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Summary A cattle database of candidate genes and genetic markers for milk production and mastitis
has been developed to provide an integrated research tool incorporating different types of
information supporting a genomic approach to study lactation, udder development and
health. The database contains 943 genes and genetic markers involved in mammary gland
development and function, representing candidates for further functional studies. The
candidate loci were drawn on a genetic map to reveal positional overlaps. For identification
of candidate loci, data from seven different research approaches were exploited: (i) gene
knockouts or transgenes in mice that result in specific phenotypes associated with mam-
mary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits
(71); (iii) loci with sequence variations that show specific allele-phenotype interactions
associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression
profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle
milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in
bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with
mammary gland function (1). Fourty-four genes found by multiple independent analyses
were suggested as the most promising candidates and were further in silico analysed for
expression levels in lactating mammary gland, genetic variability and top biological func-
tions in functional networks. A miRNA target search for mammary gland expressed
miRNAs identified 359 putative binding sites in 3’'UTRs of candidate genes.

Keywords association study, candidate genes, gene linkage, knockout models, mammary
gland, mastitis, methylation, micro RNA, milk traits, quantitative trait loci.

highly inbred lines and targeted gene knock-outs are

Introduction available. Therefore, the only applicable approach for QTL
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Association and quantitative trait locus (QTL) studies
in large farm animals are typically performed in outbred
populations, making the identification of robust QTL and
candidate genes difficult and less reliable due to the varia-
tion of genetic background and population-specific interac-
tions between loci. This situation differs very much from the
situation in model and laboratory animal species, where
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identification and candidate gene detection in large farm
animals is the combination of different pieces of evidence
supporting the functionality of identified genomic regions in
relation to multigenic traits (Mackay 2004). Guidelines and
standards for reporting quantitative trait nucleotide dis-
covery in livestock species which allow incorporation of QTL
in breeding programmes have been reviewed by Ron and
Weller 2007.

A fair amount of genetic research related to lactation and
udder health has already been performed due to its economic
importance for milk production and manufacturing. This has
led to considerable improvement of milk yield (MY); however,
the progress in technological properties of milk and udder
health has been relatively slow. Shook (2006) reported that
somatic cell score (SCS) associated loci have been proposed to
improve resistance to mastitis in dairy cattle. In addition, the
expression of micro RNAs (miRNAs) in the bovine mammary
gland could also play an important role in regulatory path-
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ways in mammary gland development, milk production and
resistance or susceptibility to mastitis (Silveri et al. 2006).

The recent developments in molecular biology have
opened the possibility of exploiting heterologous animal
models for comparative studies (Shook 2006). Targeted
gene disruption in mice (gene knock-out experiments; KOs)
revealed several mammary gland related phenotypes. The
release of cattle genome sequence has enabled discovery of
new markers and creation of synteny maps including data
from other species. For example, Ron et al. (2007) utilized
murine gene expression data from multiple analyses com-
bined with bovine QTL mapping data to identify candidate
genes for QTL for milk production traits in dairy cattle.

Functional traits of the mammary gland have been
studied using different approaches, including the QTL
approach, association studies and the candidate gene
approach. However, information extracted from these
methodologically focused studies is fragmented and often
controversial. Therefore, there is an urgent need to integrate
information from different sources and to allow comple-
mentation of different pieces of evidence based on holistic,
map driven approach. The possibility of searching the
database using animal trait ontology terms to select targets
based on the mapping information or to search for indicated
sequence similarities in primary databases opens up the
possibility of introducing complex decision-making strate-
gies which integrate multiple pieces of evidence supporting
the candidate status of the selected region.

The classical forward genetics approaches which are
typically focused on a single gene effect have been successful
in the identification of a limited number of causal genes. In
dairy cattle, two genes, DGAT1 (Grisart et al. 2002) and
ABCG2 (Cohen-Zinder et al. 2005), have been reported to
affect MY and milk composition. Therefore, the identification
of key drivers related to complex traits needs a more holistic
approach, based on integration of gene-to-gene interactions
with DNA variation data. This approach has recently been
developed to elucidate the complexity of common human
diseases by intersecting genotypic, molecular profiling and
clinical data in segregating populations (Schadt 2006).

