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Abstract

Soybean [Glycine max (L.) Merrill] is the most important leguminous crop in the world due to its high contents of
high-quality protein and oil for human and animal consumption as well as for industrial uses. An accurate and satu-
rated genetic linkage map of soybean is an essential tool for studies on modern soybean genomics. In order to update
the linkage map of a Fs population derived from a cross between Misuzudaizu and Moshidou Gong 503 and to make it
more informative and useful to the soybean genome research community, a total of 318 AFLP, 121 SSR, 108 RFLP,
and 126 STS markers were newly developed and integrated into the framework of the previously described linkage map.
The updated genetic map is composed of 509 RFLP, 318 SSR, 318 AFLP, 97 AFLP-derived STS, 29 BAC-end or EST-
derived STS, 1 RAPD, and five morphological markers, covering a map distance of 3080 ¢cM (Kosambi function) in 20
linkage groups (LGs). To our knowledge, this is presently the densest linkage map developed from a single Fy popu-
lation in soybean. The average intermarker distance was reduced to 2.41 from 5.78 cM in the earlier version of the
linkage map. Most SSR and RFLP markers were relatively evenly distributed among different LGs in contrast to
the moderately clustered AFLP markers. The number of gaps of more than 25 ¢cM was reduced to 6 from 19 in the
earlier version of the linkage map. The coverage of the linkage map was extended since 17 markers were mapped
beyond the distal ends of the previous linkage map. In particular, 17 markers were tagged in a 5.7 cM interval
between CE47Mba and Satt100 on LG C2, where several important QTLs were clustered. This newly updated
soybean linkage map will enable to streamline positional cloning of agronomically important trait locus genes, and
promote the development of physical maps, genome sequencing, and other genomic research activities.
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1. Introduction

Soybean, Glycine max (L.) Merr., supplies a large
amount of high-quality protein and oil for food products
and industrial materials. Recently, researchers have
reported that various biochemical constituents of
soybean seeds exert physiological functions beneficial to
human health.' ® The availability of numerous character-
istics in soybean, such as symbiosis with root bacteroids,
has set the stage for international efforts to explore
soybean at the whole genome level.*® In modern geno-
mics, the size of soybean genome (1.12-1.81 x 10” bp)
has been considered to be moderate.® Evolutionally,
soybean is referred to as a recently diploidized tetraploid,
and generally more than two copies are present for over
90% of the non-repetitive sequences in the soybean
genome.” In addition, 40-60% of the soybean sequences
are repetitive.>? In the crop legumes, most crops belong
to either the Hologalegina or the Phaseoloid lineage.'
Although two model legumes, Lotus and Medicago,
belong to the Hologalegina lineage, it has been recently
proposed that soybean genome could be used as a model
for the Phaseoloid legumes due to the economic and bio-
logical importance of soybean, the moderate genome size,
as well as the existing infrastructure for soybean research
and commercial production.’!!

An accurate and saturated genetic linkage map of
soybean is essential for studies on modern soybean geno-
mics, i.e. identification of subtle or new trait loci including
quantitative trait loci (QTLs), map-based cloning, and
physical map construction or even whole-genome sequen-
cing. The first soybean genetic map was constructed with
57 classical markers.'®> Thereafter, molecular maps have
been gradually integrated using restriction-fragment
length polymorphism (RFLP) markers,”> *® random
amplified polymorphic DNA (RAPD) markers,'” simple
sequence repeat (SSR)'™'? and amplified-fragment
length polymorphism (AFLP) markers.”™?!' In recent
years, integrated maps have been reported, each of
which was merged from several maps derived from dif-
ferent mapping populations using JoinMap.?*?* More
recently, an integrated map with sequence-based genic
markers has also been constructed.**

