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ABSTRACT

Accurate free energy estimation is essential for RNA structure prediction. The widely used Turner’s energy model works well for
nested structures. For pseudoknotted RNAs, however, there is no effective rule for estimation of loop entropy and free energy.
In this work we present a new free energy estimation method, termed the pseudoknot predictor in three-dimensional space
(pk3D), which goes beyond Turner’s model. Our approach treats nested and pseudoknotted structures alike in one unifying
physical framework, regardless of how complex the RNA structures are. We first test the ability of pk3D in selecting native
structures from a large number of decoys for a set of 43 pseudoknotted RNA molecules, with lengths ranging from 23 to 113. We
find that pk3D performs slightly better than the Dirks and Pierce extension of Turner’s rule. We then test pk3D for blind
secondary structure prediction, and find that pk3D gives the best sensitivity and comparable positive predictive value (related to
specificity) in predicting pseudoknotted RNA secondary structures, when compared with other methods. A unique strength of
pk3D is that it also generates spatial arrangement of structural elements of the RNA molecule. Comparison of three-dimensional
structures predicted by pk3D with the native structure measured by nuclear magnetic resonance or X-ray experiments shows
that the predicted spatial arrangement of stems and loops is often similar to that found in the native structure. These close-to-
native structures can be used as starting points for further refinement to derive accurate three-dimensional structures of RNA
molecules, including those with pseudoknots.

Keywords: RNA structure prediction; pseudoknots; RNA free energy estimation; RNA structure modeling; RNA secondary and
tertiary structure

INTRODUCTION

Biological functions of RNA range from carrying genetic
information, participating in protein synthesis, catalyzing
biochemical reactions, and regulating gene expressions,
to acting as a structural molecule in cellular organelles
(Gesteland et al. 2006). To understand how RNA molecules
perform these tasks, knowledge of the three-dimensional
structures of RNA is often required. Although the most
reliable sources of RNA structural information are experi-
mental measurements from X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy, and cryoelectron

microscopy, experimental structures of RNAs are technically
challenging to obtain and are costly in both time and effort.
As a result, knowledge of RNA structures lags far behind that
of RNA sequences. Computational prediction of RNA
structures, therefore, can provide an alternative source of
information for gaining biological insights.

Prediction of secondary structures of small and non-
pseudo-knotted RNAs has been very successful (Mathews
et al. 1999). Predicted secondary structures of RNA mole-
cules can provide valuable information, as they could reveal
the functions of RNA molecules (Gonzalez-Diaz et al. 2007)
and help in the understanding of RNA folding —since
RNAs often fold hierarchically (Brion and Westhof 1997).
They can also be used for RNA comparison (Gan et al.
2003), and for predicting three-dimensional RNA struc-
tures (Shapiro et al. 2007). There are two general strategies
in predicting RNA secondary structures. The most success-
ful one is through comparative sequence analysis (Doshi
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et al. 2004; Gardner and Giegerich 2004), which utilizes
homology information and incorporates many complex
factors in determining RNA structures implicitly. However,
the approach of comparative sequence analysis requires the
availability of many related RNA sequences, thus it is not
always feasible. The other approach is through minimiza-
tion of free energies (MFE). This is based on the thermo-
dynamic hypothesis, which states that the conformation
with the lowest free energy is the native RNA structure
(Tinoco et al. 1971).

The most widely used secondary structure prediction
programs are based on the second strategy. Among these,
Mfold (Zuker 2003), RNAfold (Hofacker et al. 1994), and
RNA structure (Mathews et al. 2004) are based on dynamic
programming and guarantee the generation of a structure
with the lowest free energy, within the accuracy limitations
of the free energy rules employed, and with the condition
that the RNA secondary structures are nested and contain
no pseudoknot. When pseudoknotted RNAs are excluded,
Mfold, for example, can correctly predict an average of 69%
of known base pairs in a test involving a large data set
containing tRNA, 5S, 16S, 32S, Group I and II introns,
RNase P, and SRP RNAs (Mathews et al. 1999).

However, prediction of RNA secondary structure with
pseudoknots is far more challenging. For example, when
the test set includes pseudoknotted RNAs, the accuracy of
Mfold prediction deteriorates to 54%–68% (van Batenburg
et al. 1995; Rivas and Eddy 1999; Dirks and Pierce 2003;
Ruan et al. 2004; Ren et al. 2005; Reeder et al. 2007; Zhao
et al. 2008). The difficulties are twofold. First, there are
exponentially many ways that pseudoknots can form. It has
been shown that the general problem of predicting RNA
secondary structures containing pseudoknots is NP hard
(Akutsu 2000; Lyngsø and Pedersen 2000). Methods based
on dynamic programming cannot solve this problem, aside
from a few special cases (Rivas and Eddy 1999; Reeder et al.
2007). Second, there is no known effective free energy
model that can describe accurately the free energy of loops
in pseudoknotted RNA molecules.

Recently, several methods have been designed to predict
the secondary structures of RNAs with pseudoknots. These
include NUPACK (Dirks and Pierce 2003), pknotsRE
(Rivas and Eddy 1999), pknotsRG-mfe (Reeder et al.
2007), ILM (Ruan et al. 2004), TdFold (Zhao et al. 2008),
STAR (van Batenburg et al. 1995), HotKnots (Ren et al.
2005), FlexStem (Chen et al. 2008), and Kinefold (Isambert
and Siggia 2000). These either employed approximation
algorithms and generated predicted structures that were
within a certain approximation ratio with the optimal
structure (Rivas and Eddy 1999; Dirks and Pierce 2003;
Ruan et al. 2004; Reeder et al. 2007; Zhao et al. 2008), or
employed empirical algorithms that were more stochastic
in nature (van Batenburg et al. 1995; Isambert and Siggia
2000; Ren et al. 2005; Chen et al. 2008). The average
accuracy was improved to 76%–80% for small pseudoknots

(<150 nucleotides [nt]). For large pseudoknots, the prob-
lem was still very challenging, and the accuracy ranged
from 36% to 55%.

All of these methods represented the development of new
algorithms in generating candidate secondary structures.
They all employed the well-established Turner’s energy rule
and its modifications (Serra et al. 1995; Xia et al. 1998;
Mathews et al. 1999) to estimate the free energy of
pseudoknotted RNA secondary structures (Dirks and
Pierce 2003). However, the lack of progress in calculating
free energies associated with pseudoknotted loops posed
a significant limit on what these methods could achieve.

There has been a long line of research studying the free
energy rules of pseudoknots, with the entropic cost as the
main focus, since the enthalpic contribution can be
accurately obtained using Turner’s energy rule. Gultyaev
et al. (1999) adjusted the parameters of equations derived
from polymer theory such that they were consistent with
known data on pseudoknots. They compiled a table of
recommended free energy values for H-type pseudoknots
with different stem–loop lengths (Gultyaev et al. 1999).
Using the Gaussian chain approximation and neglecting
the excluded volume effects, Aalberts and Hodas (2005)
developed a model to estimate the free energy of pseudo-
knots of the ABAB-type. Isambert and Siggia (2000) treated
pseudoknots in two stages by modeling short-scale struc-
tures as ‘‘net’’ and large-scale structures as ‘‘Gaussian
crosslinked gel’’ in their Kinefold method. They calculated
the short-scale conformational entropy analytically from
the Gaussian chain model, and obtained the large-scale
entropy by algebraic integrations. According to these
authors, the excluded volume effects were incorporated
crudely by adjusting the value of an exponent (Isambert
and Siggia 2000). Based on the work of Rivas and Eddy
(1999), Dirks and Pierce (2003) developed a free energy
rule for pseudoknots using a phenomenological linear
equation in which the coefficients were trained by using
known data of pseudoknots. This model has become the
standard for pseudoknot free energy calculation and has
been often regarded as an extension to Turner’s energy rule
due to its Turner-style formulation, as well as the linear
functional form necessary for dynamic programming algo-
rithm. Although this free energy rule is used frequently, it is
not realistic since it does not model the important excluded
volume effect.

Another important work on modeling RNA free energies
was a constraint generation method presented by Andronescu
et al. (2007), which employed an iterative scheme to
train hundreds of free energy parameters on large sets of
structural and thermodynamic data. Based on the param-
eters optimized by this method, significant improvements
in prediction accuracy over the other methods have been
achieved. Aside from these thermodynamical measurement
based methods, there were alternative probabilistic meth-
odologies for modeling RNA secondary structures. Among
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them, CONTRAfold was based on conditional log–linear
models and generalized upon stochastic context-free gram-
mars by using discriminative training and feature-rich
scoring (Do et al. 2006). The work of the CONTRAfold
method demonstrated that statistical learning procedures
provide an effective alternative to the physics-based ap-
proach in deriving parameters for RNA secondary structure
prediction.

