP ubiquitylation is correlated with its ability to form IRIF and 
to activate CHK1. Because CHK1 activation requires ATR ac-
tivation on single-stranded DNA (Zou and Elledge, 2003), it is 
tempting to speculate that BRCA1 teams up with Ubc13 to ubiq-
uitylate CtIP, thus activating CtIP–Mre11 complex nuclease 
activity for end resection. The creation of a clean, genetic system 
to investigate BRCA1 E3 activity has severely injured this hy-
pothesis. BRCA1 RING domain I26A mutant knock-in embry-
onic stem cells have recently been made (Reid et al., 2008). This 
allele abrogates BRCA1 RING domain interaction with E2 en-
zymes (Brzovic et al., 2003; Christensen et al., 2007), strongly re-
ducing BRCA1 E3 activity in vitro and autoubiquitylation in vivo 
(Reid et al., 2008). Surprisingly, BRCA1 I26A knock-in ES cells 
performed homologous recombination at similar levels to cells 
expressing wild-type BRCA1 (Reid et al., 2008). These findings 
are inconsistent with BRCA1 E3 activity being involved in end 
resection and instead are more supportive of Ubc13 working in 
conjunction with other E3 ligases (e.g., RNF8 and RNF168) to 
concentrate BRCA1–CtIP and other resection-promoting factors 
at DSBs. Perhaps CtIP ubiquitylation by BRCA1 is not essential 
for end resection and instead influences CHK1 phosphorylation 
by other means. An alternative explanation is that CtIP does not 
require BRCA1 in mouse ES cells for ubiquitylation and that a 
different E3 suffices in this cell type.

Concluding remarks
Nondegradative forms of ubiquitin have, quite literally, left their 
mark on the DNA damage response. A variety of repair protein 
substrates, E3 ligases, and DUBs, each with their own specific-
ity for synthesizing, recognizing, or hydrolyzing ubiquitin chains, 
appear to make important contributions to DNA repair. These 
initial studies have created new opportunities to understand the 
DNA damage response, and perhaps additional pharmacologic 
opportunities for treating human disease.
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