Moshidou Gong503 ( Glycine gracilis), which originated
in Northeast China, is morphologically intermediate
between the cultivated G. mazr and the wild form,
G. soja.® However, these three forms which are fully
cross-compatible, effectively constitute a single species,
G. maz.*®?® Crosses between the cultivar (Misuzudaizu)
and the intermediate form (Moshidou Gong503) would
provide good genetic resources for linkage map construc-
tion and for the isolation of agronomically and biologi-
cally important genes. A framework of genetic linkage
map had been previously constructed mainly with
RFLP and SSR markers using a single Fy population of
this combination.?” 2 In addition, several agronomically
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and biologically important trait loci such as flowering
time, growth habit, and seed quality were identified
using this mapping population®”®® and its progenies
(RILs).***! Further integration of this linkage map with
a large number of SSR or RFLP markers and with
other types of markers, i.e. AFLP or AFLP-derived
sequence-tagged site (STS) markers, may enable to
make this linkage map more informative and more
useful for soybean genomics studies and particularly for
the isolation of agronomically and biologically important
QTL genes harbored by the parents, Misuzudaizu and
Moshidou Gong503. Therefore, the objectives of the
present study were threefold; (i) to develop AFLP and
AFLP-derived STS markers; (ii) to develop a larger
number of SSR and RFLP markers; and (iii) to integrate
the newly developed markers into the framework of the
previously described linkage map.

2. Materials and methods

2.1.  Plant materials and DNA extraction

A framework of the genetic linkage map had been pre-
viously constructed using an F, population that was
derived from a cross between the cultivar Misuzudaizu
and a weedy form, Moshidou Gong 503, as ovule and
pollen parents, respectively. This mapping population
consisting of 190 F, plants was used in the present
study.?”*® However, the DNA was newly extracted for
the present study from the leaves that had been preserved
at —80°C, using the CTAB method®® with a slight
modification.

2.2.  AFLP marker development

The AFLP procedure was performed essentially as
described by Vos et al** A total of 100-150 ng of
genomic DNA was completely digested with EcoRI and
Msel. Digested DNA was subjected to ligation with
adapters that were compatible with the restriction sites
(AFLP Core Reagent Kit, Life Technology, USA). After
ligation, the reaction mixtures were diluted 10 times
with TE. For the amplification of the restricted and
ligated fragments, a two-step protocol was adopted. The
first step included the selective pre-amplification of
adapter-ligated DNA with primers with one additional
selective nucleotide (4+1/4+1). In the second step, selec-
tive amplification of pre-amplified DNA was performed
with adapter primers with two more additional selective
nucleotides (+3/+3). All the amplification reactions
were performed with TaKaRa EXTaq (TaKaRa,
Japan). Electrophoresis was conducted by high-efficiency
genome scanning (HEGS)*** with non-denaturing 11—
13% polyacrylamide separating gels and 5% stacking
gels. Gels were stained by Vistra Green (Amersham
Pharmacia Biotech, UK) and were detected with
FluorImager 585 (Amersham Pharmacia Biotech).
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Only clearly distinguishable polymorphic AFLP bands
were scored for mapping in the present study.

Nomenclature for the AFLP markers includes the letter
E for the EcoRI primer and the letter M for the Msel
primer, each of which being followed by a number repre-
senting combinations of three selective nucleotides. The
letter C was added as the prefix referring to the marker
developed at Chiba University.

2.3.  Development of STS markers from AFLP,
BAC-end, or EST sequences

Compared with AFLP markers, STS markers are more
valuable in marker-assisted selection (MAS) and more
transferable between populations. Therefore, polymorphic
AFLP fragments were converted into STS markers by
cloning and sequencing. At first, polymorphic AFLP
bands amplified from Misuzudaizu or Mashidou Gong
503 were excised from the polyacrylamide gel. DNA was
extracted using a freeze-squeeze method (Xia et al.,
unpublished). These fragments were cloned using the
pGEM®-T Easy Vector System (Promega, USA).
Positive clones were confirmed by colony PCR.%¢
Plasmid DNA was isolated using the PI-200 Automatic
DNA isolation system (Kurabo, Japan). Sequencing was
performed using the ABI BigDye 3 system and analyzed
using the ABI Prism3100 (Applied Biosystems, USA).
Vector sequences were trimmed out using Chromas
(version 2.23) (http://www.technelysium.com.au). After
BLAST search against GenBank, all the retrotransposons
or other repetitive sequences were discarded.®” A local
sequence database was constructed by pooling the all
sequences together using BioEdit (http://www.mbio.
ncsu.edu/BioEdit /bioedit.html). Accordingly, all the
sequences were searched over the local database to ident-
ify any orthologous sequences targeting for co-dominant
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marker development (Fig. 1). A total of 415 pairs of
primers were designed to specific AFLP-derived sequences
on line using Primer3 (http://frodo.wi.mit.edu/cgi-bin/
primer3/primer3  www.cgi).

