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Summary
Pulmonary alveolar proteinosis (PAP) is a rare syndrome characterized by accumulation of
pulmonary surfactant, respiratory insufficiency, and increased infections. It occurs in various clinical
settings that disrupt surfactant catabolism in alveolar macrophages, including a relatively more
common autoimmune disease caused by GM-CSF autoantibodies and a rare congenital disease
caused by CSF2RA mutations. Recent results demonstrate that GM-CSF is critical for alveolar
macrophage terminal differentiation and immune functions, pulmonary surfactant homeostasis, and
lung host defense. GM-CSF is also required for the basal functional capacity of circulating
neutrophils, including adhesion, phagocytosis, and microbial killing. PAP research has illuminated
the critical role of GM-CSF in innate immunity and led to novel therapy for PAP and the potential
use of anti-GM-CSF therapy in other common disorders.

Introduction
Pulmonary alveolar macrophages are multifunctional tissue representatives of the bone
marrow-derived mononuclear phagocyte system that serve as a first line of defense against
inhaled microbial pathogens and toxins, clear inhaled debris, excess surfactant and apoptotic
cells from the alveolar surface, orchestrate pulmonary inflammatory responses, and participate
in wound healing and lung remodeling. A broad range of exogenous and endogenous factors
interact with and modify the functions of these cells, including colony stimulating factors such
as M-CSF, GM-CSF, and IL-3. GM-CSF, initially identified by its ability to stimulate the
formation of neutrophil and macrophage colonies from bone marrow precursors, is now
regarded as an important immunoregulatory cytokine with pleiotropic effects on myeloid cells
in health and disease (reviewed in [1]) mediated through complex signaling pathways (Figure
1). The serendipitous discovery that GM-CSF deficient mice accumulate surfactant in the lungs
identified the critical role of GM-CSF in alveolar macrophage function and surfactant
homeostasis (reviewed in [2]). Early studies showed that this phenotype is caused by the
absence of GM-CSF in the lungs where it is required to stimulate alveolar macrophages to
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catabolize surfactant lipids and proteins. Subsequent studies demonstrated that GM-CSF-
deficient mice have increased mortality from pulmonary and systemic infections, and that
myeloid cells from these mice have multiple innate immune defects (reviewed in [3]).

Pulmonary alveolar proteinosis (PAP) causes lung pathology similar to that of GM-CSF-
deficient mice and occurs in a heterogenous group of diseases (reviewed in [4]). While
function-altering GM-CSF mutations have not been identified in humans, PAP is associated
with disruption of GM-CSF signaling caused by high levels of neutralizing GM-CSF
autoantibodies in autoimmune PAP or by mutations in CSF2RA, the gene encoding the GM-
CSF receptor α protein in congenital PAP. Both PAP patients and GM-CSF deficient mice
have increased susceptibility to opportunistic microbial pathogens and increased mortality
from uncontrolled infections [5]. Here, we review recent studies that helped elucidate the
pathogenesis of autoimmune and congenital PAP, the role of GM-CSF in alveolar macrophage
and neutrophil function in mice and man, and studies that implicate GM-CSF in the
pathogenesis of serious inflammatory and autoimmune diseases.

