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Abstract

RNA silencing is a broadly conserved machinery and is involved in many biological events. Small RNAs are key mol-
ecules in RNA silencing pathway that guide sequence-specific gene regulations and chromatin modifications. The silen-
cing machinery works as an anti-viral defense in virus-infected plants. It is generally accepted that virus-specific small
interfering (si) RNAs bind to the viral genome and trigger its cleavage. Previously, we have cloned and obtained
sequences of small RNAs from Arabidopsis thaliana infected or uninfected with crucifer Tobacco mosaic virus.
MicroRNAs (miRNAs) accumulated to a higher percentage of total small RNAs in the virus-infected plants. This
was partly because the viral replication protein binds to the miRNA /miRNA* duplexes. In the present study, we
mapped the sequences of small RNAs other than virus-derived siRNAs to the Arabidopsis genome and assigned
each small RNA. It was demonstrated that only miRNAs increased as a result of viral infection. Furthermore, some
newly identified miRNAs and miRNA candidates were found from the virus-infected plants despite a limited
number of examined sequences. We propose that it is advantageous to use virus-infected plants as a source for
cloning and identifying new miRNAs.
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1. Introduction DICER-LIKE 1 (DCL1). This enzyme works coordinately

with HYL1 and SERRATE to produce miRNA /miRNA*

Small RNAs play important roles in RNA silencing
mechanisms which are involved in many biological
processes in eukaryotes. These small RNAs guide post-
transcriptional gene silencing by inhibiting translation
or degrading the target mRNAs, and guide transcrip-
tional gene silencing by modifying chromatin.' *

In Arabidopsis thaliana, functional small RNAs are
mostly 21-24nt long. The best-studied endogenous
small RNAs are microRNAs (miRNAs). In Arabidopsis,
miRNAs are excised from primary miRNA transcripts
forming stem-loop structures by the RNase III enzyme
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duplexes.* ? miRNAs are loaded into the RNA-induced
silencing complex (RISC) where the complementary
mRNAs are cleaved by ARGONAUTE 1 (AGO1), which
has Slicer activity.'’'! Plants have some unique small
RNAs in addition to miRNA. Trans-acting siRNA
(tasiRNA) is produced from long double-stranded RNA
(dsRNA) by DCL4 with its binding partner, DRB4.'* *
miRNA and tasiRNA are mainly involved in plant
development, response to environmental stresses and so
on through regulating gene expression.' ® siRNAs
derived from natural-antisense transcripts (nat-siRNAs)
exist in Arabidopsis and function in the stress response
and bacterial disease resistance.'”'® However, the
numbers and functions of nat-siRNAs are not fully
understood.
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The RNA silencing pathway also serves as an anti-viral
defense in plants. Viral genome-derived siRNAs are
detected in plants infected with RNA viruses!”'® and
DNA viruses.'>? The lengths of these siRNAs differ with
the type of viruses,'®?! suggesting the involvement of differ-
ent DCLs in producing the respective viral siRNAs. It is con-
ceived that the resulting siRNAs are loaded into the RISC as
well as endogenous small RNAs, bind the viral genome
through complementary sequences and direct the degra-
dation of the viral genome. To counteract the silencing
machinery of plants, many viruses have evolved genes
which encode silencing suppressor proteins with distinct
properties.?** Many suppressors have dsRNA binding
activity so that virus siRNAs are trapped, resulting in inhi-
bition of the silencing machinery.?*** In contrast to the
dsRNA binding strategy, the Cucumber mosaic virus-
encoded 2b protein directly interacts with AGO1 and inhi-
bits its activity?® and Turnip crinkle virus-encoded P38
protein suppresses DCL4 activity.'®