Furthermore, 150 primer pairs were designed to BAC-
end sequences®® (http://www.soybeangenome.siu.edu).
Among them, ~75 primer pairs were kindly provided by
D. A. Lightfoot, Southern Illinois University at
Carbondale, Carbondale, IL 62901, USA. In addition,
~50 and 60 primer pairs were designed to cDNAs from
developing seeds and to expressed sequence tag (EST)
homologs of flowering time-related genes, respectively.

For the mapping of new STS markers, all the primer
pairs were initially tested for polymorphism between the
two parents using HEGS*** and single-strand confir-
mation polymorphism (SSCP)*' techniques. The primer
pairs showing a clear polymorphism between the two
parents were mapped with HEGS, whereas the primer
pairs with subtle polymorphisms were alternatively
mapped with SSCP. The STS markers being developed
at Chiba University were referred to as CSTS.

2.4. SSR marker development

In the early version of the linkage map, 96 SSR markers
were mapped. Among them, 75 were developed at the
USDA and DuPont Corporation and 21 SSR markers at
Chiba University. In the present study, new SSR
markers were mainly developed from genomic DNA or
by surveying EST-SSR in the database. To isolate DNA
fragments including SSRs with CA and CT repeats, a
magnetic bead method was used for enrichment of the
motif-containing sequences. The genomic DNA of Norin
No.2 was digested with EcoRI and Msel. Digested DNA
was ligated with adapters as described in AFLP marker
development. After ligation, the fragments bearing CA
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Figure 1. Strategy for developing AFLP-derived STS markers. See section 2 for details.
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and CT repeats were enriched with streptavidin-coated
paramagnetic particles (Promega) probed with 3'-
biotinylated (TG)g and (AG)g oligonucleotides, respect-
ively. The enriched fraction was refined using
SUPREC®-02 (TaKaRa), amplified by Msel and EcoRI
primers and ligated to pGEM®-T Easy Vector System
(Promega), and then transformed into FEscherichia coli
DH5a (Toyobo, Japan). The transformants were screened
by blue—white selection. The positive clones were ident-
ified by colony hybridization using a DIG Luminescent
Detection kit (Roche Diagnostics, USA) with DIG-
labeled (TG)g or (AG)g probes. The PCR products of
the positive clones were sequenced and the primers were
designed using Primer 3 on line. In some cases, a dual-
step method**** was used to isolate CA and CT-motif
SSRs. The procedure was performed as previously
described by Tamura et al.** (AT),(AC),-motif SSRs
were isolated using the streptavidin-coated magnetic
beads described earlier, since this type of repeat is abun-
dant in the soybean genome and AT repeats are difficult
to screen directly due to the self-complementarity of the
probe sequence. The SSR markers including AC, AG,
AT, AAC, AAG, AAT, ACG, AGT, ATG, GGA, GGC,
and GCT core-motifs were developed from motif-
containing EST sequences. These sequences were ident-
ified by homology search of motif repeats against the
EST data in DNA Data Bank of Japan (DDBJ) by
FASTA. The minimum number of repeats for dinucleo-
tide motif and trinucleotide motif SSRs was set to 10
and 7, respectively. The SSR markers developed at
Chiba University were referred to as CSSRs in the
present study.

2.5.  RFLP analysis

On the basis of the earlier version of the linkage map,®®
additional soybean c¢DNA clones derived from green
leaves and clones of up-regulated genes in the nodules of
Lotus japonicus® were employed as probes to generate
RFLP markers. The DNA was digested with eight restric-
tion enzymes, Apal, BamHI, Bglll, Dral, EcoRI, EcoRV,
HindIll, and Kpnl. Electrophoresis, Southern blotting
and hybridization procedures were performed as pre-
viously described.?”

