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Ever since its formulation, the Scherrer formula has been the workhorse for

quantifying finite size effects in X-ray scattering. Various aspects of Scherrer-

type grain-size analysis are discussed with regard to the characterization of thin

films with grazing-incidence scattering methods utilizing area detectors. After a

brief review of the basic features of Scherrer analysis, a description of

resolution-limiting factors in grazing-incidence scattering geometry is provided.

As an application, the CHESS D1 beamline is characterized for typical

scattering modes covering length scales from the molecular scale to the

nanoscale.

1. Introduction

The ubiquitous Scherrer (1918) formula is, apart from Bragg’s

law, probably the most referred to formula in X-ray science.

The Scherrer formula relates the breadth Bhkl , or full width at

half-maximum, of a diffraction spot (hkl) to the average grain

size Dhkl in the material under study:

Dhkl ¼
K�

Bhkl cosð�hklÞ
; ð1Þ

where � is the X-ray wavelength and �hkl is the Bragg angle.

The Scherrer constant K is most often cited in the literature as

having a value of about 0.9, as derived in Scherrer’s original

paper with K ¼ 2½2 lnð2Þ=��1=2
’ 0:93 (see Warren, 1969).

We obtain a more modern representation in reciprocal

space rather than angular space, when we realize that

�qhkl ¼
4�

�
cosð�hklÞ

Bhkl

2
; ð2Þ

where we identified the breadth Bhkl ¼ � 2�hklð Þ with the width

of the Bragg spot with regard to scattering angle and obtain

Dhkl ¼ 2�K=�qhkl: ð3Þ

Finally, another useful parameter is the average number of

Bragg planes,

Nhkl ¼ Dhkl=dhkl ¼ qhkl=�qhkl; ð4Þ

where qhkl and dhkl are the scattering vector and the d spacing

associated with Bragg reflection (hkl), respectively. Nhkl is

independent of the chosen representation in real or reciprocal

space and is an intuitive quantity to describe poorly ordered

systems.

2. Patterson analysis of the Scherrer constant

Patterson (1949a,b) introduced a more general approach to

describe finite grain sizes by introducing a shape function f ðrÞ,

which has the value of 1 inside the shape and 0 elsewhere. The

product of the shape function and the infinite lattice yields a

finite crystal with a shape given by the shape function.

Applying the convolution theorem, the intensity distribution

for a reflection of a finite crystal is then given by the convo-

lution of the delta functions at the reciprocal-lattice points and

the Fourier transform FðqÞ of the shape function. Thus FðqÞ
�� ��2

defines the shape and width of the diffraction spot. We note

that Patterson’s FðqÞ is identical to the form factors of objects

with a constant electron density that are extensively used in

small-angle scattering (Guinier & Fournet, 1955; Guinier,

1963; Glatter & Kratky, 1982; for recent reviews see Pedersen,

1997; Lazzari, 2002; Förster et al., 2005).

Two types of grain shapes seem to be prevalent: more or less

spherical and cylindrical. For a spherical grain with radius R,

the form factor is given as

FðqÞ ¼
4

3
�R3 3

sinðqRÞ � qR cosðqRÞ

ðqRÞ
3

� �
: ð5Þ

The form factor is normalized, so that F(0) equals the volume

of a single sphere (Lazzari, 2002). Comparing the breadth of

FðqÞ
�� ��2 to the characteristic grain dimension 2R according to

equation (3) results in a K value of 1.123.

The form factor of a cylinder of height H and radius R is

given by

FðqÞ ¼ 2�R2H
2 J1ðqjjRÞ

qjjR

� �
sin qzH=2
� �
qzH=2

� �
ð6Þ

(Lazzari, 2002). J1(x) is the first-order Bessel function; qz and

qjj are the q components parallel and perpendicular to the

cylinder axis, respectively. Most interesting are the limiting

cases R >> H and H >> R. In the first case, we have a plate-like

habit of the ordered grains, in the second one a needle-like

habit. If we assume that the large dimension is beyond the



resolution limit in both cases, we obtain the following K

numbers:

(1) Platelets: we obtain the thickness H from reflections

perpendicular to the plane. Breadth analysis yields the factor

K = 0.886 (Guinier, 1963), close to Scherrer’s original result.