We have examined the crucifer Tobacco mosaic virus-
Cg (TMV-Cg) infection of Arabidopsis as a model
system to study plant- Tobamovirus interaction.?”*®
TMV-Cg is a positive-sense, single-stranded RNA virus.
We have previously cloned and sequenced small RNAs
from Arabidopsis infected or uninfected with TMV-Cg
and demonstrated that miRNAs increased in the virus-
infected plants.®® In TMV and Tomato mosaic virus
(ToMV), which both belong to the Tobamovirus family,
126K replication proteins suppress RNA silencing.?%*
Thus, it is postulated that the 126K replication protein
of TMV-Cg also acts as a silencing suppressor because
it binds to small dsRNAs.*® Owing to this activity,
126K replication protein binds to miRNA/miRNA*
duplexes, resulting in the accumulation of miRNAs. In
the present study, we examined all small RNA sequences
obtained from Arabidopsis infected or uninfected with
TMV-Cg. We then mapped the region where each small
RNA sequence was derived in the Arabidopsis genome.
Among the small RNAs from virus-infected plants, we
identified several newly identified miRNAs and miRNA
candidates. Virus-infected plants could be an effective
source to find novel miRNAs.

2. Materials and methods

2.1. Mapping of small RNAs using BLAST searches

We have analyzed small RNA sequences obtained pre-
viously; 1700 and 543 reads from the leaves of
Arabidopsis infected and uninfected with TMV-Cg at 3
days post-infection (dpi), respectively.”® Each sequence of
non-viral genome origin was mapped to the Arabidopsis
genome by NCBI BLAST (http://www.ncbi.nlm.nih.gov/
BLAST/) and TAIR BLAST (http://www.arabidopsis.
org/Blast/index.jsp) searches. During searches, we
allowed one mismatch at its 3’ end, because 3’ ends of
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small RNAs in virus-infected plants are possibly unmethy-
lated and unstable.®" All BLAST searches were performed
automatically using BioPython script programs.

2.2.

Secondary structures of miRNA precursors were pre-
dicted using the mFOLD program (http://www.bioinfo.
rpi.edu/applications/mfold/).** Targets of miRNAs
were predicted using the miRU: Plant microRNA
Potential Target Finder (http://bioinfo3.noble.org/
miRNA /miRU.htm).*

To compare the ratio of our sequences to that of other
databases, each sequence was searched against the
Arabidopsis MPSS Plus Database (http://mpss.udel.
edu/at/)*" and the Arabidopsis Small RNA Project
(ASRP) (http://asrp.cgrb.oregonstate.edu/).*” In Table 2,
miRNAs were searched against 4Col0 (Col-0 wildtype
inflorescence tissues, small RNA 454) in MPSS and Col-0
(Leaf, Inflorescence) in ASRP. In Fig. 2, small RNA
sequences were searched against all datasets in both
databases.

Other computational analyses

2.3.  Plant materials and virus inoculation

The following Arabidopsis plants were used; Col-0 (wild
type), dcl1-9 (BC6), dcl2-2 (SALK 123586), dcl3-1
(SALK 005512) and dclf-1 (BC6). Dr Herve Vaucheret
(INRA, France) kindly provided dcl1-9 (BC6) and dcl4-
1 (BC6), which were backcrossed to Col-0 six times. All
plants were grown in a growth chamber at 22°C with
photoperiod of 16 h. For the virus inoculation, leaves of
4-week-old plants were dusted with carborundum and
gently rubbed with 20 pg/mL of TMV-Cg solution. For
mock inoculation, TMV-Cg solution was replaced with
10 mM sodium phosphate buffer.

2.4. Northern blot analysis

Total RNA was extracted at 10 dpi from the inoculated
leaves, mock-inoculated leaves and inflorescences of
Arabidopsis using ISOGEN reagent (Nippon gene).
Aliquots of 10 pg of total RNA were loaded and
resolved on a denaturing 15% polyacrylamide gel (7 M
urea). To make the miR847(5") probe, oligonucleotide
(TCGGCTTCCCATTCCTCTTCA) was 5 end-labeled
with [y-**P] ATP using T4 polynucleotide kinase
(TOYOBO). Hybridization was carried out at 40°C
using PerfectHyb Plus hybridization buffer (Sigma).
The blots were exposed on imaging plates, and signals
were visualized using BAS-2500 (Fuji).