2.6. Linkage map construction

Most of the markers were mapped with Fy population
consisting of 192 individuals. However, ~200 markers,
including newly developed RFLP and AFLP-derived
STS markers, were mapped with 94 randomly selected
F5 individuals. All the markers were checked against the
expected 3:1 segregation by the y* test at a 5% signifi-
cance level. The new marker data set was added to the
original data set to produce the combined data set.
Linkage analyses were performed using MAPMAKER
(version 3) software.'® The commands ‘try’, ‘order’, and
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‘build” in MAPMAKER were used independently or in
combination to insert new marker(s) into the frame-
work of the previously described linkage map.®
Recombination frequencies were converted into map
distance in centimorgans using the Kosambi mapping
function.’™ A LOD score of 3.0 and a maximum distance
of 37.2 cM were used as linkage criteria for new marker
insertion. The error detection function was set ‘on’ to
detect any possible scoring errors. The linkage map was
graphically visualized with MapChart.*®

3. Results

3.1.

Out of ~800 primer pairs tested, 135 primer pairs that
showed a clear polymorphism between the parents,
Misuzudaizu and Moshidou Gong503, were selected for
further analysis for the whole F, population.
Approximately 15—30 main bands were clearly amplified
per primer combination. Each selected primer combi-
nation generated between 1 and 6 polymorphic bands
(Fig. 2). The polymorphism rate of AFLPs was 4.8%, a
value lower than the 11.3% value reported for barley™
and 14.8% for sorghum.” The DNA quality, PCR, elec-
trophoresis, and subsequent staining can all influence
AFLP profiling. The HEGS system used in the present
study generated clear and reproducible AFLP profiles
within a range of 200—1200 bp, ensuring accurate geno-
type scoring (Fig. 2). The total number of bands gener-
ated and fragment intensity appeared to be negatively
related to some extent. High GC content for both
EcoRI + 3 and Msel + 3 selective nucleotides normally
generated few but clear fragments, whereas a lower GC
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Figure 2. AFLP marker analysis of the Fy mapping population. The
left two lanes denoted by Mi and Mo were generated from the
parents, Misuzudaizu and Moshidou Gong 503, respectively, with a
combination of AFLP primers, E35(GAG) and M7(CTG). Lanes
3-21 were generated from the F, population with the same primer
combination. Arrows on the left side of the gel indicate mapped
AFLP markers. Molecular weight marker ®X174 Haelll is shown
in the lane denoted by M with the size (in bp) on the right side of
the gel.
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content led to a larger number of fragments with a lower
quality. This phenomenon could be explained by the unu-
sually high A + T nucleotide content in the soybean
genome.”

A total of 373 polymorphic bands were scored.
However, 40 redundant markers, which were generated
from the same combination and displayed the same geno-
type, were excluded. Apart from 10 unlinked markers and
5 unsuccessfully positioned markers, a total of 318 AFLP
markers were successfully integrated into the framework
of the previously described linkage map.”® Among the
mapped markers, 164 markers showed a predominance
for Misuzudaizu, whereas 154 markers for Moshidou
Gong 503. Among the 164 markers with a predominance
for Misuzudaizu, 149 (90.9%) markers segregated in a 3:1
ratio, whereas 9 and 6 markers segregated in 2:1 and 4:1
ratios, respectively. Among the 154 markers with a predo-
minance for Moshidou Gong 503, 143 (92.9%) markers
segregated in a 3:1, whereas 5 and 6 markers segregated
in 2:1 and 4:1 ratios, respectively. The overall distortion
rate of 8.2% was much lower than the 40% rate reported
for two intraspecific crosses between two annual species of
Medicago.”® Segregation distortion may be related to the
differential parental genomes or to distorting factors such
as sterility loci. Moreover, errors in genotyping scoring
may also cause segregation distortion.?*