Despite these successes, calculating the free energy of
loop regions in RNA pseudoknots is still an unsolved
problem. In our opinion, this is intrinsically a three-
dimensional problem. For loops embedded in pseudoknots,
commonly used secondary structural features—such as the
number of base pairs bordering the pseudoknots, loop asym-
metricity, and the penalty for overlapping pseudoknots—do
not necessarily capture the most relevant information. It is
necessary to develop a new free energy rule based on three-
dimensional spatial models rather than models solely
restricted to secondary structures. Based on self-avoiding
random walks of chain conformations on lattice models,
Lucas and Dill (2003), and Kopeikin and Chen (2005,
2006) developed theoretical models of pseudoknots and
simple RNA tertiary folds. These models have been used in
studies of folding stability, thermal transitions, and the
general shape of the free energy landscape of RNA folding.
A limitation of these models is that they are lattice based
and cannot represent realistic RNA conformations. The
first ab initio free energy model for realistic H-type
pseudoknots that was easy to implement was the Vfold
model developed recently (Cao and Chen 2006, 2009; Chen
2008). Since the loop conformation depends on the nearby
helical stems through chain connectivity and stem–loop
volume exclusion, a template was first constructed from
experimentally measured atomic coordinates of RNA stem
structures. The number of conformations of loops was then
enumerated by generating self-avoiding walks on a diamond
lattice that connect the stem ends. An important develop-
ment in these works was the three-dimensional templates
created for estimating the loop entropy of pseudoknotted
RNA structures, as they already contained rich information.
The Vfold method worked very well for studying RNA
thermodynamics and for RNA structure predictions (Cao
and Chen 2006, 2009; Chen 2008). However, although it is
not difficult to build templates for H-type pseudoknots and
create a look-up table for entropic costs of forming stem–
loop structures with different lengths, it is not feasible to do
so for all possible pseudoknots.

It is our goal here to go beyond previous approaches and
develop a general framework for computing the free
energies of RNA molecules with arbitrary secondary struc-
tures, including those with complex pseudoknots. Our
approach is based on considerations of the spatial nature
of RNA molecules and is not restricted to any specific type
of pseudoknot, such as the H-type pseudoknot, but is
applicable to all types of pseudoknots. Physically, the

entropy of a loop of a specific length is determined to
a large extent by the end-to-end distance and the spatial
interference from nearby stems or loops. This is true for
loops of all nature, regardless of whether or not it is
a hairpin loop, an internal or bulge loop, a multibranch
loop, or a pseudoknotted loop (Kopeikin and Chen 2005,
2006; Zhang et al. 2008; Cao and Chen 2009). From this
consideration and our previous work (Zhang et al. 2008),
we have developed an efficient and accurate method to
calculate the loop entropy of RNA structures with pseu-
doknots. By first growing multiple RNA chains in three-
dimensional space, our method searches among all possible
arrangements of helical stems for the optimal three-
dimensional structure. The loop entropy of RNA structures
in each spatial arrangement of helical stems is then
computed by accurately estimating the fraction of the
number of loop conformations with respect to the number
of random coils of the same length based on a six-state
discrete RNA chain model (Zhang et al. 2008). We call our
method the pseudoknot predictor in three-dimensional
space (pk3D). Our method is feasible because the con-
straints from chain connectivity and the avoidance of
geometric collisions allow early pruning of a vast number
of unlikely spatial arrangements, which occur early in the
branches of a search tree. As a result, the actual number of
spatial arrangements is relatively small.

The pk3D method takes the secondary structure candi-
dates of given RNA sequences as input and computes their
free energies using more realistic physical methods; it also
outputs the approximate shapes of the corresponding
three-dimensional structures. We note that our pk3D and
previous methods for predicting RNA tertiary structure,
such as MC-Fold and the MC-Sym pipeline (Parisien and
Major 2008), are different: First, MC-Fold and the MC-
Sym pipeline use a statistical potential function, whereas
ours is a physics-based potential function; Second, our
focus is not to predict exact tertiary structures using pk3D;
instead, we aim to develop the pk3D method for con-
structing approximate three-dimensional shapes of a given
secondary structure, and for accurate calculation of its free
energy. The approximate three-dimensional shapes gener-
ated by the pk3D method can be further used with addi-
tional structural refinement methods to obtain accurate
and more-detailed conformations. Third, the pk3D method
is computationally much faster than MC-Fold and the MC-
Sym pipeline, which is essential for large-scale studies of
RNA molecules.

Since the pk3D method is designed to treat pseudoknots
of any complexity, we need a candidate list as input that
maximizes the diversity of pseudoknot topology. All pre-
vious methods for prediction of secondary structure were
not particularly designed for this. Therefore, we have
developed a method, called the pseudoknot predictor in
two-dimensional space (pk2D), to create candidate sec-
ondary structures of RNAs for given sequences. The pk2D
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program first uses dynamic programming based local
alignment to create a pool of helical stems, and then
employs an approximation algorithm that can identify
a large number of close-to-optimal solutions of stem
combinations without conflicts, which is a well-known
NP-complete problem (Akutsu 2000; Lyngsø and Pedersen
2000). Details of both pk2D and pk3D are given in the
Materials and Methods section.

The remainder of this paper is organized as follows: First,
we discuss the performance of pk2D, namely, its ability to
generate a good candidate list for further evaluation.
Second, we test the ability of pk3D in selecting native
structures from decoy structures. Third, we make blind
predictions and compare pk3D with several widely used
programs that can predict RNA secondary structures with
pseudoknots. Finally, in the Results and Discussions sec-
tion, we show with several examples the performance of
pk3D in generating approximate three-dimensional shapes
of the predicted RNA structures. We summarize the paper
in the Conclusion section. The data set and detailed
algorithms are given in the Materials and Methods section,
and can be downloaded from gila.bioengr.uic.edu/lab/tools/
pk3d/.

RESULTS AND DISCUSSIONS

Our overall goal was to develop a new approach to assess
the free energy of loops in pseudoknotted RNA molecules
and to generate coarse three-dimensional structures. We
first examine how this method can aid in prediction of
RNA secondary structures with pseudoknots.

Generating candidate secondary structures
with pseudoknots: Performance of pk2D

The accuracy of our secondary structure prediction method
depended on the quality of the candidate list, which in this
work was created using the specially designed program
pk2D. pk2D can generate a long list of candidate secondary
structures with enriched diversity in pseudoknot topology.

To assess the quality of the candidate structures created
by pk2D and to explore the optimal number of candidate
structures for prediction of correct spatial fold, we first
tested the performance of pk2D. For each sequence in
a testing set of a total of 43 pseudoknotted RNA molecules
(see the Materials and Methods section), we created a pool
of stems using local alignment through dynamic program-
ming. These stems were then processed by the pk2D
program, which generated secondary structures consisting
of stems without conflicts. We took the top m structures
from these secondary structures, which were ranked by the
sum of the stem free energies using Turner’s rule. Note that
in pk2D, the free energy contribution from loops is
neglected temporarily, as it will be treated comprehensively
using a physical framework in pk3D. We found that on

average, more than 95% of the structures in the candidate
list generated by pK2D contained at least one pseudoknot.
We then compared the candidates with the true known
native structure, and calculated the sensitivity and the
positive predictive value (PPV) of each candidate. The
structure closest to the true native structure was then
identified (see the Materials and Methods section).

On average, the best candidate was ranked 23rd by pk2D.
The average sensitivities of the best structure in the
candidate list for this set of RNA molecules were 0.92,
0.93, 0.93, and 0.95 for m = 30, 60, 100, and 500,
respectively, and the PPVs of the best structure were 0.85,
0.86, 0.87, and 0.90, respectively. These results show that
the quality of the candidate list is adequate, even though
only the stem free energy is accounted for in pk2D. For
further structure prediction, we found a candidate list of
30–50 was sufficient.