This case is also interesting for lamellar systems and describes

the average lamellar stack height.

(2) Needles: we obtain the thickness 2R from reflections

perpendicular to the needle axis. Breadth analysis yields K =

1.000. This case includes hexagonally packed cylindrical

phases in block copolymers and surfactant mesophases; it is

also relevant for equatorial reflections in fibers.

The three cases discussed, spherical, plate-like and rod-like,

are the most important ones for hard and soft materials with

limited order, where only a limited number of reflections are

available. Further values for K are obtained when other

shapes or the grain-size distributions are included (see reviews

by Langford & Wilson, 1978; Scardi & Leoni, 2001). In all

cases K remains on the order of 1.

3. Other contributions to the breadth

It has to be emphasized that a radial scan is needed in order to

determine the breadth Bexp and the associated grain size

accurately. For area-detector data this means that breadth

should be determined in the radial direction starting from the

direct-beam position. In grazing-incidence scattering close to

the critical angles, certain scattering features are due to the

scattering of the reflected beam (Lee et al., 2005; Busch et al.,

2006), and thus the radial direction is determined with respect

to the location of the specularly reflected beam. In contrast,

tangential scans, or scanning directions with both radial and

tangential components, are prone to additional broadening

due to the sample orientation distribution function, also

referred to as mosaicity or texture. Hence, tangential breadths

are always larger than radial ones, and the use of non-radial

breadths may result in underestimation of the grain size.

A special case deviating from this general rule is systems

with pronounced preferential order induced by the substrate

surface, as often seen in surface scattering and thin-film

studies. If the scattering features have a rod-like appearance,

with the rods extending perpendicular to the substrate, widths

measured along the rods should be a good indicator of the

grain size perpendicular to the substrate. This case is parti-

cularly interesting for thin films where the lateral grain size

can often be assumed to be isotropic, while the vertical grain

size can be limited by the film thickness. In fact, it is generally

of great interest to compare vertical grain size and film

thickness (see, for example, Papadakis et al., 2008).

However, if the scattering rods are smeared out into arcs as

a result of film mosaicity, it is safest to resort to the radial

widths for grain-size analysis and then extrapolate to the

vertical grain size by comparing reflections at different

azimuth angles. In the case of organic thin films, often only a

few reflections are intense enough to be used for breadth

determination, which often do not fall along the radial direc-

tion of interest. In the following, we provide a simple method

of obtaining the relevant average grain dimensions in such a

case.

Fig. 1 shows the intrinsic widths for an array of diffraction

spots, where it is assumed that only the radial breadths can be

measured reliably. Assuming an ellipsoidal shape of the thin-

film grains, the breadth ellipsoid can be reconstructed by

measuring the radial breadth of all reasonably intense reflec-

tions as well as their detector azimuths ’hkl, and then fitting the

horizontal and vertical grain sizes BH and BV. The equation of

the breadth ellipse can be found as

Bhkl cosð’hklÞ
� �2

B2
H

þ
Bhkl sinð’hklÞ
� �2

B2
V

¼ 1 ð7aÞ

where Bhkl and ’hkl correspond to polar coordinates of the

breadth ellipsoid (see Fig. 1). This Ansatz yields immediately

Bhklð’hklÞ ¼
1

f½cos2ð’hklÞ=B2
H� þ ½sin2

ð’hklÞ=B2
V�g

1=2
: ð7bÞ

In addition to the proper measurement of breadths

discussed above, other intrinsic sample properties can contri-

bute to the radial breadths. Strain fields and/or short-range

ordering can lead to additional line broadening of the higher-

order reflections. In principle, such effects have to be sepa-

rated from the finite size effect by careful spot-breadth

analysis as a function of the scattering angle; see Williamson &

Hall (1953) for strain fields or Hosemann & Bagchi (1962) for

analysis of short-range order.