Autoimmune PAP: an attack of adaptive immunity on innate immunity
First described by Rosen in 1958, the pathogenesis of PAP remained enigmatic for more than
4 decades. Following the discovery of PAP in GM-CSF-deficient mice, neutralizing GM-CSF
autoantibodies were detected in patients with the common clinical PAP subtype (idiopathic
PAP) [6]. These were comprised of polyclonal IgG, primarily IgG1 and IgG2 with only small
amounts of IgG3 and IgG4, and were highly specific for human GM-CSF recognizing multiple
epitopes and binding with an affinity of 20 ± 7.5 pM [7,8]. High levels of GM-CSF
autoantibodies were present only in patients with this clinical subtype, and not in other PAP
subtypes, individuals with other lung diseases or healthy people [4,9,10]. Autoantibody levels
in these patients were sufficient to neutralize far more GM-CSF than is present physiologically,
suggesting they eliminate GM-CSF bioactivity in vivo and that autoimmune PAP is a functional
equivalent of the GM-CSF-deficient mouse [7]. GM-CSF autoantibodies are consistently
detected in pharmaceutical immunoglobulin preparations and were recently reported to be
ubiquitous in healthy human individuals, albeit at levels far lower than in idiopathic PAP
patients [8]. This apparent paradox was reconciled by the hypothesis that a GM-CSF
autoantibody level exceeding a critical threshold is required to increase the risk of PAP [11].
Evaluation of healthy individuals and PAP patients permitted estimation of this critical
threshold [8] and suggested that physiological levels of GM-CSF autoantibodies may
rheostatically regulate myeloid cell reactivity via continuous in vivo priming (Figure 2). The
ability to purify GM-CSF autoantibodies by affinity chromatography has facilitated evaluation
of their biological effects on myeloid cells in vitro and in vivo [7,12]. Passive immunization
studies showed that GM-CSF autoantibodies from PAP patients faithfully reproduced the
histopathological, biochemical, and immunological manifestations of PAP in healthy, non-
human primates [13]. Further, idiopathic PAP patients and GM-CSF-deficient mice have
similar defects in neutrophil functions (adhesion, phagocytosis, oxygen radical production,
microbial killing). Neutrophil dysfunction could be reproduced by incubation of normal cells
with GM-CSF autoantibodies ex vivo [12]. Alveolar macrophages from PAP patients [8] and
GM-CSF-deficient mice [14] have similarly impaired phagocytosis and other immune defects
(Table 1) [8]. These myeloid cell defects provide an explanation for the increased infection
risk and mortality in PAP patients and GM-CSF deficient mice.

In summary, GM-CSF autoantibodies appear to directly cause the common clinical form of
PAP, which is now considered an autoimmune disease specifically targeting GM-CSF (i.e.,
autoimmune PAP). The possible physiological role(s) of GM-CSF autoantibodies in healthy
individuals may be to limit the endocrine actions of GM-CSF produced at upstream sites of

Trapnell et al. Page 2

Curr Opin Immunol. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inflammation (Figure 3). This is consistent with the observation that more than 99.9 percent
of serum GM-CSF in healthy individuals is bound to GM-CSF autoantibodies [8].

Congenital PAP caused by disruption of GM-CSF receptor function
GM-CSF signaling is mediated by cell surface receptors comprised of a low-affinity GM-CSF-
binding α chain and an affinity-enhancing β chain common to the receptors for GM-CSF, IL-3
and IL-5 [1]. Neither the α nor β chains possess intrinsic signaling capacity but the β chain
constitutively associates with Jak2, which is critical for signaling. The pleiotropic effects of
GM-CSF on myeloid cell survival, proliferation, differentiation and activation appear to be
mediated in part via a binary switch-like mechanism [15] initiated by assembly of a
dodecameric receptor complex [16] that forms after binding GM-CSF (Figure 1). At low GM-
CSF concentrations, signaling occurs via phosphorylation of serine585 of the β chain resulting
only in cell survival mediated via activation of NFκB and induction of bcl-2 [17]. At higher
concentrations, signaling via serine585 is extinguished and signaling via phosphorylation of
tyrosine577 of the β chain results in survival as well as stimulation of STAT5-regulated
pathways, including cellular activation and proliferation (Figure 1). GM-CSF, via the
transcription factor PU.1, also stimulates surfactant catabolism and numerous other functions
in alveolar macrophages (see below).