Selecting native structure from the candidate set
by free energy with the improved loop entropy
method: Performance of pK3D

The free energy of RNA loops, especially in pseudoknots, is
difficult to evaluate. In pk3D, the free energy of loops is
estimated based on a physical model, and on the assump-
tion that the loop entropy is determined to a large extent by
the end-to-end distance and the spatial interference of
nearby stems. This assumption is reasonable and is appli-
cable to all nested and pseudoknotted loops, regardless of
complexity. It provides a unifying framework for the
treatment of loop entropy. Details of the pk3D method
are given in the Materials and Methods section.

We first tested the ability of pk3D in selecting native
secondary structures out of the other candidate structures
(called decoys). For each of the 43 sequences in the data set,
we took the top m secondary structures output by pk2D as
decoys. These decoys had diverse structures, and about
95% of them were pseudoknotted. We then manually
inserted the native structure into this list and used Turner’s
energy rule and pk3D, respectively, to further evaluate the
free energies. When using Turner’s energy rule, we used the
Dirks and Pierce (2003) extension for calculating the loop
entropy of pseudoknots. The optimal structure with the
lowest free energy in each case was then compared with the
native structure, and the corresponding sensitivity and PPV
were calculated. The results averaged over the whole test set
are shown in Table 1.

As shown in Table 1, the performance in selecting native
structures from decoys for this test set is slightly better
using pk3D (z2% improvement) than when using
Turner’s energy rule. Although the improvement is modest,
this result is promising, considering that the current form
of the free energy rule in pk3D is very simple, as the
entropy of both nested and pseudoknotted loops are
indexed by only two parameters, i.e., the loop length and
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the end-to-end distance. Since pk3D is intrinsically a spatial
method, it can easily incorporate more complex factors,
such as the docking of loops onto nearby helices, which
would be impossible for methods based on secondary
structures.

Secondary structure prediction: Comparing
pk3D with other methods

In this test, we made a blind secondary structure prediction
using pk3D and compared its performance with those of
other methods, including HotKnots (Ren et al. 2005),
pknotsRG (Rivas and Eddy 1999), NUPACK (Dirks and
Pierce 2003), and ILM (Ruan et al. 2004). For each given
RNA sequence, we first created the pool of stem regions,
which was used to generate m number of candidate
secondary structures by pk2D ranked by the sum of the
stem energy. We then applied the pk3D algorithm to
further evaluate the free energies of these candidates. The
secondary structure with the lowest free energy was
predicted to be the native one.

The overall accuracy of our prediction depended on the
size of the input candidate list for pk3D. It has been shown
that by carefully calibrating the size of sampled space, the
accuracy of secondary structure prediction can be im-
proved (Chen et al. 2008). Here, the evaluation of the free
energy stopped when pk3D found 30 ‘‘valid’’ secondary
structures, or else finished evaluation of all of the top
m = 500 candidates. The secondary structure was assumed
to be ‘‘valid’’ if a corresponding three-dimensional struc-
ture, satisfying all chain constraints and free of geometric
collisions, was found. This strategy of selecting proper
candidate size was tested and was found to give the best
performance for the current set of RNA sequences.

The optimal structure with the lowest free energy was
then compared with the true native structure, and the
corresponding sensitivity and PPV were calculated. The
prediction results by pk3D and by several other methods
are listed in Table 2. Overall, pk3D gave the best sensitivity
and comparable PPV. On average, the pk3D method had
a sensitivity that was 6%–7% higher than that of pknotsRG
and NUPACK, and 10% higher than that of HotKnots. In

terms of PPV, HotKnots, and pknotsRG had the best
performance, although pk3D’s PPV was quite comparable.
In both cases, ILM had poor performance, possibly because
we were unable to supply the best parameters to the ILM
algorithm.

We also compared our results with a recently published
new model (Vfold) for predicting structures of general
H-type pseudoknots with interhelix loops (Cao and Chen
2009). The Vfold model computes the conformational
entropy and folding free energy based on a complete
conformational ensemble and rigorous treatment for the
excluded volume effects. In a test of 18 H-type pseudo-
knots, the model gave an average value of 0.91 for both
sensitivity and PPV, about 5% higher than the other
methods, including Hotknots, ILM, pknotsRE, STAR,
pknotsRG, and NUPACK. The 18-pseudoknot testing set
used is a subset of what is used in this study (Table 2). We
calculated the performance of pk3D on this subset of 18-
pseudoknotted RNA molecules and found that the average
sensitivity and PPV were 0.89 and 0.84, respectively. Our
result lags behind that of Vfold slightly, although this was
expected, as our method was developed for general pseu-
doknots of arbitrary complexity, whereas the Vfold method
is currently restricted to H-type pseudoknots. It is in-
teresting to note that Vfold and pk3D performed very
similarly on this test set, with the difference mostly from
Hs-PrP. For Hs-PrP, Vfold gave a sensitivity of 0.45 and
a PPV of 0.5, whereas pk3D failed and gave two zeroes. For
another RNA molecule, Bt-PrP, Vfold, and pk3D gave the
same sensitivity (0.42 for both) and a very similar PPV
(0.33 versus 0.31). Except for these two cases, both methods
gave very high sensitivity and PPV (usually close to 1.0) for
the remaining pseudoknotted RNAs. The similar perfor-
mance of Vfold and pk3D is understandable, since they
calculate the loop entropy based on the same physical
consideration, i.e., the loop entropy is determined primar-
ily by the loop length, the end-to-end distance, and the
interference from nearby structures.

In the following sections, we discuss the details of the
free energy evaluation of pk3D using several specific
examples.

tmRNA-Ec-PK4: Importance of spatial arrangement of stems

The RNA molecule tmRNA-Ec-PK4 contains a H-type
pseudoknot. However, in addition it has a 1 3 1 internal
loop embedded within each of its two stems (Fig. 1). As
shown in Table 2, pk3D predicts exactly the true native
structure, with both sensitivity and PPV values of 1.00. The
prediction by NUPACK is also at 100% accuracy, but
HotKnots, pknotsRG, and ILM miss more than one-third
of the base pairs, with the sensitivity of prediction at 0.68
and a PPV ranging between 0.81 and 1.00.

We have examined all 500 candidate structures generated
by pk2D and found that z95% of them contain pseudoknots.

TABLE 1. The ability of the extended Turner rule and pk3D to
select the native structure from decoys

Decoy size
(m)

Turner + DPa pk3D

Sensitivity PPV Sensitivity PPV

30 0.90 0.87 0.93 0.90
60 0.90 0.87 0.93 0.89
100 0.89 0.87 0.92 0.89
500 0.87 0.85 0.89 0.84

aDP denotes the Dirks and Pierce (2003) extension to Turner’s
energy rule to account for pseudoknots.
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The native structure was captured automatically by pk2D
and was within this candidate list. All of the 499 candidates,
other than the native structure, were easily recognized by
pk3D as spatially infeasible, and were therefore ruled out
immediately. Only the true native secondary structure had
a feasible spatial arrangement with a reasonable free energy.
In this case, the prediction of the native structure was
simple, as it was sufficient to examine spatial feasibility of
stems and there was no need to calculate the loop free

energy in detail. This example illustrates the important role
of the spatial arrangement of double helices and its geo-
metric constraints in reduction of the feasible space of RNA
structures.

mRNA-Hs-PrP: Importance of candidate structures

The native structure of this sequence is a simple H-type
pseudoknot (Fig. 2A). However, despite the simplicity of its

TABLE 2. The accuracy of prediction of secondary structures of 43 small pseudoknotted RNA molecules using five different algorithms