Our attempt was to create a database which would take
advantage of a multidisciplinary approach linking different
types of data and supporting the evidence for involvement of
candidate loci into the mammary gland development, milk
production traits and resistance or susceptibility to mastitis.
The database aims to serve as a tool for systematic devel-
opment of markers for potential use in marker-assisted
selection (MAS), which could be used in cattle breeding
programmes to address the most relevant physiological
pathways in the mammary gland.

Materials and methods

The database contains candidate loci involved in mammary
gland development, milk production and resistance or sus-
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ceptibility to mastitis. Candidate loci were collected consid-
ering seven different research approaches: (i) gene knock-
outs and transgenes in mice that result in specific phenotypes
associated with mammary gland; (ii) cattle QTL for milk
production and mastitis traits; (iii) loci with sequence varia-
tions that show specific allele-phenotype interactions asso-
ciated with milk production or mastitis in cattle; (iv) genes
with expression profiles associated with milk production or
mastitis in cattle or mouse; (v) cattle milk protein genes that
exist in different genetic variants; (vi) miRNAs expressed in
bovine mammary gland; (vii) epigenetically regulated cattle
genes associated with mammary gland function.

Data mining and description of the database

We reviewed the literature published up to December 2008
searching for the relevant publications through PubMed
(http://www.ncbi.nlm.nih.gov/pubmed/) and Web of
Science (http://isiknowledge.com) using key phrases:
genetics, gene candidates, mammary gland, miRNA, mas-
titis, milk, epigenetics, methylation, QTL, SNP, association.
The data from animal experiments were retrieved from the
Mouse Genome Informatics (MGI) database (http://
www.informatics.jax.org) using the phenotype ontology
terms listed in Table S1, representing ontology terms
revealed by the literature review.

Quantitaive trait loci were extracted from Cattle QTL
Database Release 7 (1/2009): http://www.animalge-
nome.org using ontology terms associated with mastitis
[SCS, somatic cell count (SCC), clinical mastitis (CM)] and
milk traits [MY, milking speed (MSPD), dairy capacity
composite index (DCCI), protein yield (PY), protein per-
centage (PP), protein content (PC), energy yield (EY), fat
percentage (FP), fat yield (FY), fat content (FC)]. Candidate
genes from expression experiments for QTL for milk pro-
duction traits in cattle were retrieved from cgQTL database
(http://cowry.agri.huji.ac.il/QTLMAP/qtlmap.htm).

Putative target sites for mammary gland expressed miR-
NAs in candidate genes were obtained using Sanger’s mir-
Base Targets — Version 5 (http://microrna.sanger.ac.uk/).
Ensembl transcript identifiers for candidate genes were
obtained from Ensembl database — Release 52 (http://www.
ensembl.org/) and matched to the list of identifiers with
putative miRNA target sites for miRNAs experimentally
confirmed in the mammary gland. Polymorphisms in bovine
miRNA target octamers of candidate genes were obtained
from the Patrocles database (http://www.patrocles.org/).

Candidate genes identified in multiple studies (using the
same or different approaches) were considered as the most
promising candidates and were analysed for expression level
in lactating mammary gland using GNF BioGPS (http://
biogps.gnf.org), considering mouse expression data (data for
Bos taurus are not available yet). Gene variation data of the
most promising candidate genes in the promoter region
(5 kb), 5'UTR, exon, intron (100 bp flanking sequence) and
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3’'UTR were obtained from Ensembl database (http://
www.ensembl.org/). The ingenuity pathway analysis pro-
gram (http://www.ingenuity.com) was used to cluster the
most promising candidate genes in functional networks.
Our database was created in the Excel format and is
http://www.bfro.uni-lj.si/Kat_genet/
genetika/mammary_gland.xls. Each gene from the mouse
KO and gene transfer experiments is hyperlinked to phe-