A six year old child with PAP in whom GM-CSF autoantibodies were undetectable recently
led to identification of congenital PAP caused by recessive CSF2RA abnormalities that
disrupted GM-CSF signaling [18]. Progressive dyspnea of insidious onset had been present
for several years. She had a 1.6 megabase deletion in the pseudoautosomal region of her
maternal X chromosome encompassing CSF2RA and a point mutation in the paternal X
chromosome causing a single amino acid change (G196R) in the extracellular, cytokine binding
domain of the α chain. This point mutation altered α chain glycosylation, reduced GM-CSF
binding, and disrupted signaling as demonstrated by the absence of STAT5 phosphorylation
and unaltered cell-surface CD11b levels after GM-CSF stimulation. Serum surfactant protein
D was increased similar to results in patients with autoimmune PAP [18]. GM-CSF levels were
also increased in the lungs of this patient and in the serum of her eight year old sister who was
considered to be healthy but subsequently found to have identical molecular defects and
radiographic findings of PAP. The parents were heterozygous for the CSF2RA abnormalities
and had normal serum levels of surfactant protein D and GM-CSF. Congenital PAP was also
identified in a 4 year old female with Turner’s syndrome caused by compound X chromosome
deletions resulting in the disruption of both CSF2RA alleles [19]. Her serum GM-CSF level
was elevated. Although, bone marrow transplantation appeared to be successful in treating
PAP, the patient succumbed to fungal infection four weeks after transplantation.

Based on the hypothesis that an elevated serum GM-CSF level may be a useful biomarker of
PAP due to receptor dysfunction, screening of sera from children with unexplained PAP
identified 4 individuals with PAP caused by various function-altering CSF2RA mutations
[20]. To date, seven children, all female and ranging in age from two to eleven years, have
been identified with congenital PAP caused by CSF2RA mutations; all have elevated GM-CSF
levels. Only one had a serious infection, which occurred during immunosuppression after bone
marrow transplantation (described above).

PAP was been reported in four infants in whom expression of the GM-CSF β chain was not
detected on blood leukocytes, implying β chain dysfunction in the pathogenesis of PAP [21].
However, these patients were poorly characterized and mutations were not excluded in other
genes that cause PAP, i.e., those encoding SP-C or the lipid transporter ABCA3 [22]).
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GM-CSF is critical for the terminal differentiation of alveolar macrophages
Evaluation of mice in which GM-CSF expression was normal, absent, or occurred only in the
lungs revealed that pulmonary GM-CSF regulated alveolar macrophage expression of the
myeloid master transcription factor, PU.1, suggesting GM-CSF was required for alveolar
macrophage maturation [14]. An alveolar macrophage cell line (mAM) derived from GM-CSF
deficient mice also failed to express PU.1 and had a phenotype similar to that of primary cells
from these mice (Table 1). This phenotype included altered cellular morphology and expression
of macrophage differentiation antigens (ERMP12, ERMP20, BM8), and impaired cell
adhesion, phagocytosis, expression of cell surface receptors (TLR4, TLR2, CD14, mannose
receptor, Fc receptors, integrins (α4, α5, αL αM, αv, β2, and β5)), LPS-mediated TNFα and IL-6
secretion, surfactant protein and lipid catabolism, and antimicrobial activity [14,23–27].
Importantly, reconstitution of GM-CSF in the lungs of GM-CSF deficient mice or retrovirus-
mediated expression of PU.1 in mAM cells restored a normal macrophage-like appearance and
corrected all the abnormalities evaluated (Table 1). Alveolar macrophages from patients with
autoimmune PAP have numerous abnormalities similar to those of GM-CSF deficient mice
(Table 1) and GM-CSF has been shown to be required to stimulate PU.1 expression in alveolar
macrophages from these patients [28]. That GM-CSF coordinately regulates such a wide range
of immune and non-immune macrophage functions strongly supports the concept that
pulmonary GM-CSF is required to stimulate the terminal differentiation of alveolar
macrophages in the lungs. Notwithstanding, the precise mechanism(s) by which GM-CSF
stimulates PU.1 levels and stimulates macrophage terminal differentiation remain poorly
understood. While GM-CSF also determines the basal functions of circulating neutrophils,
neither PU.1 levels, nor expression of differentiation markers on neutrophils were affected in
GM-CSF deficient mice or PAP patients, suggesting that GM-CSF is not critical for neutrophil
differentiation [12].