Sqeuence Length

Lowest sensitivity Lowest PPV

pk3D HotKnots pknotsRG NUPACK ILM pk3D HotKnots pknotsRG NUPACK ILM

NGF-L6 48 1 1 0.65 1 0.94 1 1 0.69 1 1
BWYV 28 1 1 1 1 1 0.89 0.89 0.89 0.89 0.89
Rr-ODCanti 70 0.82 0.65 0.65 1 1 0.54 0.52 0.5 0.63 0.65
HDV 87 0.7 0.4 0.97 0.63 0.87 0.68 0.46 0.94 0.61 0.7
HDV-anti 91 0.92 0.17 0.17 0.42 0.71 0.65 0.14 0.14 0.32 0.5
HIVRT322 35 1 1 1 1 0.55 1 1 1 1 1
HIVRT32 35 1 1 1 1 0.91 1 1 1 1 1
HIVRT33 35 1 1 1 0.91 0.91 1 1 1 1 1
minimalIBV 45 1 0.94 0.94 0.94 0.94 0.94 0.89 0.94 0.94 0.89
MMTV 34 1 1 1 0.45 0.91 0.92 0.92 0.92 0.5 0.91
MMTV-vpk 34 1 1 1 0.91 0.91 0.92 0.92 0.92 1 0.91
mRNA-Bt-PrP 45 0.42 0.42 0.33 0.42 0 0.31 0.42 0.27 0.42 0
mRNA-Ec-alpha 108 0.79 0.46 0.46 0.46 0.54 0.54 0.31 0.29 0.31 0.28
mRNA-Ec-S15 67 0.94 1 0.76 0.88 0.88 0.73 0.74 0.68 0.71 0.68
mRNA-Hs-PrP 45 0 0 0 0 0.36 0 0 0 0 0.25
mRNA-T4-gene32 28 1 0.64 1 1 0.91 1 1 1 1 1
pKA-A 36 1 1 1 1 0.92 0.92 0.92 0.92 0.92 0.92
Bp-PK2 90 1 0.79 0.79 1 0.79 0.91 0.85 0.74 0.91 0.72
HDV-It-ag 89 0.92 0.16 0.16 0.4 0.68 0.68 0.14 0.14 0.32 0.49
satRPV 73 0.77 0.59 0.82 0.59 0.23 0.71 0.68 0.86 0.68 0.25
Tt-LSU-P3-P7 65 0.84 0.95 0.85 0.95 0.8 0.73 1 1 1 0.69
Sc-18S-PKE21-7-8 51 0.89 0.5 0.5 0.5 0.56 0.89 0.53 0.53 0.53 0.56
SRV-1 38 1 1 1 1 0 0.92 0.92 0.92 0.92 0
T4-gene32 31 1 1 1 1 0.91 1 1 1 1 1
T.the-telo 35 0.67 0.58 0.67 0.67 0.33 0.67 1 0.89 0.89 0.44
tmRNA-Ec-PK1 30 1 1 1 1 1 1 1 1 1 1
tmRNA-Ec-PK4 52 1 0.68 0.68 1 0.68 1 1 1 1 0.81
tmRNA-Lp-PK1 30 0.9 0.5 0.5 0.8 0.5 0.9 1 1 1 0.71
TMV.L 84 0.88 0.54 0.83 0.54 0.46 0.81 0.65 0.83 0.65 0.44
TMV.R 105 0.5 0.68 0.68 0.53 0.56 0.4 0.74 0.74 0.55 0.61
TYMV 86 0.84 0.72 0.76 0.44 0.52 0.72 0.78 0.79 0.5 0.46
BSBV1-UPD-PKc 24 1 1 1 1 0.67 1 1 1 1 1
BSBV3-UPD-PKc 24 0.67 1 0.67 0 0.67 1 1 1 0 1
BVQ3-UPD-PKb 33 0.78 0.56 1 1 0.56 0.7 1 1 1 0.5
PSLVbeta-UPD-PK1 23 0.62 0.62 0.62 0.62 0.62 1 1 1 1 1
PSLVbeta-UPD-PK3 35 1 1 1 1 1 0.92 0.92 0.92 0.92 0.92
SBRMV1-UPD-PKb 27 1 0.7 1 1 0.7 1 1 1 1 1
STMV-UPD2-PK3 24 1 1 1 1 0.75 0.89 0.8 0.89 0.89 0.75
TMV-L-UPD-PK3 32 0.88 0.5 1 1 0.38 0.7 1 1 1 0.3
PSIV-IRES 47 0.86 0.64 0.64 0.93 0.36 0.8 0.69 0.69 1 0.42
AMV3 113 0.64 0.87 0.87 0.69 0.87 0.66 0.89 0.89 0.68 0.83
BSMVbeta 96 0.45 0.74 0.84 0.71 0.94 0.42 0.79 0.81 0.67 0.85
CGMMV-PKbulge 69 0.43 0.83 0.65 0.61 0.61 0.43 1 0.68 0.61 0.64
Average 53 0.84 0.74 0.78 0.77 0.68 0.79 0.80 0.80 0.77 0.70

In some cases (such as TMV.R and HDV), the pk3D program rules out all the candidate secondary structures, since none are spatially feasible
because of chain constraints or geometrical collisions. In these cases, the structure with the lowest free energy ranked by pk2D is taken as the
native secondary structure.
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native structure, all of the tested methods except ILM failed
in this test, with 0.0 in both sensitivity and PPV. The ILM
method also gave a poor prediction with very low sensi-
tivity (0.36) and PPV (0.25).

For pk3D, the problem was that the native structure was
not among the list of candidates, and all of the 500
candidates were readily rejected as spatially infeasible, since
the specific combination of stem–loop lengths in each
could not be satisfied without violation of geometric
constraints when modeled in three-dimensional space.
Even the best candidate closest to the native structure
had an uncommon pseudoknot and overestimated the
number of base pairings (about 35% overestimation)
(Fig. 2B). The important fact is, when the native structure
is manually inserted into the candidate list, it is correctly
identified by pk3D as the only spatially feasible secondary
structure, with a reasonable free energy.

For both tmRNA-Ec-PK4 and mRNA-Hs-PrP, when the
native structures were present in the candidate lists, they
were both selected as the only spatially feasible secondary
structures among all candidates. The blind prediction by
pk3D of tmRNA-Ec-PK4 was successful, but not for
mRNA-Hs-PrP. Here, the bottleneck was not the free
energy estimation of loops in pseudoknotted RNAs, rather,
it was the generation of a candidate list that included the
native structure. These two examples show that the pk3D
algorithm is sensitive to the quality of the candidate list, and
improvement in its generation has the promise to signifi-
cantly increase the overall accuracy of pk3D prediction.

TMV.R and HDV: More complex structures

The native structure of the 39 terminal region of the
tobacco mosaic virus RNA (TMV.R) contains two pseu-
doknots; one is a simple H-type, and the other is an H-type
with a long hairpin and a 1 35 internal loop embedded
within (Fig. 3A). The structure of the hepatitis delta virus
(HDV) genomic ribozyme is an H-type pseudoknot with
two embedded substructures, a simple hairpin, and an
imperfect hairpin with a bulge (Fig. 3B). pk3D performed
similarly for TMV.R and HDV as in the previous two cases,

that is, all candidates generated by pk2D were deemed as
infeasible, as the native structures were not captured by
pk2D, and thus not included in the candidate list. When
the native structures of TMV.R and HDV were inserted
manually into the corresponding candidate list, both were
found as the only spatially feasible structures and correct
predictions were made, with 100% prediction accuracy in
both cases.

RNA spatial arrangement and three-dimensional
structure prediction

The approach of pk3D toward secondary structure pre-
diction is spatial in nature. First, stem regions with some
stability are combinatorically assembled; second, spatial
considerations are enforced in the form of loop entropy
estimation, and the vast majority of candidate structures
with stems compatible by secondary structure, but spatially
infeasible are eliminated. Here, the loop entropy calculation
in pk3D is fundamentally different from that in Turner’s
energy rule. As we are only at the very beginning of
understanding the governing principles of RNA three-
dimensional structures, it is premature to adopt Turner-
style empirical rules and invent additional phenomenolog-
ical equations. Instead, pk3D builds spatial models of stem
regions, rejects infeasible candidates, searches among fea-
sible arrangements of stems for the optimal one, and
numerically estimates the loop entropy by calculating the
fraction of closed loops with respect to random coils of the
same length based on the sequential Monte Carlo algorithm
(Zhang et al. 2008). With this strategy, each feasible
secondary structure will be automatically assigned a repre-
sentative spatial arrangement of helices, containing coarse-
grain information of its tertiary structure. In essence, pk3D
is a secondary structure predictor that also generates
tertiary information, even though it only gives a coarse-
grained shape of the three-dimensional conformation of
the RNA molecule, due to the discrete nature of the state
model used in the algorithm. This coarse-grained spatial
conformation is still very useful: not only does it make it

FIGURE 1. The secondary structure of the native state of tmRNA-
Ec-PK4. Secondary structures in this paper were drawn using
PseudoViewer (http://wilab.inha.ac.kr/pseudoviewer/) unless other-
wise indicated.