The 318 newly mapped markers were not uniformly dis-
tributed among the linkage groups (LGs) within a range
of 3-31 per LG (Table 1). The number of new markers
mapped to a given LG was not significantly correlated
with the length of the LG (cM) [correlation coefficient,
r = 0.1578 (P> 0.05)]. A certain degree of clustering
of the AFLP markers was found in the putative centro-
meric or telomeric regions in LGs such as LGs B2, Cl1,
D2, and E (Fig. 3). However, AFLP markers in the
present study were not as strongly clustered as these
reported by Qi et al.* in barley and by Keim et al.*! in
soybean. Although some researchers have reported a rela-
tively uniform distribution of AFLP markers, it has been
well documented in many crops, including soybean,?!9°
that the strong clustering of AFLP markers is often
associated with telomeric or centromeric regions. In the
present study, the AFLP markers were generated using
a restriction enzyme (FEcoRI) that is insensitive to the
methylation of CG dinucleotides. Thus, some particular
regions, such as the heterochromatin regions around cen-
tromeres and telomeres, were accessible to EcoRI-based
AFLP markers. Furthermore, in such regions, crossing-
over during the meiosis was markedly reduced and the
markers tended to cluster. In the present study, AFLP
markers with a higher quality generated from a higher
GC content in selective nucleotides may have to some
extent reduced the level of clustering. The use of the
enzymes Pstl/Msel or Tagl/HindIII for AFLP marker
generation might have further reduced the level of cluster-
ing of the AFLP markers, since either or both of the
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restriction enzymes are methylation sensitive.?"***" The
AFLP markers presented here are accessible via the
marker nomenclature (Supplementary Table S1).

3.2.  STS marker development

Over 500 AFLP polymorphic fragments, including
~200 mapped AFLP markers were successfully
sequenced. Approximately 15% of them were associated
with repetitive sequences, such as Ty3/Gypsy and
STR120.%" Interestingly, ~10% were related to mitochon-
dria or chloroplast gene-related sequences. Of 415 pairs of
primers were designed to the non-repetitive sequences, a
total of 97 AFLP-derived STS markers were successfully
mapped and integrated into the framework of the pre-
viously described linkage map®® (Fig. 3). Among them,
64 markers with clear polymorphisms were mapped
using HEGS (Fig. 4B), whereas 33 markers were
mapped with SSCP (Fig. 4C). Furthermore, 58 markers
were co-dominant with our mapping population.

Initially, 30 AFLP-derived STS were converted from
mapped AFLP markers, all of them being tagged to the
same locus as the original AFLP markers being mapped.
The other 67 markers were converted from randomly
selected polymorphic AFLP bands. Among all the
97 AFLP-derived STS markers, 24 single, 7 double, 1
triple, 1 quadruple, and 1 quintuple markers were
mapped to 34 loci, at which one or more AFLP markers
had already resided. In addition, two double and two
triple AFLP-derived STS markers were mapped to four
loci at which no AFLP marker was tagged, suggesting
that AFLP-derived STS markers also tended to be dis-
tributed in a clustering fashion as the AFLP markers do.

Additionally, 19 STS markers were developed from 150
primer pairs designed to BAC-end sequences at a poly-
morphism rate of 12.6%. Among the 110 PCR primer
pairs designed to cDNA or flowering time gene homologs
in soybean, only 10 markers were mapped at a poly-
morphism rate of only 9.1%. Taken together, a total of
126 CSTS markers were mapped within a range of 1 to
16 markers per LG (Table 1). The number of STS
mapped to a given LG was not significantly correlated
with the length of the LG (cM) [correlation coefficient,
r=10.0216 (P> 0.05)].