available  on-line:

notypic allele details in MGI database. Each QTL is hyper-
linked to details in Cattle QTL database. The miRNAs are
hyperlinked to details in the Sanger miRBase (http://
microrna.sanger.ac.uk/) for miRNAs available in the data-
base. Each gene from expression and association studies is
hyperlinked to the Map Viewer — Bos taurus build (4.0) on
NCBI (http://www.ncbi.nlm.nih.gov) or to MGI’s gene
details, in cases when gene position for cattle was not
available in the Map Viewer. Selected candidate genes and
genomic loci were drawn on the genetic marker map.

Defining the map locations of the loci

The map location was retrieved from NCBI database Bos
taurus build (4.0). If the map location was not available,
we identified the location of the locus using the bovine—
human synteny map. The bovine-human synteny map
was constructed through BLASTing 8294 markers from
MARC and RH maps (Everts-van der Wind et al. 2004;
Itoh et al. 2005) with bovine contigs to obtain hits (defined
as E < 107%) with longer sequences. Hits were further
BLASTed against the human genome; 6231 putative
human bovine orthologs were found. Positions on the
human physical map were obtained using Map Viewer on
NCBI. The syntheny map was constructed using 6023
orthologs sorted in 213 blocks of synteny. Each synteny
block with at least two markers (singletons were excluded)
is described by its position on the physical human map
and on the bovine cytogenetic map.

Results

Genes, QTL, SNPs, AFLP markers and miRNAs representing
934 cattle loci involved in mammary gland development,
milk production traits and resistance or susceptibility to
mastitis were retrieved from different sources. The results

are presented in the form of a genetic marker map (Fig. 1).
The collected data include genetic as well as epigenetic
background for mammary gland related traits. The database
shows putative mammary gland related candidate loci on
all chromosomes except on chromosome Y, with the highest
number of candidate loci on chromosomes 6, 14 and 19
and the lowest on the chromosomes 28, 24, and X (Fig. 2).
The Ingenuity Pathway Analysis identified that among the
44 candidate genes confirmed in multiple studies, 12 loci
are involved in inflamatory response and antigen presen-
tation and 10 loci are involved in development and function
of connective tissue, muscle development and function as
well as development and function of endocrine system. Eight
loci are involved in cell mediated immune response and
structure and development of lymphoid tissue and the other
eight are involved in cellular development, movement and
cancer. Three loci were associated with organ morphology,
development of reproductive system and amino acid
metabolism (Table 2). However, three genes could not be
associated with physiological function using Ingenuity
Pathway Analysis due to specificies cattle genome (LGB,
BoLA-DRB3 and CSN1S2).

Transgenics and knock-outs

Because of its numerous advantages (large amount of
mutations, efficient techniques for targeted mutagenesis,
precisely described phenotype changes), the mouse model
has been used as a tool for identification of phenotype-
genotype relationships. The availability of the complete
mouse genome sequence allows comparisons with other
species and identification of conserved regions (Guenet
2005). Currently, there are 143 genes that, when mutated
or expressed as transgenes in mouse, result in phenotypes
associated with mammary gland (Table S1).

Milk and mastitis QTL

There are 344 QTL associated with milk traits in cattle
(MY, MSPD, DCCI, PY, PP, EY, FP) and 71 mastitis related
traits (CM, SCS and SCC) available in AnimalQTL database.
QTL are positioned on all chromosomes except on BTA16,
BTA24 and BTAX. The reason why milk and mastitis QTL
are spread over such a number of chromosomes might be

Figure 1 Genetic map of cattle candidate genes and genetic markers for milk production and mastitis. The map includes mouse transgenic and

knock-out experiments, QTL for milk and mastitis traits, genes and genetic markers tested for association with milk and mastitis traits, genes with
expression patterns associated with milk and mastitis traits, milk protein genes that exist in different genetic variants, miRNAs expressed in mammary
gland, and epigenetically regulated gene associated with mammary gland phenotype. The ruler to the extreme left of each figure represents mega-
base pairs. The ruler next to the mega-base pairs scale represents distances in centimorgans. Loci are placed at approximate positions on both the
sequence and the linkage map. Chromosomes are not drawn to scale. Legend: Transgenics and knock-outs (mouse models). Milk and mastitis QTL.