FIGURE 2. The native and predicted secondary structures of mRNA-
Hs-Prp pseudoknotted RNA. (A) The native structure taken from
the PseudoBase cite (http://www.ekevanbatenburg.nl/PKBASE/PKB.
HTML). (B) The best candidate secondary structure in the candidate
list that is most similar to the native secondary structure. Compared
with the native structure, it overestimates the number of base pairs
(SE = 1, PPV = 0.65) and has an uncommon pseudoknotted structure.
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possible to estimate the pseudoknotted loop entropy, but it

also can serve as a starting point for further structural

refinement.
Here, we use several examples to describe how pk3D

predicts the general shape of the native conformations.

These examples were not selected from the 43-sequence

testing set, since it was difficult to find the corresponding

Protein Data Bank (PDB) structures from these sequences

with which to compare our predictions. Instead, we directly

obtained several typical RNA structures from the PDB,

including nested and pseudoknotted with varying com-

plexity. We extracted the sequences, and used the combi-

nation of pk2D and pk3D to predict their native structures.

Predicting the spatial structure of a H-type pseudoknot
within the gene 32 mRNA of bacteriophage T2

The PDB structure 2TPK contains a simple H-type pseu-
doknot within the gene 32 mRNA of bacteriophage T2.
Figure 4, A and B, shows its native secondary and tertiary
structures as derived from NMR experiments, respectively.
Its secondary structure is predicted by pk3D correctly with

an accuracy of 1.0. The predicted tertiary structure (Fig.
4C) shares the major common structural features with the
native structure. These include: (1) the two helices are
coaxially stacked on each other and run continuously in
space, forming a long, quasicontinuous helix, which helps
to stabilize the overall RNA structure; and (2) the nucle-
otide A8 constitutes a loop of only 1 nt, which connects the
far two ends of the two helices, rendering a typical H-type
pseudoknot structure.

Similar results were obtained using pk3D for the pseu-
doknot of SRV-1 RNA involved in ribosomal frameshifting
(PDB 1E95), and the P2B-P3 pseudoknot from human
telomerase RNA (PDB 1YMO). Both are simple H-type
pseudoknots but have different loop lengths (their figures
are similar and therefore are not shown).

The acceptor arm of TYMV tRNA-like structure

The pseudoknotted T arm and acceptor arm of the tRNA-
like structure of turnip yellow mosaic virus (TYMV, PDB
1A60) is a combination of a H-type pseudoknot and
a coaxially stacked hairpin structure. Its secondary struc-
ture is predicted correctly by pk3D with an accuracy of 1.0.
By comparing the NMR measured structure with the
predicted spatial structure (Fig. 5B,C, respectively), it can
be seen that the overall spatial relationship between the
three helices is the same: the two pseudoknotted helices are
coaxially stacked on each other; on the top of them is also
stacked the hairpin helix. These three helices assemble into
a very long, quasicontinuous helix in both measured and
predicted spatial structures.

PDB 1S9S-A core encapsidation signaling RNA
of the Moloney murine leukemia virus

The 101-nt molecule of the core encapsidation signal of the
Moloney murine leukemia virus (PDB 1S9S) is important

FIGURE 3. The native secondary structures of (A) the 39 terminal
region of the tobacco mosaic virus (TMV.R), and (B) the hepatitis
delta virus genomic ribozyme (HDV), respectively.

FIGURE 4. The secondary and tertiary structures of a fragment of
gene 32 mRNA of bacteriophate T2. (A) The native secondary
structure. (B) The native tertiary structure, data taken from the
PDB databank (PDB 2tpk; http://www.wwpdb.org/). (C) The tertiary
structure predicted by pk3D. Note that in both B and C, loops are
shown in yellow dashed lines to illustrate chain connectivity and to
facilitate structural comparison. The orange spheres show the position
of the A8 nucleotide, which forms a short loop of length 1. All tertiary
structures were drawn using PyMOL (http://pymol.org/).
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for efficient genome packaging. It is a nonpseudoknotted
RNA containing six helices. Among these helices, five are
coaxially stacked and form a single long, quasicontinuous
helix. The first helix, on the other hand, is flexible and is
connected to the other helices via a flexible 5-nt loop. The
secondary structure, the first spatial model of the NMR
structure, and the structure predicted by pk3D are shown
in Fig. 6A–C, respectively.

The spatial arrangement of the last five helices in the
measured and predicted structures is in general agreement.
The position of the first helix in the predicted structure is
different from that of the NMR measured model. This is
due to the highly flexible nature of the loop that connects
the first helix with the rest of the molecule. In fact, NMR

measurement shows that the first helix has very flexible
positions, and the different models of the structure, as
deposited in the PDB databank, show that this helix can be
located in a wide range of positions with respect to the
other helices (D’Souza et al. 2004). The spatial position of
the first helix predicted by pk3D is well within the
experimentally measured range.

The orientation of the fifth helix (colored in magenta) is
different for the experimentally measured and computa-
tionally predicted structures. In the NMR-measured struc-
ture, this helix is loosely stacked on the fourth helix
(colored in yellow), and the central axes of these two
helices form a large angle, apparently due to the intervening
4-nt bulge (Fig, 6A,B, G62–A65) between these two helices.
In contrast, in the predicted structure, the fifth and the
fourth helices are coaxially stacked closely together. This
discrepancy is due to the fact that there is a competition
between the favorable coaxial stacking energy bonus and
the loop entropy. A flush coaxially stacked structure is
favored by the stacking energy bonus, whereas the loosely
stacked structure, as given by the NMR experiment, is
consistent with the larger entropy of the bulge loop. This
disparity between measured and calculated structures in-
dicates the need to model accurately the delicate balance
between these two energetic factors. Our algorithm will
likely improve once the balance between these two factors is
fine tuned.

Protein S15 binding fragment of 16S rRNA

In bacterial ribosomes, protein S15 binds to 16S rRNA and
forms a key element required by the assembly of the small
subunit of ribosome. This element is also important for the
intersubunit association. The relevant rRNA fragment is
a nonpseudoknotted structure with five helices (Fig. 7A,

FIGURE 5. The native secondary structure and tertiary structure of
the T arm and acceptor arm of the tRNA-like structure of the turnip
yellow mosaic virus. (A) The native secondary structure. (B) The
native tertiary structure taken from the PDB databank (PDB 1A60;
http://www.wwpdb.org/). (C) The tertiary structure predicted by
pk3D, which reproduces correctly the spatial arrangement of three
stems, as well as their coaxial stacking observed in the experimental
structure. The helices in B and C are colored using the same scheme.
The loops are shown in yellow dashed lines to illustrate the chain
connectivity.

FIGURE 6. The native secondary structure and tertiary structure of the core encapsidation signaling RNA of the Molney murine leukemia virus.
(A) The native secondary structure. (B) The native tertiary structure taken from the first NMR model in the PDB databank (PDB 1S9S; http://
www.wwpdb.org/). (C) The tertiary structure predicted by pk3D. The helices are numbered from 1 to 6, in the direction from the 59 end to the 39
end, and are colored in the order of red, green, blue, yellow, magenta, and cyan, respectively. The orange spheres in B show the positions of the
phosphorus atoms in the first nucleotide G1 for all of the first 20 models given by the NMR experiments. The diverse positions demonstrate the
experimentally observed large flexibility of the first helix. The gray segment in the upper-right region in B connecting the fourth and fifth helices
shows the conformation of the bulge loop G62-A65 determined by the experiments.
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PDB 1DK1). An interesting feature of this structure is that
it has a three-way junction, which is constrained by a
conserved base triple and the associated stacking interac-
tions, and is locked into place by magnesium ions and side
chains from bound protein (Fig. 7B; Nikulin et al. 2000).

The predicted spatial structure of this RNA molecule
reproduces the spatial positions of all helices correctly,
except helix-1 and helix-2 (Fig 7C, colored in magenta and
green, respectively). The position of helix-1 in the predicted
structure is only roughly correct, whereas helix-2 locates far
away from its correct position. This discrepancy is not
surprising, since the junction region involving helix-1 and
helix-2 is stabilized by the combination of a base triple,
magnesium ions, and bound protein
(Nikulin et al. 2000). In addition, the
chain is locally parallel in the junction
region (Nikulin et al. 2000). None of
these factors are accounted for explicitly
in our model, or in any other RNA
models used in existing RNA structure
predictors.