3.3.  SSR marker development

Out of 702 new SSRs, 121 SSR markers were success-
fully mapped in the present study, including 41 markers
from genomic DNAs and 80 from the EST database.
Along with the 20 CSSR markers mapped in the earlier
version of the linkage map, a total of 61 genomic DNA-
derived SSR markers were classified with different
motifs, i.e. 27 with CT, 3 with AC, 1 with GTG, and 30
with compound-motif repeats. An example of segregation
of CSSR60 is shown in Fig. 4A. Polymorphism rates of



Table 1. Comparison of marker information in the newly constructed linkage map with that in the previous linkage map

¢c9¢

Previous linkage map(Yamanaka et al. 2001) Newly constructed linkage map
LG Length (cM)  Marker SSR RFLP Other Length Marker AFLP SSR RFLP STS Other
nos. (CSSRY) types? (cM) nos. types®
New Public Total New Total New
CSSR SSR* RFLP CSTS
Al 132.9 18 3 15 0 144.3 42 3 5 10 15 8 23 1 0
A2 202.2 27 3(1) 24 0 189.8 64 15 4 7 12 9 33 4 0
B1 142.3 19 1 18 0 164.4 55 12 8 7 15 6 24 4 0
B2 104.6 24 4 20 0 123.5 65 19 11 17 4 24 5 0
C1 129.1 19 4 (1) 15 0 144.5 64 21 3 6 9 10 25 9 0
C2 158.2 32 6 25 1 159.6 71 14 5 17 22 6 31 3 1
Dla 166.8 16 5 11 0 156.4 38 10 4 5 9 3 14 5 0
Di1b 164.4 23 3 20 0 178.2 75 23 8 9 17 7 27 8 0
D2 159.3 22 6 16 0 170.8 72 22 8 16 24 4 20 6 0
E 118.0 27 3 24 0 133.9 73 23 6 7 13 2 26 11 0
F 195.4 41 9 (1) 31 1 190.8 86 15 7 14 22 11 42 6 1
G 157.7 39 6 (3) 32 1 153.8 107 31 7 9 19 8 40 16 1
H 107.1 26 1 25 0 111.3 50 8 4 6 10 3 28 0
I 113.5 24 8 (1) 16 0 118.8 50 12 5 12 18 0 16 0
J 102.4 20 3(2) 17 0 127.4 54 18 4 9 2 19 8 0
K 181.6 26 6(2) 20 0 173.3 76 25 9 7 18 3 23 10 0
L 152.6 41 4 36 1 157.1 80 17 8 8 16 5 41 5 1
M 109.8 +11.4 22 6 16 0 173.3 57 13 7 11 18 3 19 0
N 128.1 14 1(1) 12 1 142.6 48 10 2 7 10 8 20 1
(0] 171.3 23 14 (9) 8 1 166.7 50 7 6 10 25 6 14 3 1
Total 2908.7 503 96 (21) 401 6 3080.5 1277 318 121 177 318 108 509 126 6
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!CSSR—SSR markers developed at Chiba University.
2Other types—including phenotypic markers and a RAPD marker.
*Public SSR—SSR markers developed at other institutes than Chiba University.
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Figure 3. Soybean genetic linkage map constructed with RFLP, SSR, STS, and AFLP markers. The linkage map was graphically visualized with MapChart. The name of each LG is indicated on
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genomic SSRs were 8, 18, and 53% for AC repeats, CT
repeats, and (AT),(AC), motif, respectively.

Among the 80 EST-SSRs, 16 and 64 markers were
developed from dinucleotide and trinucleotide motifs,
respectively. Since the repeat numbers for the EST-
SSRs are generally lower than those for genomic
SSRs,*** we set the minimum repeat number for dinu-
cleotides and trinucleotides to 10 and 7, respectively.
The polymorphism was 25.15% (80/318) within a range
of 15-50%, depending on the motifs, being slightly
higher than the polymorphism rate of 18.0% reported
by Song et al?® Since we used HEGS and SSCP
techniques for mapping, it was possible to detect subtle
polymorphisms (Fig. 4B and C).

A total of 318 SSR markers were mapped in 20 different
LGs, within a range of 9-25 markers per LG (Table 1).
SSR distribution was significantly correlated with the

length of the LG (r=0.4449, P < 0.05). In contrast to
AFLP markers, the SSR markers were relatively evenly
distributed, although slight clustering was observed in
some specific regions. This slight clustering phenomenon
can be ascribed to the fact that SSR markers are signifi-
cantly associated with the low-copy fractions of the
plant genome.”®

3.4. RFLP marker development

In addition to the 404 RFLP markers in the framework
of the previously described linkage map,”® a total of 108
RFLP markers were newly generated with additional
¢DNA clones from green leaves and up-regulated cDNA
clones in the nodules of L. japonicus as probes. These
markers were successfully integrated into the existing
linkage map framework. In total, 509 RFLP markers
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ware distributed among the LGs within a range of 13—44
markers per LG (Table 1). However, RFLP distribution
was not significantly correlated with the length of the
LG (r=0.2905, P> 0.05).