Association studies for milk traits.
Expression profiles associated with mastitis.

AFLP marker associated with mastitis.

miRNAs expressed in mammary gland.

Genes associated with mammary gland phenotype detected with multiple approaches.
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Figure 2 Number of candidate genes and genetic markers for mammary gland development, milk production traits and resistance or susceptibility to
mastitis found with different approaches by chromosome.

in the numerous genetic and environmental factors that sity of QTL associated with milk traits was found on BTA6
contribute to animal’s phenotype, including different traits and BTA14 and the highest density of mastitis related QTL
and specific host-pathogen interactions. The highest den- on BTA3 and BTA14.
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Association studies
SNPs associated with mastitis

Allele-phenotype association studies were performed for milk
(MY, milk protein, PP, milk fat and FP) and mastitis (CM and
SCS) traits. Association between DNA sequence variation and
mammary gland phenotype has been demonstrated for
twenty-four candidate genes (Sharif et al. 1999; Grisart
et al. 2002; Blott et al. 2003; Kuss et al. 2003; Prinzenberg
et al. 2003; Brym et al. 2004, 2005; Cohen-Zinder et al.
2005; Khatib et al. 2005; Kusset al. 2005; Liefers et al. 2005;
Leonard et al. 2005; Weikard et al. 2005; Zhou et al. 2005;
Cobanoglu et al. 2006; do Nascimento et al. 2006; He et al.
2006; Kaminski et al. 2006; Khatib et al. 2006; Ron et al.
2006; Sanders et al. 2006; Kaupe et al. 2007; Leyva-Baca
et al. 2007; Morris et al. 2007; Olsen et al. 2007; Pant et al.
2007; Robitaille et al. 2007; Rupp et al. 2007; Anton et al.
2008; Banos et al. 2008; Chebel et al. 2008; Hradecka
et al. 2008; Ganai et al. 2009; Huang et al. 2008; Kaminski
et al. 2008; Khatib et al. 2008; Macciotta et al. 2008;
Wang et al. 2008). The association between DNA sequence
variation and mastitis resistance or susceptibility has been
found for ten candidate genes (Sharif et al. 1998; Younger-
man et al. 2004; do Nascimento et al. 2006; Sharma
et al. 2006b; Sugimoto et al. 2006; Wojdak-Maksymiec et al.
2006; Kaupe et al. 2007; Leyva-Baca et al. 2007; Pant et al.
2007; Rambeaud & Pighetti 2007; Rupp et al. 2007; Wang
et al. 2007; Leyva-Baca et al. 2008) (Table S2). The evidence
for the association of 11 genes (ABCG2, BoLA-DRB3, CSN1S1,
CSN3, DGAT1, GHR, LGB, LEP, LTF, PRL and STAT5A) with
mammary gland phenotype and three genes (ILSRA, TLR4
and BoLA-DRB3) with mastitis resistance or susceptibility has
been reported more than once in different studies.

AFLP markers associated with mastitis

Genome screening for QTL is usually costly and highly
laborious. Xiao et al. (2007) presented a simplified, inex-
pensive QTL mapping approach by integration of AFLP
markers, DNA pooling and bioinformatics tools. Similarly,
Sharma et al. (2006a) searched for genome-wide QTL-
linked AFLP markers for mastitis resistance in Canadian
Holsteins. Cows were screened by selective DNA pooling and
AFLP technique. Twenty-seven AFLP markers associated
with CM were found and the most promising marker named
CGIL4 was then further characterized and mapped to
BTA22 q24. However, due to their dominant character, the
AFLPs are less informative than SNPs, which have become
widely used with the progress of genome sequencing.