Hepatitis delta virus ribozyme precursor

The HDV ribosome precursor is among
the most complicated pseudoknotted
RNA molecules discovered so far. Its
secondary structure and three-dimen-
sional structure obtained from X-ray
crystallography (PDB 1SJ3) are shown
in Figure 8, A and B, respectively. Its
tertiary structure contains two long
quasicontinuous double helices. The
first consists of two coaxially stacked

short helices, helices P1 and P1.1. The
second also contains two coaxially
stacked helices, P2 and P3. The two
long, quasicontinuous helices are paral-
lel to each other, and each resembles
locally an H-type pseudoknotted struc-
ture. That is, each appears as a long,
quasicontinuous pseudoknotted helix
formed by one long, continuous strand
and two separate shorter strands. In
addition, a hairpin structure (P4) is
loosely stacked on helix P1.1, rendering
an extended long helix (P1 + P1.1 + P4)
(Ke et al. 2004).

Out of the top 100 candidates, the
pk3D correctly selected the native sec-
ondary structure as the optimal one,
and at the same time predicted the
spatial arrangement of the helices and
the loops. Note that in this example,
pk2D failed to find the native secondary

structure automatically as a candidate. Therefore, we
manually inserted the native secondary structure into the
candidate list created by pk2D, to test the ability of pk3D to
identify the native structure out of decoys and the ability to
predict three-dimensional shapes. The overall predicted
tertiary conformation is shown in Figure 8C. It can be seen
that the structure generated by pk3D contains most
features of the X-ray structure: the two quasicontinuous
long helices are reproduced, and they consist of the same
two shorter coaxially stacked helices as in the experimen-
tally determined structure (P1 + P1.1, P2 + P3, respec-
tively); plus, these two long helices are parallel to each
other, also consistent with the experiments.

FIGURE 7. The native secondary structure and tertiary structure of the protein S15 binding
fragment of 16S rRNA. (A) Its native secondary structure. (B) Its native tertiary structure as
observed in X-ray crystallography (PDB 1DK1; http://www.wwpdb.org/). The helices are
numbered from 1 to 5 in the direction from the 59 end to the 39 end, and are colored in the
order of magenta, green, yellow, blue, and cyan, respectively. The three-way junction is colored
in red, which contains a base triple and the metal binding site. In addition, local strands in this
junction are in the parallel direction instead of the canonical antiparallel direction. (C) The
tertiary structure predicted by pk3D, plotted in the same color code as in B. The spatial
arrangement of helices 3–5 are predicted correctly. The overall position of helix 1 is only
roughly correct, tilted at a different angle.

FIGURE 8. The native secondary structure and tertiary structure of the hepatitis delta virus
(HDV) ribozyme precursor. (A) Its native secondary structure. (B) The tertiary structure (PDB
1SJ3; http://www.wwpdb.org/). (C) The tertiary structure predicted by pk3D. The helices in B
and C are colored in the same code. The loops are shown in orange dashed lines to illustrate
chain connectivity. The structure generated by pk3D contains most features of the X-ray
structure.
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There were subtle, but important, structural features of
this RNA molecule that were correctly predicted by pk3D.
In the HDV ribozyme precursor, there were three zero-
length loops in the secondary structure (see the Materials
and Methods section for a detailed definition of the zero-
length loops). Among these, loop-1 connects helices P1 and
P1.1, loop-2,3 connects helices P2 and P3, and loop-1,3
connects helices P1 and P3 (Fig. 8A). pk3D correctly
selected the first two interfaces and coaxially stacked the
corresponding helices; it also correctly left the interface
around loop-1,3 alone without stacking helices P1 and P3.
The overall result was the formation of two long, quasi-
continuous helices (P1 + P1.1, and P2 + P3) connected by
a simple loop-1,3 of zero length (Fig. 8C); in excellent
agreement with the X-ray structure.

The two nucleotides (C21 and C22) within the hairpin
loop of helix P3 extend out and form base pairs with G38
and G39, thus forming the helix P1.1. It is likely that this
interaction is important to hold the overall RNA structure
together. The pk3D program correctly reproduced this
structural feature as well.

There is a structural aspect that pk3D does not predict
correctly, i.e., the orientation of helix P4. According to the
X-ray structure, helix P4 is positioned on the top of helix
P1.1, stabilized by a base triple (G61–C44–C41), a non-
canonical base pair (A43–G62), and the nearby metal ion
(Ke et al. 2004). The existence of base triples, noncanonical
base pairs, and interactions between nucleotides and metal
ions were not considered explicitly in our current model,
therefore, this failure was not surprising. In pk3D, the
connection between P4 and P1.1, and between P4 and P2
are modeled as a simple 4-nt loop and a 5-nt loop,
respectively (Fig. 8A). These two loops lead to much more
freedom of positioning and orienting helix P4.

Summary of the performance of pk3D in tertiary
structure prediction

Overall, the pk3D algorithm can be used to generate
approximate spatial arrangements of helices and loops, in
addition to estimating the free energies of loops and
predicting native secondary structures. The overall tertiary
shape is often very similar to the native structure of RNA
molecule, regardless of whether or not pseudoknots are
present or not. It works especially well when the involved
loops are short. These short loops impose significant
constraints on the number of feasible conformations, as
seen in the predicted structure of the hepatitis delta virus
ribozyme precursor (PDB 1SJ3). Nevertheless, when the
tertiary structure involves significant contributions from
nonregular elements, such as base triples, noncanonical base
pairs, metal ions, or bound proteins, the pk3D algorithm
usually fails to produce an accurate three-dimensional
structure. In fact, these complex factors present great
challenges to all current efforts in predicting RNA structures.

Although in such cases the specific positions and orien-
tations of the helices involved are inaccurate, the general
arrangement of the overall structures may still be correct, as
is the case of the core encapsidation signaling RNA (1S9S),
the protein S15 binding fragment of 16S rRNA (1DK1),
and the hepatitis delta virus ribozyme precursor (1SJ3).
Although the three-dimensional shapes provided by pk3D
are approximate in nature, they can be fairly close to native.
These structures can be very useful, for example, in providing
the initial seed conformations for further structure refine-
ment. This task can be performed by using all-atom MD
simulation packages, such as AMBER, Charmm, or Gromacs.
It is expected that these close-to-native conformations would
lead to a significant speed up of structure predictions.

Timing information

For the testing set of 43 small RNA pseudoknots used in this
study, the computation time used by pk3D for searching the
optimal arrangement for each candidate secondary struc-
ture usually finishes within 10�3 –10�2 sec on an AMD
Opteron-256 CPU. However, the time complexity of the
pk3D algorithm is not directly related to the length of the
RNA chain. Rather, it is determined by the total length of
the loops in the ‘‘link,’’ as defined in the Materials and
Methods section. For structures with many long links, the
computation time may take up to several tens of seconds to
finish. This limits the current version of the pk3D program
to small RNAs (< 150 nt), since longer chains are likely to
have larger links. We expect that this problem can be solved
by dividing a large link into several small segments based on
the loop length pattern and treating them separately. These
structural fragments are innerconnected only by short
loops, and hence, are more rigid and likely to fold
separately. Further development of pk3D for long-chain
RNA molecules will be in our future work.

CONCLUSION

Calculating the free energy of RNA loops, especially that of
pseudoknotted loops, is an important unsolved problem.
We have developed a novel method called pk3D to address
this problem. Our method is based on the physical
consideration that the entropy of an RNA loop is largely
determined by its loop length, the end-to-end distance of
the helices connected by the loop, and the steric interference
from nearby helices. To calculate the loop entropy, our
method searches among all possible spatial arrangements of
helical stems for the optimal structure, and then estimates
the number of loop conformations for the optimal structure
using a six-state discrete model and the sequential Monte
Carlo method. The excluded volume effect is explicitly
treated by the algorithm. Our method treats both nested
and pseudoknotted loops within a unifying physical frame-
work, regardless of how complex the pseudoknot might be.
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We have also developed the pk2D method, which finds
an approximately optimal combination of low energy
nonconflicting helical stems for a given sequence. The list
of secondary structures created by pk2D is used as input to
pk3D for further free energy evaluation. The spatial
arrangement of stems and loops with the lowest free energy
is then predicted to be the native conformation of the RNA
sequence.

We have tested the performance of pk2D/3D on a data
set of 43 small RNA molecules with pseudoknots. The
quality of the list of candidate secondary structures created
by pk2D was good: on average, the best candidate among
the list had a sensitivity higher than 90% and a PPV close to
90% in terms of base pairs. In this test, the ability of pk3D
to select the native structure from a large number of decoys
was slightly better than that of the extended Turner’s free
energy rule. In the blind test of predicting the secondary
structures of these 43 RNA molecules from sequences,
pk3D was found to have the best prediction results in terms
of sensitivity and comparable PPV of correctly predicted
base pairs, when compared with several existing pseudo-
knot prediction methods.

