Skip to main content
. Author manuscript; available in PMC: 2009 Nov 20.
Published in final edited form as: Nat Med. 2009 Feb 1;15(2):211–214. doi: 10.1038/nm.1915

Table 1.

Estimates from bootstrap analysis of in vivo mathematical model.

Day Standard plating
CFU ml−1a
Plasmid frequency
%
Per day (95% confidence interval)
Generation timec
h
Cumulative bacteria
CFU ml−1 (95% confidence interval)b
r δd
1 3.78 × 102 66.68 3.78 × 102 (3.03 × 102 – 4.20 × 102)
13 3.03 × 104 12.46 0.78 (0.68 – 0.88) 0.41 (0.33 – 0.51) 21.42 6.39 × 104 (3.18 × 104 – 1.04 × 105)
26 6.31 ×105 6.06 0.31 (0.19 – 0.41) 0.07 ( 0.05 – 0.18) 54.04 8.56 × 105 (5.79 × 105 – 1.12 × 106)
69 8.55 × 105 2.33 0.12 (0.07 – 0.18) 0.12 (0.06 – 0.18) 134.51 4.78 × 106 (2.79 × 106 – 7.01 × 106)
111 1.31 × 106 0.61 0.18 (0.12 – 0.24) 0.17 (0.11 – 0.22) 94.36 1.27 × 107 (1.08 × 107 – 1.45 × 107)

77 5.95 ×× 106 1.05 0.55 (0.27 – 0.83) 0.31 (0.04 – 0.56) 30.10 1.64 × 107 (1.16 × 107 – 2.15 × 107)

Day 77 data represent mice treated with dexamethasone for 8 d.

a

Mean of five mice per time point.

b

Calculations made with s = 0.18.

c

Generation time = ln(2) / r; hence, if r = 1, doubling time = 16.6 h; if r = 0.1, doubling time = 166 h.

d

Variation in the death rate is reflected in the cumulative bacterial burden. For the extreme case that δ= 1, the cumulative burden at day 111 would be 7.76 × 106 CFU ml−1; if δ= 0, the cumulative burden would be the same as that determined by standard plating.