Strain effects are most pronounced in hard-matter thin films

and deposits. Soft materials such as polymers, liquid crystals or

nanoparticle supracrystals are relatively compliant and often

rather deform, i.e. create grain boundaries or defects, than
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Figure 1
Anisotropic spot breadth indicating an anisotropic grain size, for instance
in thin-film samples where the film thickness limits the vertical grain size.
The detector azimuth ’khl, i.e. the angle of the line extending from the
direct-beam mark to a specific reflection with the horizontal plane, is
marked for a sample reflection (hkl). If only a part of the breadths can be
measured in radial scans owing to weak scattering intensities, the
horizontal and the vertical breadth and the associated grain sizes can still
be reconstructed (see text).



build up extended strain fields. Often soft materials may not

show true long-range order and, hence, may only display a few

diffraction orders. In both cases, the breadth of the lowest-

order reflections, where such additional broadening effects are

the least pronounced, will still provide valuable information

on the average grain size.

4. Resolution analysis

Apart from sample-specific contributions to the peak breadth,

it is important that the resolution Bres of the apparatus is

accurately determined and accounted for:

Bhkl ¼ ðB
2
exp � B2

resÞ
1=2; ð8Þ

where Bexp denotes the experimentally determined breadth

from a radial scan.

Bres shall be examined here for the case of grazing-incidence

small- and wide-angle scattering (GISAXS/GIWAXS). These

techniques constitute powerful methods to characterize the

structure of thin films on the molecular scale (GIWAXS) and

on the nanoscale (GISAXS), and have been extensively used

for the study of soft and hard materials on surfaces or in thin

films (Levine et al., 1989; Sirringhaus et al., 1999; Smilgies et al.,

2002; Lazzari, 2002; Renaud et al., 2003; Lee et al., 2005; Busch

et al., 2006; Breiby et al., 2008). In either case, the X-ray beam

impinges on the surface under grazing incidence close to the

critical angle of the film and the scattered photons are

collected with an area detector such as a CCD camera or an

image plate.

Another powerful surface scattering technique is grazing-

incidence diffraction (GID). Although the limits between

GIWAXS and GID are somewhat fluid, in the following it will

be understood that GIWAXS measurements are primarily

concerned with collecting diffuse scattering with an area

detector, while in GID typically higher-resolution scans using

point or line detectors are performed, in conjunction with

collimating slits or Soller collimators (see, for instance, Smil-

gies et al., 2005). The use of collimation significantly changes

the resolution function and has been discussed by Robach et

al. (2000) and Jedrecy (2000). In the following, we will be

concerned with the GIWAXS case, which follows the same

considerations as apply for GISAXS.

Principal contributions to the scattering resolution are the

horizontal and vertical beam divergences �0H and �0V, and the

beam-energy bandwidth �, using phase-space notation (Smil-

gies, 2008). The beam divergence in both principal directions

can be estimated from the horizontal and vertical source sizes,

�H, �V, and the distance of the sample from the source. The

energy bandwidth can be determined from the optical prop-

erties of the monochromator.

Assuming an elliptical beam profile with main axes �0H and

�0V, the beam divergence in the radial direction for a given

detector azimuth angle ’ is given as

�0Rð’Þ ¼
1

f½cos2ð’Þ=�02H� þ ½sin2
ð’Þ=�02V �g

1=2
ð9Þ

using the method to derive equation (7b). The divergence of

the scattered beam is

Bdiv ¼ �
0
R; ð10Þ

where we assume that the whole incident radiation fan is

Bragg reflected owing to the mosaicity of the sample. This

assumption is usually satisfied in soft materials as well as in

hard-material deposits with finite mosaicity.