Expression profiles associated with milk production and
mastitis

The high throughput technologies such as microarray
analysis offer the possibility of studying changes in expres-

Database of mammary gland genetic markers

sion profiles of thousands of genes, in response to infection
with a pathogen, simultaneously. Although microarray
analysis has become an important tool in animal genomics,
there is still the major problem that no clear consensus
about the microarray data processing methods for detection
of differentially expressed genes exists (Jaffrezic et al. 2007).
Candidate genes with expression patterns associated with
milk production in cattle were identified by Ron et al.
(2007) by combining their mouse mammary gland gene
expression experiments with two other expression experi-
ments (Clarkson et al. 2004; Stein et al. 2004) using com-
parative mapping. The results are available as a web tool for
candidate genes for QTL (cgQTL database). To date, twelve
publications describing 107 genes with expression patterns
associated with mastitis cases in cattle using microarrays
(Pareek et al. 2005; Sugimoto et al. 2006; Zheng et al.
2006), real-time PCR (Long et al. 2001; Lee et al. 2003;
Pfaffl et al. 2003; Schwerin et al. 2003; Goldammer et al.
2004; Swanson et al. 2004) and ELISA (Bannerman et al.
2004a,b; Lee et al. 2006) have been published (Table S3).
The studies were performed in cattle and mouse using
pathogens Streptococcus uberis, Streptococcus agalactiae, coli-
forms (i.e. Escherichia coli, Klebsiella pneumoniae), Staphylo-
coccus spp. (i.e. aureus), Cornybacterium spp., and yeast.
Differential expression of eleven genes (IL6, ILS, CD14,
TLR4, IL1B, LBP, TLR2, C5AR1, TNF, IFNG and SAA3)
during mastitis was confirmed in more than one (two to
four) expression experiment, moreover, six genes (IL6,
CD14, TLR4, IL1B, TLR2 and SAA3) were found to be dif-
ferentially expressed in two species (cattle and mouse).

Milk protein genes

Farrell et al. (2004) reported 14 major proteins in bovine
milk. Milk protein genes exist in different genetic variants
that encode proteins that are slightly different chemically.
Numerous investigatiors have focused on the association
between certain genetic variants of milk proteins and yield
traits, milk composition and technological properties of milk
(Buchberger & Dovc 2000). However, the allele-specific ef-
fects are very much dependant on genetic background
(breed) and experimental model (single locus vs. multi locus
effects). Currently there are milk protein variants known for
nine milk protein families in bovine milk (Table S4), but
only a few of them affect milk traits significantly.

miRNA genes expressed in mammary gland

miRNAs are a new class of regulatory molecules and could
also be involved in the regulation of gene expression in the
mammary gland. To date, 32 miRNA genes have been
reported to be expressed in the bovine mammary gland
(Gu et al. 2007). Some of these miRNAs are located in
overlapping regions with QTL for milk and/or mastitis traits
(Table S5). Recently, several genes have been proven to be
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regulated via miRNAs, but so far none of them in mammary
gland-related traits.

For miRNAs, experimentally proven to be expressed in
mammary gland, we performed in silico searches for target
sites and found 359 putative miRNA target sites in candidate
genes. Using the Patrocles database, we found polymorphic
miRNA target sites for bta-miR-199b, -miR-199a-5p, and -
miR-361 in the IL1B gene and for -miR-126 in the CYP11B1
gene. Interestingly, the expression of -miR-199b, -miR-199a-
5p and -miR-126 in the bovine mammary gland has already
been experimentally confirmed.