3. Results and discussion

8.1.  Increase of miRNAs in Arabidopsis infected with
TMV-Cyg
We have previously sequenced small RNAs from

the leaves of Arabidopsis infected or uninfected with
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TMV-Cg at 3 dpi. We obtained 1700 sequences from the
virus-infected plants and 543 sequences from mock-
infected plants.”® We reported that total miRNAs were
more abundant in virus-infected plants than in mock-
infected plants, as shown in the northern blot results of
some miRNAs. To further compare the small RNA
expression profiles between virus-infected plants and
mock-infected plants, we performed extensive BLAST
searches to map all small RNA sequences to the
Arabidopsis genome (Table 1), except for siRNAs
derived from the viral genome which were 210 reads
(12.4 % of total reads), as previously reported.”®

The percentage of total miRNAs was 5.5 times higher
in TMV-infected plants (25.4%) than that in mock-
infected plants (4.6%) (Table 1 and Kurihara et al.?®).
In contrast to the large increase of miRNAs in TMV-
Cg-infected plants, the percentage of tasiRNAs was
almost unchanged (2.0% in mock-infected plants and
1.6% in virus-infected plants) (Table 1). tasiRNA is
another class of small RNAs in plants Which is produced
by the RNase IIT enzyme DCL4 protein.®® This suggests
that miRNAs, among other characterized small RNA
classes, specifically increased by the TMV infection.

We have recently demonstrated that the increase of
miRNAs could be attributed to the activity of the viral-
encoded 126K protein, which binds and therefore stabil-
izes miRNA/miRNA* duplexes.?® However, we found
that there is no big difference between the ratios of
miRNA to miRNA* in mock- and TMV-infected plants
(6.6 times in mock-infected plants and 10 times in

Table 1. Summary of non-viral small RNA sequences from TMV-
infected or uninfected Arabidopsis

Class Mock TMC-Cg
miRNA

Known miRNA 25 (4.6%) 379 (25.4%)

miRNA* 4 (0.7%) 37 (2.5%)

Small RNA drived from miRNA 0 (0%) 5 (0.3%)
precursor
tasiRNA 11 (2.0%) 24 (1.6%)
Gene

Sense 15 (2.8%) 29 (1.9%)

Antisense 3 (0.6%) 15 (1.0%)

Sense and antisense 0 (0%) 2 (0.1%)
Intergenic region 100 (18.4%) 94 (6.3%)
rRNA 164 (30.2%) 486  (32.6%)
{RNA 19 (3.5%) 47 (3.2%)
SRNA 2 (0.4%) 1 (0.1%)
Transposon 11 (2.0%) 9 (0.6%)
Unknown 189 (34.8%) 362 (24.3%)
Total reads 543 (100%) 1490" (100%)

“Viral genome-derived siRNA are not included.
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TMV-infected plants). This fact possibly indicates that
there is still another mechanism of the miRNA increase
or stabilization in the virus-infected plants, in addition
to binding activity of 126K protein to miRNA /miRNA*
duplexes.

We compared the percentage of each miRNA between
mock-infected and virus-infected plants (Fig. 1). The per-
centages of all miRNAs except for miR160 increased as a
result of virus infection. Some miRNAs showed remark-
able increases, especially in miR163 (from 1.1 to 9.3%),
miR164 (from 0.2 to 5.1%) and miR167 (from 0.4 to
2.7%). Most others increased 2—3 times in virus-infected
plants. This result indicates that binding activity of the
TMV-Cg replication protein to those miRNA /miRNA*
duplexes is specifically high, or that transcription of
some miRNAs is also activated.

Inhibition of the miRNA pathway has been reported with
many other virus-infected plants and with plants trans-
formed with viral proteins.?®*" 3% Initially we expected
that miRNA up-regulation should lead the down-regulation
of the target mRNAs and that might work as a defense
response to virus infection. However, in the TMV-Cg-
infected plants, the target mRNAs of miRNAs were not
down-regulated, even though miRNAs increased
(Supplementary Fig. S1). The increase of miRNA does not
induce target mRNA degradation and the miRNA
pathway is completely disrupted in plants infected with
TMV-Cg, as is the case during infection with other plant
viruses. This supports the notion that the replication
protein of TMV-Cg acts as a silencing suppressor.