The radial divergence is increased by the energy bandwidth

according to

BBW ¼ 2� tanð2�hkl=2Þ: ð11Þ

For Si(111) optics with � = 10�4, this smearing can usually be

neglected; however, for multilayer optics with � in the range

0.5–2% (Kazimirov et al., 2006), it definitely has to be taken

into account.

An effect peculiar to grazing-incidence scattering is

geometric smearing, as illustrated in Fig. 2. The cause is the

finite length of the footprint of the beam on the sample (Yang,

2005). For typical grazing angles between 0.1 and 0.3� and

0.1 mm beam height, any sample shorter than 40 mm along the

beam gets fully illuminated. Hence, the resolution is affected

by the width w of the footprint of the beam on the sample. If

every volume element within the illuminated streak scatters,

all intensity under the scattering angle 2� is spread out into a

radial streak on the detector of width w0 with

w0 ¼ w tanð2�Þ ð12Þ

and thus the geometric smearing is given by

Bgeo ¼ ½w tanð2�Þ�=L; ð13Þ

where L is the distance from sample to detector.

The geometric smearing effect is most pronounced at large

scattering angles (GIWAXS), while for small-angle scattering

(2� < 1�) it becomes small.
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Figure 2
Schematic depiction of the geometric smearing effect as a result of the
finite sample size (lengths and angles are not to scale). A side view and a
top view are provided for an in-plane reflection ð’hkl ’ 0Þ. In grazing-
incidence geometry, typically the full length of the sample is illuminated.
For an arbitrary detector azimuth, the smearing occurs in the radial
direction.



In all, there are three contributions to the radial resolution:

the beam divergence, the beam bandwidth and the geometric

smearing. The combined resolution can be written as

Bresð2�; ’Þ ¼ ½Bdivð’Þ
2
þ BBWð�; 2�Þ2 þ Bgeoðw; 2�Þ2�1=2

ð14Þ

or, in terms of scattering vector resolution,

�qres ¼
4�

�
cos

2�hkl

2

	 

Bres

2
: ð15Þ

For practical purposes, the resolution limit of the apparatus is

reached if Bexp does not exceed Bres by at least 50%. If the

Scherrer formula is applied to Bres, we can determine the

resolution limit of the apparatus in real space, Dlim, which can

serve as a lower limit for the actual grain size.

5. Application

GISAXS and GIWAXS beamlines come in many flavors and

are often based on pre-existing equipment, such as SAXS

pinhole cameras, reflectometers or surface diffractometers.

The same applies to neutron scattering instruments. The above

description of the resolution captures the important aspects;

however, a specific analysis will have to be done for each

individual setup.

As an application example, we will consider station D1 at

the Cornell High Energy Synchrotron Source (CHESS). D1 is

supplied with an X-ray beam from a hard-bent dipole magnet

in the 5.2 GeV CESR storage ring at Cornell University.

Horizontal and vertical source sizes are �H ¼ 2 mm and �V ¼

1 mm, using phase-space notation (Matsushita & Kaminaga,

1980a,b; Smilgies, 2008). Two 30 Å period Mo:B4C synthetic

multilayers are used in a vertical double-bounce mono-

chromator. A slit system collimates the beam for grazing-

incidence experiments to 0.5 (H) � 0.1 mm (V). The sample is

at about 13 m from the source point, and sample-to-detector

distances vary between 100 (GIWAXS) and 500–1800 mm

(GISAXS). Scattered photons are detected with a CCD-type

area detector (MedOptics) with a pixel size of 47 mm and an

aperture of 48 � 48 mm.