Perhaps the most important contribution of this work is
that pk3D can frequently produce a generally useful coarse
three-dimensional model of the native RNA structure. We
found that the arrangement of stems and loops in three-
dimensional space was generally similar to that of the
native structure. This rough three-dimensional model is
useful as a starting point for further structural refinement,
as it provides a close-to-native physical structure. It is
expected that refinements starting from pK3D predicted
structures will benefit significantly as a result of accelerated
folding and packing.

The weak point of the current version of pk3D is that it
does not perform well on long sequences, since the com-
putation time is determined by the total length of the
loops in the ‘‘links,’’ whose size is likely to increase with the
chain length. However, as discussed earlier, this problem
can be solved by dividing the links into several smaller
segments or domains. With this simplification, the algo-
rithm can, in addition, incorporate aspects of kinetic
folding of RNA molecules, which is likely to be very
important for large RNAs (Flamm and Hofacker 2008).

MATERIALS AND METHODS

Definition of pseudoknots and H-type pseudoknots

An RNA structure is called pseudoknotted if it contains in-
terleaved stem regions. Formally, if we denote a base pair as an
ordered pair of positions of upstream and downstream positions
(i, j), where i < j; a structure is nonpseudoknotted if and only if
for all pairs (i, j) and (k, l), nowhere the relationship i < k < j < l
holds; otherwise, the structure is called pseudoknotted (Ren et al.
2005).

We also need to define the H-type pseudoknot explicitly to
facilitate the discussions in the text. The H-type pseudoknot in
this study is referred to as a structure formed by base pairing
between a hairpin loop and the exterior loop of another hairpin. It
consists of two helical stems and two loops, as well as a possible
third loop/junction that connects the two helical stems (Cao and
Chen 2009). An H-type pseudoknot may also contain embedded
substructures, such as hairpins, internal loops, bulges, or their
combinations. Here, the H-type pseudoknot is solely defined in
terms of its secondary structure, regardless of whether or not the
involved helical stems form quasicontinuous helices in three-
dimensional space. Our definition of the H-type pseudoknot is
more general than that used by Cao and Chen (2009). However, it
should be emphasized that the pk2D and pk3D algorithms are not
restricted to H-type pseudoknots and their more general versions.
In our study, pseudoknots of arbitrary complexity are treated in
one unifying physical framework.

Data set

All of our testings were based on a data set of 43 pseudoknotted
structures unless indicated otherwise. They were taken from the 50
small pseudoknotted RNAs by Zhao et al. (2008), with seven
sequences removed. These were removed because all of them had
a long unstructured 59 loop of >13 nt length, which is unstable
and can easily form internal structures within itself, or with
another part of the RNA molecule. The corresponding native
structures resolved in the databank may exist as a result of
additional interactions with proteins or other molecules to form
stable complexes. Therefore, it was not appropriate to include
these sequences in testing the performance of structure prediction
of single chain RNAs. These seven sequences are frameshifting-
EIAV, frameshifting-PLRV-S, viral-tRNA-like-APLV, viral-tRNA-
like-CGMMV, viral-tRNA-like-ORSV-S1, viral-tRNA-like-OYMV,
and viral-tRNA-like-SBWMV1.

Generating the pool of stem regions

For a given sequence S with nucleotides ordered from 59 to 39, we
used the Smith–Waterman dynamic programming algorithm for
local alignment to align it with its reverse sequence S9, with the
same nucleotides ordered from 39 to 59. Both Watson–Crick and
wobble base pairings were considered matches. This generated all
possible stems with energy scores below a given threshold.

Generate candidate secondary structures with pk2D

All of the computed stable stems were processed by the algorithm
pk2D, which found solutions of multiple compatible stems with
overall low energies. These solutions provided by pk2D formed
a list of candidate secondary structures, each containing several
nonconflicting stems. That is, no nucleotide in any stem appeared
in another stem of the same secondary structure. Finding non-
conflicting stems with overall lowest energy is a known difficult
NP-complete problem (Akutsu 2000; Lyngsø and Pedersen 2000).
Numerous methods have been developed to address this chal-
lenging problem, including dynamic programming based methods
(Rivas and Eddy 1999; Dirks and Pierce 2003; Reeder et al. 2007),
heuristic methods (Ruan et al. 2004; Ren et al. 2005; Chen et al.
2008), the Monte Carlo method (Isambert and Siggia 2000),
methods based on genetic algorithm (van Batenburg et al. 1995),
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and the strategy that reformulates this problem into a combina-
torial graph problem and solves it using the technique of tree
decomposition (Zhao et al. 2008).

Here, we use an approximation algorithm to generate candidate
secondary structures. The problem of finding all consistent sets of
candidate stems can be formulated as an Integer Programming
(IP) problem. The objective of the IP problem is to minimize the
sum of the free energy contributed by each selected stem. The
constraints of the IP problem are formulated to encode the
nonconflicting condition between the selected stems. We have
adapted a method originally developed for protein structural
alignment by Dundas et al. (2007) to solve this IP problem. This
approach is based on an approximation algorithm for scheduling
split interval graphs (Bar-Yehuda et al. 2002).

An approximate solution of the IP problem can be found by an
iterative process, where the IP problem is first relaxed into a linear
programming (LP) problem and solved using the commercial LP
package BPMPD (Meszaros 1996). A conflict graph, G = (V, E), is
then constructed where vertex vi represents stem i. An edge ei,j is
drawn between two vertices, vi and vj, if the two corresponding
stems are in conflict. Each vertex is assigned three values. The first
value is the free energy of the stem si. The second value xi is equal
to the corresponding output from the LP solution. The third value
is called the local conflict number:

a ið Þ= +
ei;j2Ef g[vi

xj:

The vertex k with the minimum local conflict number ak is then
identified. A new free energy score si

new = si � sk is then assigned
to vk and to all vertices that share an edge with vk. After this
update, all vertices with s # 0 are pushed onto a stack S, and are
removed from further consideration. A new LP problem is
subsequently formulated using the remaining vertices. This pro-
cess is iterated until all vertices have been pushed onto the stack.

Vertices on the stack are then continuously popped. The first
popped vertex forms the candidate set of compatible stems. A
subsequently popped vertex is then inserted into each existing
candidate set if it does not cause conflict with stems already in the
set. In addition, a new candidate set is formed with the currently
popped vertex as the sole member. This process is repeated until
all vertices are popped from the stack.

The above procedure is another version of the maximum weight
independent set problem (Binkowski et al. 2004; Dundas et al.
2007). The set created by the first popped vertex is guaranteed to
be within a factor of 1/2.89 from the optimal solution.

The candidate secondary structures generated by pk2D are
ranked by the sum of stem energies, estimated by the standard
Turner’s energy rules. Note that the free energy contributions
from loops are neglected temporarily at this stage, as they will be
treated within a physical framework in pk3D. The top 500
secondary structures serve as the set of candidates for more
accurate further free energy estimation. The overall procedure of
pk2D is shown in Fig. 9A.

Generating RNA conformations by growth
using pk3D

The free energies of the secondary structures provided by pk2D
are further estimated by incorporating loop entropies. Pk3D

calculates the free energy for each candidate secondary structure
based on the corresponding three-dimensional conformations,
which are generated automatically using a growth method. The
procedures are as follows:

Finding the link

For each secondary structure, its link is defined as the set of n �1
loops that connects all the n stems in the secondary structure, such
that the overall length of the loops belonging to the link is the
shortest. Recall that a stem may have as many as four loops. An
example is shown in Figure 10, which depicts the secondary
structure of the hepatitis delta virus (HDV) ribozyme precursor
and its corresponding graph representation. Note that in our
method we have generalized the concept of loops to include the
special case when two stems are directly connected; the junction
between these two stems is called a zero-length loop. The reason
for this generalization is that, although its length is zero, it can
lead to different relative spatial orientations between two involved
helices, similar to the loops of nonzero length. The zero-length
and non-zero-length loops are, therefore, treated in the same way
in pk3D. In Figure 10, the loops plotted as thick, curved line
segments define the link, which contains three zero-length loops
and one loop of length 4. The overall length of the loops contained
in the link is, therefore, 4. The usage of the link is inspired by the
work described by Kopeikin and Chen (2006).