miR156 I
© miR157 O Mock
mee B TMV-Cg
miR159
miR160
miR161
miR163
miR164
O miR166
miR167
miR168
O miR169
O miR171
O miR172
© miR319
miR390
O miR391
miR396
miR398
miR822
© miRB323
O miRB24

0 2 4 [3 8 10
Percentage

Figure 1. Most miRNAs increased in TMV-Cg-infected plants.
Percentages of each miRNA cloned in non-viral small RNAs are
shown. All miRNAs except for miR160 increased in the virus-
infected plants. Circle indicates miRNA that was detected only in
the small RNA dataset from the virus-infected plants.
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8.2. Unique small RNAs in gene and intergenic regions

in TMV-infected and mock-infected plants

In addition to the increase of miRNA percentage in
plants infected with TMV-Cg, some miRNAs were
cloned and sequenced only in the virus-infected plants
(Fig. 1; indicated with circles). This led us to speculate
that the virus-infected plants could be a good source for
finding new miRNAs.

If there are new miRNAs in our small RNA sequence
reads, they are likely to be mapped in the gene or inter-
genic region (Table 1). Therefore, we checked whether
there are new sequences in the small RNAs mapped to
the gene and intergenic regions compared with other
small RNA databases; ASRP* and MPSS** (Fig. 2).
Interestingly, not only in TMV-Cg-infected plants but
also in mock-infected plants, most small RNAs were not
detected in ASRP and MPSS databases and were
unique to our reads, although there are 34 times more
sequences in MPSS and 260 times more in ASRP than
in our dataset from virus-infected plants. This is possibly
due to the differences in RNA sources and cloning
methods between ours and other groups’ which performed
deep sequencing using the 454 sequencing method. This
suggests that many small RNAs remain to be discovered.
They will be found if the cloning condition is changed
even though the total reads are less than those using
454 sequencing. Thus, it is quite possible that there are
new functional small RNAs in our resources of virus-
infected and mock-infected plants. Especially in the
TMV-infected plants in which many kinds of miRNAs
were more abundant, we can expect new miRNA reads.

3.8, miRNA candidates in plants infected with TMV-Cg

Three miRNAs (miR822, miR823, and miR824)
reported very recently’ were found in our reads of
virus-infected plants and, moreover, their appearances
were more frequent in our total small RNAs from virus-
infected plants than those in MPSS and ASRP databases

£ ASRP

B MPSS

ASRP and MPSS
O Not found

Mock

TMV-Cg

Figure 2. Most sequences in this study are not found in other
databases. Each small RNA sequence was searched against the
ASRP and MPSS databases. Numbers of different sequences in
gene and intergenic regions are shown, which are also found in
ASRP and/or MPSS database, or not found in both. In both
mock-infected and TMV-Cg-infected plants, most sequences are
unique in this study.
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Table 2. Newly identified miRNAs and miRNA candidate are more
abundant in TMV-Cg-infected Arabidopsis than in other databases

miRNA Number of read (percentage%)
T™MV MPSS ASRP ASRP
Leaf Inflorescence

miR847 (5') 2 (0.12%) 0 0 0

miR822 5(0.29%) 0 0 0

miR823 1(0.06%) 1(0.01%) 7(0.04%) 9 (0.01%)

miR824 6 (0.35%) 15 15 42 (0.05%)
(0.13%)  (0.09%)

Total 1700 (100%) 11631 15 826 78 583 (100%)
(100%)  (100%)

(Table 2). This supports that virus-infected plants are
good source for identifying novel miRNAs.

Next, we tried to find out novel miRNAs in the small
RNA data of the virus-infected plants. Before confirmation
and validation of new miRNAs, we performed secondary
structure predictions using the mFOLD program. We
used sequences ~300nt in length from around the
matched stretch where small RNAs mapped to the gene
and intergenic regions. Three different sequences formed
hairpin structures, which are common structures to
miRNA precursors (Fig. 3 and Supplementary Fig. S2),
suggesting that these sequences are candidates of miRNAs.