GM-CSF is a critical regulator of myeloid cell host defense functions
Uncontrolled infection, frequently by opportunistic pathogens, account for 18% of attributable
mortality in PAP patients [5]. Similarly, GM-CSF-deficient mice have increased mortality
from infection and increased susceptibility to a wide range of microbial pathogens, including
bacteria (Streptococcus [29], Pseudomonas a. [30], Listeria monocytogenes [31]), fungi
(Pneumocystis carinii [32]), malaria (Plasmodium chabaudi [33]), virus (adenovirus [24]) and
Mycobacteria (M. tuberculosis [34]) (Table 1). In both PAP patients and GM-CSF deficient
mice, infections occur at pulmonary and extrapulmonary sites indicating that the predisposition
to infection is systemic.

Adenovirus exemplifies how GM-CSF regulates macrophage antimicrobial functions.
Macrophages normally internalize adenovirus via endosomes that are translocated to
phagolysosomes where virions are destroyed [24]. In mAM cells, which don’t express GM-
CSF or PU.1, virions readily escape endosomal confinement, translocate to the nucleus and
transduce the cell as occurs in epithelial cells. Retroviral expression of PU.1 corrects this
phenotype, restoring lysosomal translocation and virion destruction. Importantly, ectopic,
retroviral-mediated PU.1 expression blocks adenoviral transduction in epithelial cells as it
normally does in macrophages. Thus, GM-CSF, via PU.1, prevents infection of macrophages
(i.e., transduction) and promotes viral clearance by uncoupling virion uptake from cellular
transduction and by promoting virion destruction [24].

GM-CSF is important in systemic responses to infection because GM-CSF deficient mice are
resistant to LPS mediated shock and the expression of PU.1 in peritoneal macrophages is
critical in shock-mediated mortality from peritonitis or intraperitoneal LPS administration
[35]. GM-CSF also regulates the production of oxygen radicals [29], prostaglandins (8-iso-
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PGF2, PGE2) and leukotrienes (LTB4) [30,32,36] by alveolar macrophages. GM-CSF-
deficiency [37] or the presence of neutralizing anti-GM-CSF antibodies [38], reduces
pulmonary cellular and molecular inflammation in response to LPS.