3.5.

On the basis of the earlier version of the linkage map, a
total of 318 AFLP, 121 SSR, 108 RFLP, and 126 STS
markers were newly developed and integrated (Table 1,
Fig. 3). The cwrrent genetic map is composed of 1277
loci at 2.41 cM intervals, covering a map distance of
3080 cM (Kosambi function) in 20 LGs. Most SSR and
RFLP markers were relatively evenly distributed among
the different LGs, although the AFLP markers were mod-
erately clustered and several relatively large gaps still
remained (Fig. 3). The coverage of the linkage map was
extended since 17 markers were mapped beyond distal
ends of the previous linkage map (Fig. 3). This is pre-
sently the densest linkage map developed from a single
F, population in soybean, although integrated maps,
each of which was merged from several maps derived
from different mapping populations, have been
reported.?*!

The characteristics of the current linkage map

3.6.  Information about the developed markers

The information about the mapped markers regarding
LG, map position, gene/accession numbers, and primer
sequences and marker type is available in the online
version of this article (Supplementary Table S1). In
addition, primer information for about the STS and
SSR markers, which were developed but not presented
in Supplementary Table S1, is also accessible online-
only (Supplementary Table S2).

4. Discussion
4.1.  Marker order and position among different
mapping populations

In our updated linkage map, 139 SSR markers were
shared with the LGs described by Song et al.*?> Most
markers were in consensus order in both LGs, indicating
a significant correlation (r=0.6064, P < 0.01) between
the length of the LGs in both maps.?> However, reversions
occurred in some regions in LGs A1, D2, and G. In the LG
G, the order of Sat 223 and Sat_ 260 was 0.2 cM apart in
the present map, whereas 0.22 cM apart with a reversed
order in the linkage map constructed by Song et al.*?
Comparison of different linkage maps constructed from
different populations with a different genetic background
using different marker sets indicated that most markers
showed the consensus order, although some intervals or
regions always displayed some discrepancy in the marker
order or positions. This phenomenon may be due to inver-
sion, insertion, deletion, or transition of genomic regions
as well as meiotic drive and gametic or zygotic selection.?

An Integrated High-density Linkage Map of Soybean
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Also, possible errors in genotyping scoring may distort
marker orders and segregation ratios.*® In soybean,
some markers, especially RFLP markers, could be
mapped on more than one LG. Because soybean is an
allotetraploid, it has been shown that for over 90% of
the non-repetitive sequences in the soybean genome,
there were two closely related copies at different loci.”
As reported earlier, there was some inconsistency existed
between physical map and genetic map regarding the
marker order and positions.”* *® With the new progress
made in genome sequencing and comparative mapping,
it is likely that these discrepancies or inconsistencies will
be reduced or eventually clarified.

4.2.  AFLP-derived STS markers

Conversion of AFLP fragments into polymorphic STS
markers would enable to achieve a high throughput
scoring of genotypes in fine mapping and MAS in breed-
ing.”” Development of AFLP-derived STS markers tend
to be laborious and time-consuming due to the lower con-
version efficiency. The lower polymorphism rate for STS
or other markers® may be due to the low sequence vari-
ation in soybean and its wild ancestor G. soja.** Zhu
et al.’® reported values of 0.5 and 4.7 SNPs/Kb in
coding and non-coding perigenic DNA, respectively. As
a result, the polymorphism rate was 10 times lower than
that reported in maize.””% AFLP-derived STS markers
developed in the present study displayed a high degree
of transferability since most of them showed polymorph-
ism in the RIL populations, Jack x Fukuyataka and
Peking x Akita (Hwang et al., personal communication).
Although 97 AFLP-derived STSs and 29 BAC and EST-
derived STSs have been developed, the number is not
necessarily large enough for a saturated map.