The horizontal divergence �0H can be estimated from the

horizontal source size and the distance of the sample from the

source as 0.16 mrad. Energy analysis by measuring the posi-

tion and breadth of the (111) and (333) reflections of an

Si(111) single crystal in the vertical plane yields a vertical

beam divergence �0V of 1.6 mrad and an energy bandwidth

� ¼ �E=E ¼ ��=� of 1.5% (Shastri, 1995). Hence, the

measured �0V is significantly larger than the expected value of

0.08 mrad from the source size (1 mm) and distance (13 m)

and dominated by multilayer properties.

With the parameters described above, D1 is optimized to

collect weak, diffuse scattering intensities from relatively

poorly ordered systems at medium resolution (up to 200 nm),

as is typical for thin films of nanostructured soft materials,

where the amount of flux on the sample is often the limiting

factor. As an application, we will calculate the q resolution for

typical D1 experimental setups: (a) GISAXS-I (block co-

polymers, nanocomposites), (b) GISAXS-II (nanoparticle

superlattices, nanoporous materials) and (c) GIWAXS

(semicrystalline polymers, aromatic molecules).

The maximum scattering angle is given by the size of the

area detector and its distance from the sample. The MedOptics

detector at CHESS D1 has an effective active area of 45 �

45 mm, if edge effects are to be avoided. Typical distances are

1800 (GISAXS-I), 800 (GISAXS-II) and 100 mm (GIWAXS).

The minimum scattering angle is limited by the size of the

beamstop (typically 3 mm for GISAXS and 1.5 mm for

GIWAXS) as well as its location relative to the sample (1650

and 650 mm for GISAXS-I and II, respectively, and 50 mm for

GIWAXS).

Fig. 3 presents both horizontal (left column) and vertical

(right column) resolution values for the three setups. Using

equation (14), we switched to a more modern representation
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Figure 3
Resolution limits for typical D1 setups: (a) GISAXS-I, (b) GISAXS-II
and (c) GIWAXS. The left and right columns display the resolution in the
horizontal and vertical directions, respectively. For a description of
experimental parameters see text. The total scattering resolution (solid
line) is plotted along with the partial contributions from geometric
smearing (dotted line), bandwidth smearing (dashed line) and beam
divergence (dash–dotted line) over the q range covered by the detector.



in reciprocal space, and we analysed the various contributions

from equation (13) to the overall resolution �qres. We see that

in the GIWAXS case the grain-size resolution is strongly

limited by the geometric smearing, reaching about 5% of the q

value. Because of this limitation, it is important to keep the

sample width w below 5 mm for GIWAXS, which at a 100 mm

sample–detector distance still amounts to a 5% effect. None-

theless, useful information can still be obtained at the smaller

scattering vectors, for instance for lamellar peaks in semi-

crystalline polymers (see, for example, Huang et al., 2009).

Moreover, GIWAXS is a very convenient technique for time-

resolved studies or scanning studies of inhomogeneous thin

films, capturing all relevant information in a single image, with

a time resolution of 5–10 s per frame at D1, as given by the

available X-ray flux onto the sample and the read-out time of

the area detector.

From the formulae assembled above, we can determine

that, in order to match the geometric smearing to the band-

width smearing, the active scattering area would have to be

reduced to 2 mm. Confining the beam footprint by working

with small strips of material on a typical wafer sample of 5–

10 mm width or using vertical focusing (Yang, 2005) have both

been employed to improve the GIWAXS spot resolution,

while still maintaining the ability to line up the sample in the

beam.

In the GISAXS case, contributions are more balanced. The

larger vertical beam divergence due to the multilayer mono-

chromator limits the achievable vertical resolution. However,

the vertical resolution requirements for thin films are relaxed,

because the film thickness sets a natural limit on the maximum

grain-size resolution needed. The best grain-size resolution is

achieved in the horizontal direction, with a figure of merit of q/

�q of 40 which amounts to micrometre-sized grains consid-

ering the typical d spacings of 20–50 nm probed in this mode.

Overall, our calculation shows clearly that the resolution

correction is essential in order to obtain reliable estimates of

the size of ordered regions in the thin-film samples studied.
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