Since the number of stems (or vertices in the graph represen-
tation) in the RNA pseudoknots is small (usually, 4–8), we use
a heuristic method to find the link for a given secondary structure.

FIGURE 9. The flow chart of the (A) pk2D and (B) pk3D algorithms.
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Although a heuristic method cannot guarantee an optimal so-
lution, it works well in practice for small graphs. We first select the
shortest loop, so the two stems at both ends are connected as one
component. We then iteratively select the next shortest loop if it
adds a new stem to the set of components that has been generated
so far. This is repeated until n �1 loops are chosen, and all
components are merged into one. For the candidate secondary
structures generated for this data set of 43 RNA molecules, n is,
typically, between 4 and 8.

Generating three-dimensional structures

After the link is identified, we generate the corresponding three-
dimensional structures or conformations of the RNA molecule.
This is accomplished by sequentially enumerating all possible
conformations for loops (typically, with length <7) in the link
using a six-state discrete model (Zhang et al. 2008) and by
spatially arranging the connected stems in all six possible
orientations, followed by selecting those that are physically
plausible (e.g., without sharp turns). We start with the shortest
loop. After spatially adding the connecting stem to this loop at all
possible orientations (typically, two or four feasible out of all six),
we continue by generating all possible conformations for the loop
of the next shortest length.

During this process, whenever a new stem is added to a partial
conformation, or when two partial components are merged, we
examine if steric collisions occur and if the lengths of loops
connecting this new stem to stems already added are sufficiently
long to accommodate them spatially. For example, a loop length
of 0 or 1 cannot extend in space to connect stems that are distant
from each other. This examination usually rules out thousands of
infeasible conformations.

This process is repeated until all stems are added and
merged into one component. Altogether, we have theoretically
O

Q
i la

i

� �
Kn�1

� �
number of spatial conformations, where li is the

length of the ith loop, and a is the scaling exponent for the
number of loops with loop length li, which is estimated to be

between 3 and 5 (Zhang et al. 2008). K is the number of the
possible orientations of a stem when connected to an end of
a loop. Typically, K = 2 or K = 4, and n � 1 is the number of loops
in the link. In practice, because of the strong constraints of the
loops and excluded volume effect, the number of feasible
conformations is substantially smaller than this bound. Among
the candidate secondary structures, about 90% are found to be
spatially infeasible after simple examinations, and are eliminated
from further considerations at very early stages.

Speeding up with look-up tables

In the current implementation, the number of conformations for
each loop is solely determined by the loop length. To improve the
runtime efficiency, we pre-compute the conformations of loops
with lengths between 0 and 7, recording the starting and ending
positions of each loop in a look-up table for loop conformations.
This table can be further improved by introducing sequence-
dependent information, which will be in our future work.

Further free energy estimation

For each spatial conformation constructed by pk3D, its free
energy is calculated as the sum of the free energy of stems and
loops. The substructures are divided into two groups and treated
differently in pk3D. The first group contains stem, hairpin, bulge,
and short internal loops (# 4 nt). The free energies of these
substructures are calculated straightforwardly using Turner’s
energy rules. The second group consists of all the other loops,
including the longer internal loops, all multibranch loops, and all
pseudoknotted loops, whose physical models are explicitly con-
structed by pk3D through sequential Monte Carlo sampling.
Based on the examination of the top 500 candidates for each of
43 sequences used in this study, we found that 75%–80% loops
belong to the second group. Simple hairpin, bulge, and short
internal loops only count for z20%. Therefore, the majority of
the loops are treated by our new free energy calculation scheme.
We also did another test in which both groups were treated by our
new scheme. We found that the performance is still good,
although there is a slight deterioration. The reason is that the
loop entropy calculated by our new scheme is close to the
empirical value from Turner’s energy rule, as shown in our
previous work (Zhang et al. 2008). In the current implementation,
we treat two groups differently.

The model for the loop free energy calculation in pk3D is based
on several physical assumptions. First, the enthalpy component is
assumed to be zero. Second, as a first-order approximation, the
loop entropy is assumed to be determined by its length and the
end-to-end distance, which is determined by the connected
helices. The volume exclusion effect between monomers within
a loop is also explicitly accounted for. To improve the runtime
efficiency, an entropy table is pre-built, with each entry indexed by
a loop length and an end-to-end distance. Therefore, the entropy
of a loop, regardless of whether or not it belongs to a pseudoknot-
ted or nested structure, is indexed by these two parameters. The
entropy value is calculated by estimating the fraction of the
number of conformations of the closed loop over the number of
conformations of the random coil of the same length using a six-
state discrete model through sequential Monte Carlo sampling.
This approach is described in more detail in our previous

FIGURE 10. (A) The secondary structure of the hepatitis delta virus
ribozyme precursor and (B) its graph representation. The vertices in
the graph correspond to helical stems and the edges correspond to
loops. The weights of the edges are set to the lengths of the
corresponding loops. Note that this graph is not in metric graph.
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publications (Zhang et al. 2003, 2007; Lin et al. 2008a,b; Zhang
et al. 2008). This strategy of calculating loop entropy treats both
nested and pseudoknotted loops in a unified physical framework,
regardless of how complex the structures are.

The excluded volume effect between helices and that between
nucleic acids with the same loop are accounted for explicitly.
Nevertheless, the excluded volume effects between stems and
loops are not fully considered. The only reason for this is to
improve performance. Although it can be accounted for explicitly
and rigorously in our model, its incorporation will significantly
decrease the runtime efficiency, as it is difficult to pre-build
a template, and hence, a look-up table for all different types of
combinations of loops and stems, and therefore, they have to be
computed on the fly. In our current implementation, this
excluded volume effect is partially represented by the sampled
three-dimensional structural models when building the entropy
look-up table, although detailed excluded volume effect specific to
an individual candidate secondary structure are not yet taken into
account. The excluded volume effects between different loops are
of minor contribution to the overall free energy, hence, can be
ignored without much consequence (Cao and Chen 2009).

Coaxial stacking can make important contributions to the over-
all stability of RNA molecules. An advantage of pk3D is that this
effect can be modeled in a straightforward fashion, since the
spatial arrangements among stems are generated explicitly. Spe-
cifically, when the head of stem A is close to the end of stem B, we
find the location of the center cA and the normal vector nA of the
base plane at the head of stem A, and the similarly defined cB and
nB for stem B. Define D c = cB � cA as the intercenter vector
pointing from cA to cB. Stems A and B are coaxially stacked if the
length of Dc < 6 Å, and at the same time the angle between nA and
nB, between D c and nA, and between D c and nB are all smaller
than 30°. These criteria are slightly different from that proposed
by Tyagi and Mathews (2007). When two stems are found to be
coaxially stacked, the stacking free energy bonus is calculated
using the parameter from Turner’s rule as if the helix were
uninterrupted.

For each secondary structure, pk3D generates many three-
dimensionally feasible conformations and these conformations
may have different stacking patterns in the loop/junction region.
When multiple conformations are found, the conformation with
the lowest estimated free energy is chosen as the representative
three-dimensional structure, whose free energy is assigned to the
corresponding secondary structure. The secondary structure in the
candidate list with the lowest assigned free energy is then
predicted to be the native secondary structure of the RNA
molecule, and the associated three-dimensional conformation is
assumed to be the native conformation. This predicted tertiary
conformation could serve as a good starting point for further
structure refinement. The overall procedure of pk3D is shown in
Figure 9B.

Calculation of the sensitivity and PPV

We use real positive (RP) to denote the number of base pairs in
the real structure; true positive (TP) to denote the number of
correctly predicted base pairs; and false positive (FP) to denote the
number of predicted base pairs that do not exist in the real
structure. The sensitivity (SE) of the prediction of an algorithm is
defined as TP/RP; the PPV is defined as TP/(TP + FP), and the F

value is defined as (2 � SE �PPV)/(SE + PPV) (Mathews et al.
1999). We use the term ‘‘accuracy’’ to summarize performance in
both sensitivity and PPV. The terms ‘‘lowest SE’’ and ‘‘lowest
PPV’’ are defined as the SE and PPV of the structure that has the
lowest calculated free energy, respectively. The terms ‘‘best SE’’
and ‘‘best PPV’’ are the SE and PPV of the candidate that is closest
to true native structure, respectively, with the ‘‘closeness’’ mea-
sured by the F value.
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