4.3.  Comparison with the earlier version
of the linkage map

As a total of 673 newly developed AFLP, SSR, RFLP,
and STS markers in addition to 101 new public SSR
markers were integrated, the average intermarker distance
was reduced by more than twofold to 2.41 from 5.78 cM in
the earlier version of the linkage map.?® In addition, the
proportion of PCR-based markers was 34.8%, a much
higher value than the 19.2% reported in the earlier
version of the linkage map. A large gap of more than
37.5¢cM in LG C1 was filled and two unlinked LGs for
LG M were joined. The number of gaps of more than
25 ¢cM was reduced to 6 from 19 in the earlier version of
the linkage map.?® Similar large gaps were also present
on the same or similar positions in a linkage map con-
structed from a RIL population derived from the
current mapping population, using an other set of
markers (Hayashi et al., unpublished result), indicating
that some of these gaps may be partially associated
with the nature of the genome structure of the parents.
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Some hot-spots of recombination may lead to enlarged
gaps in the genetic linkage map, in spite of short physical
distances. In addition, the degree of coverage of the newly
constructed linkage map was improved, as 17 markers
were mapped beyond the distal ends of the LGs in the
previous linkage map.

4.4. Usefulness of the linkage map

Map-based cloning requires very fine resolution
mapping in the target interval, since the highest marker
density can shorten chromosome walking. MAS is most
effective when the markers are tightly linked to the gene
of interest since crossing-over between the gene and
markers dramatically decreases. In general, accurate and
consistent integrated genetic and physical maps®®° of
the soybean genome should enable to distinguish new or
subtle QTL(s) from any of the more than a thousand
identified QTLs, and thereafter to clone and functionally
confirm cloned QTL genes. Several agronomically and
biologically important trait loci such as flowering time,
growth habit, and seed quality have been identified with
this mapping population® and its progeny.®! In particu-
lar, 17 markers were tagged in the 5.7 cM interval
between CE47Mba and Sattl00 on LG C2, where
various important QTLs were clustered. The current
soybean linkage map became more informative and
useful for positional cloning of agronomically important
genes for traits including QTLs that are harbored by
the parents. On the basis of this linkage map, several
residual heterozygous lines (RHLs) have been developed
from the progeny of this mapping population for fine-
mapping of several QTLs.®" More than 30 primer pairs
targeting SSR motifs have been specifically developed
from physical contigs of the flowering time QTLs (FT1,
FT2, and FT3), 70% of which displaying polymorphism
between the parents. These markers should enable to
further narrow the QTL gene regions toward the cloning
of candidate QTL(s) (Xia et al. and Watanabe et al.,
unpublished results).

Soybean originated in East Asia and the vast collection
of wild species and landraces should provide useful genetic
resources for studies on soybean genomics. Recent studies
have revealed that a large number of wild species of
soybean contain a wide range of secondary metabolite
compounds, which have preliminarily been found to be
beneficial to human health.' ® Genetic differences in the
secondary metabolite compounds between the cultivar
Misuzudaizu and the intermediate weedy form
Moshidou Gong 503 were also observed.

4.5.  Future perspectives

Owing to the presence of relatively large gaps or marker-
sparse regions, targeted marker development via BAC
sequencing® is a powerful tool. An accurate and consistent
integrated genetic map is useful for physical map
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development and whole genome sequencing. Conversely,
a large number of targeted SSR and STS markers can be
generated from genome sequencing for saturation of the
linkage map in soybean. Furthermore, due to the lower
polymorphism rate in the soybean genome, new types of
markers such as SNP-based markers need to be gradually
incorporated due to their abundance in the soybean
genome and technical applicability.?* Ideally, near or
over 10 000 evenly distributed PCR-based markers could
satisfy most applications including QTL gene isolation,
evolution studies, and other field of genomics.

Supplementary Data: Supplementary data are
available online at www.dnaresearch.oxfordjournals.org
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