Out of them, we found that one candidate could be
mapped to the 5 arm of miR847 (Fig. 3). Though it
may be a variant of miR847*, it is possible that the
small RNA is also functional because it has an 8 nt over-
hang instead of 2 nt, which the DCL product generally
has (Fig. 3). Thus, we named it miR847(5") and analyzed
further. In our small RNA data, there was no miR847
sequence while miR847(5") was read twice. miR847(5)
was mnot cloned in ASRP and MPSS databases
(Table 2). The other two sequences forming hairpin struc-
tures were named candidates A and B (Supplementary
Fig. S2). Each of them was read once in the small RNA
data from virus-infected plants.

We performed northern blot analyses to detect these
miRNA candidates and confirm their expression patterns.
Out of three miRNA candidates, only miR847(5") could
be detected (Fig. 4). Candidates A and B were not
detected.

miR847(5") was not expressed in flowers but in rosette
leaves. It was more abundant in TMV-Cg-infected
plants than in mock-infected plants (Fig. 4). This result
reflected the tendency observed in the cloning frequency
discussed earlier and northern blot results of other
miRNAs reported previously.”® Furthermore,
miR847(5") was expressed at a similar level in mutants
except in the dcll mutant. In Arabidopsis, most
miRNAs are produced by DCLI in general, whereas, for
example, tasiRNAs require both DCL1 and DCL4 for
their productions. Therefore, if the expression of a small
RNA is reduced only in dell mutant plants, the small
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Figure 3. Predicted secondary structure of new miRNA candidate’s
precursor. Secondary structure of new miRNA candidate found in
this study was predicted using the mFOLD program. miR847(5) is
derived from the 5 arm of miR847 but they are not in miRNA/
miRNA* relationship.
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RNA is possibly a miRNA. Therefore, the northern blot
result supports that miR847(5) is an miRNA. In contrast,
miR847 could not be detected by northern blot analysis
neither in leaves nor in inflorescences (data not shown).

The predicted targets of these three miRNA candidates
and miR847 are shown in Supplementary Table S1.
However, we have not yet detected their possible
cleaved fragment by the 5 RACE method.*® On the
basis of the available data, we could not conclude which
of small RNAs is a functional miRNA; miR847 and
miR847(5") at present. Further analyses will be needed
to make conclusion.

Recently, many results of comprehensive small RNA
sequencing by 454 sequencing have been reported one
after another in Arabidopsis.’® ** Tt has been demon-
strated that miRNAs are enriched in loss-of-function
mutants of RNA-dependent RNA polymerase 2 (RDR2)
and RNA polymerase IV because they are required for
the majority of endogenous siRNAs.*'** By analyzing
these mutant plants with the 454 sequencing method,
dozens of miRNAs were discovered. In this study, we
showed that plants infected with TMV-Cg are good
materials for cloning and finding novel miRNAs fre-
quently because cloning percentages of many miRNAs
increase and newly identified miRNAs are found in
virus-infected plants. Moreover, considering that the
number of small RNA sequences read were tens to hun-
dreds less than those of other groups, TMV-infected
plants are very efficient materials to discover new
miRNAs. It is anticipated that new miRNAs would be
found from small RNAs in the virus-infected leaves if
extensive reads were performed.

Most Arabidopsis miRNAs, expressed abundantly and
conserved, have already been identified. However, there
are many kinds of miRNAs which are less-expressed and
non-conserved’? and it is possible that some are yet to
be discovered. These miRNAs will be hereafter identified
using plants under various conditions or mutant plants,
which will leads to the identification of overall miRNAs

Inflorescence

 miRB47(5)

tRNA and
85 rRNA

Figure 4. Northern blot analysis of miR847(5'). Total RNA (10 pg) from rosette leaves (mock-infected and infected with TMV-Cg) and

inflorescences were used for northern blot analyses. miR847(5") increased during TMV-Cg infection but was not detected in the delimutant,
indicating that miR847(5’) is miRNA. miR847(5’) was not detected in inflorescences.
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and siRNAs and the understanding of how small RNAs

are

involved in many biological processes in Arabidopsis.
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