Manipulating GM-CSF bioactivity: potential new therapeutic applications
Studies evaluating GM-CSF-deficient mice in various experimental disease models and the
demonstration of increased GM-CSF levels in the corresponding human disorders have
implicated GM-CSF in the pathogenesis of inflammatory and autoimmune diseases (reviewed
in [39,40]). For example, GM-CSF-deficient mice develop less-severe pathology in models of
collagen-induced arthritis [41] and GM-CSF is increased in synovial fluid from patients with
rheumatoid arthritis [42]. Similarly, GM-CSF-deficient mice are resistant to experimental
allergic encephalomyelitis, a model of multiple sclerosis, and susceptibility can be restored by
reconstituting GM-CSF [43]. Experimental models of antigen-driven glomerulonephritis
[44], gastritis [45] and pancreatitis-associated lung injury [46] also have reduced severity in
GM-CSF-deficient mice. Based on these and other studies, clinical trials are now underway
evaluating the safety and efficacy of an antibody-mediated reduction in GM-CSF signaling in
severe inflammatory and autoimmune disorders [40]. While this opens up exciting new
potential pharmacological approaches, close monitoring for the development of pulmonary
(i.e. iatrogenic PAP) and infectious (i.e., recrudescent mycobacterial infection) complications
will be important.
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Figure 1. Mechanisms by which GM-CSF regulates the survival, differentiation, functions and
activation of alveolar macrophages
GM-CSF (GM) initiates signaling by first binding to the GM-CSF receptor α chain (α), which
then associates with homodimers of the affinity-enhancing GM-CSF receptor β chain (β). Jak2
is bound constitutively to the β chain and signals through an intracytoplasmic β chain motif
including residues tyrosine577 and serine585, which is necessary and sufficient for GM-CSF
receptor signaling. At low GM-CSF concentrations (0.01 – 10 pM), phosphorylation of
serine585 couples signaling via the adapter protein, 14-3-3 through PI3K and Akt, resulting in
cell survival without proliferation. At high GM-CSF concentrations (10 – 10,000 pM),
phosphorylation of tyrosine577 couples signaling via STAT5 or Shc-dependent pathways,
stimulating cell survival, cellular activation and proliferation. Pulmonary GM-CSF stimulates
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expression of PU.1 in alveolar macrophages, which in turn regulates the expression of
numerous genes enabling multiple immune and non-immune functions consistent with terminal
differentiation of alveolar macrophages in the lungs. Interruption of GM-CSF signaling, either
by neutralizing autoantibodies or function-altering amino acid changes in GM-CSF receptor
α (G196R) impair GM-CSF receptor signaling and alveolar macrophage maturation. One of
the functions affected is the ability to catabolize surfactant lipids internalized into endosomes,
thereby reducing surfactant clearance and causing PAP.
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Figure 2. Relationship between GM-CSF autoantibody concentration, GM-CSF bioactivity and
regulation of GM-CSF-dependent myeloid cell functions
Over a range of low GM-CSF autoantibody levels present in healthy subjects, increasing GM-
CSF autoantibody concentrations (abscissa) rheostatically lower GM-CSF bioactivity (right
ordinate) thereby reducing in tandem, GM-CSF-dependent myeloid cell functions (left
ordinate). Some functions have activity that is GM-CSF-independent (open bar, left ordinate),
modulated by physiologic changes in GM-CSF concentration (hatched bar, left ordinate), or
stimulated to supranormal levels by exogenous or pathologically increased GM-CSF levels
(black bar, left ordinate). Above a concentration sufficient to block GM-CSF completely (the
critical threshold), GM-CSF bioactivity is zero and GM-CSF-dependent functions are minimal.
GM-CSF autoantibody concentrations between zero and the critical threshold are present in
healthy individuals and may serve a physiological role by negatively regulating myeloid cell
reactivity. The critical threshold also helps to define a therapeutic window for the potential use
of GM-CSF autoantibodies to treat other disorders. GM-CSF antibody levels above the critical
threshold are anticipated to increase the risk of iatrogenic PAP. Adapted from reference [8].
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Figure 3. Proposed modes by which GM-CSF regulates alveolar macrophage functions and
modulation GM-CSF autoantibodies
GM-CSF produced locally in the lung interacts with receptors on nearby alveolar macrophages
stimulating terminal differentiation (paracrine mode) thereby enabling the numerous functions
and signaling pathways, e.g., TLR4 pathway. Pathological stimuli activate signaling pathways
with biologic responses important to host defense of that cell. GM-CSF released by and binding
to the cell’s own GM-CSF receptors (autocrine mode) switches them into the tyrosine577-
mediated, high activity state [15], activating the macrophage, which enhances immune
functions and stimulates proliferation. This autocrine mode of action provides a fine control
for GM-CSF to modulate host defenses on a microscopic scale in the local microenvironment
of the cell (i.e., after encountering a pathogen) independent of other components of regional
or systemic immunity. GM-CSF originating from a ‘upstream’ site of inflammation can
stimulate macrophages at distal sites (endocrine mode), which may result in unnecessary
(pathologic) activation. Low levels of GM-CSF autoantibodies in healthy individuals appear
to block endocrine signaling and may modulate autocrine modes of GM-CSF signaling,
whereas high levels in PAP patients also block paracrine signaling resulting in maturational
arrest of macrophages.
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