Epigenetic factors

Epigenetic factors have also been demonstrated to be involved
in CM (Vanselow et al. 2006). Principally, DNA-remethyla-
tion around the STAT5-binding enhancer in the CSN1S1
promoter was shown to be associated with shutdown of
agp-casein synthesis during acute mastitis. Interestingly, de-
fensin genes BNBD5 and LAP are regulated in an opposite
manner to the CSN1S1 promoter (Vanselow et al. 2006),
which was also found to be associated with milk traits.

Discussion

The extensive literature and database search for mammary
gland associated candidate genes and genome loci have
been performed. We reviewed 934 loci involved in mam-
mary gland development, milk production traits and resis-
tance or susceptibility to mastitis in cattle (Table 1).

Our criteria for inclusion of candidate regions into the
database were association of the genetic marker with the
animal trait, which mainly revealed functional candidates,
and sequence similarity revealing structural candidates and

Table 1 Summary of the data in the database of cattle candidate
genes and genetic markers for mammary gland development, milk
production traits and resistance or susceptibility to mastitis.

Study approach Number of loci

Knock-out and transgenic experiments 143
QTL 415
Association studies — milk traits 24
Association studies — mastitis 10
AFLP markers associated with mastitis 27
Expression studies — milk traits 207
Expression studies — mastitis 107
Milk protein genes that exist in 92
different genetic variants
miRNAs expressed in mammary gland 32
Epigenetic factors 1
Total 934*

*Unique loci (studies reporting individual gene more than once by
different approaches were subtracted from sum).

map position (overlap with QTL of interest), which allowed
identification of positional candidates.

As the data extracted from different sources are often
fragmented and controversial, there is an urgent need to
integrate information from different sources. Our database
consists of cattle candidate loci for mammary gland devel-
opment, milk production traits and resistance or suscepti-
bility to mastitis comprising 934 loci. The database is
available in Excel format and allows searching for loci by
name, approach, reference and chromosomal location. The
loci in the database are hyperlinked to the relevant public
databases (NCBI, MGI, CattleQTLdb, and miRBase). Human
and mouse homologs are available for all cattle genes,
which represents an important advantage for a comparative
approach. In cases when locations for bovine orthologs
were unavailable on NCBI’s Map Viewer — Bos taurus build
(4.0), we defined approximate locations of cattle orthologs
by using a bovine-human synteny map. The cattle mam-
mary gland database will serve as a source of candidates for
functional studies and development of markers for the new
generation of animal breeding tools.

Candidate loci were drawn to the genetic marker map
(Fig. 1). The advantage of the map-based review is the
identification of overlapping regions populated with candi-
date loci found by different approaches. A review of the
genetic map approach has been previously published for
obesity-related loci (Rankinen et al. 2006) and was heavily
used as an important research tool in obesity studies.

We found 44 candidate genes identified in multiple
independent studies using the same or different approaches,
of which 22 were associated with milk production, 16 with
mastitis and six with both (Table 2). Genes identified with
multiple approaches or in multiple analyses using the same
approach and/or in regions overlapping with QTL represent
promising candidate genes for association with mammary
gland development, lactation and resistance or susceptibility
to mastitis.

The most promising candidates were further analysed in
silico (Table 2). A search for expression in lactating mam-
mary gland and polymorphisms (SNPs) in different regions
(promoter, 5'UTR, exon, intron and 3’'UTR) was performed.
To date, there are 159 SNPs reported in 44 of the most
promising candidate genes. We found 82 SNPs in exons, 34
in introns (100 bp flanking region), 32 in 3’UTRs, six in
promoters and five in 5'UTRs of selected genes. The most
polymorphic gene was TLR4, with 35 reported SNPs. Genes
with a high number of reported polymorphisms were also
LEP (20 SNPs), IL8 (12), IL1B (9) and LTF (7). Additionally,
the pathway analysis was used to cluster the genes into five
functional networks involved in a variety of biological
functions.

Twenty-six genes (ABCG2, ACLY, ACTB, ATP2B2,
B4GALT1, BoLA-DRB3, BTNI1A1l, CCL2, CSN1S2, CSN2,
DGAT1, EGF, ETS2, FEZF2, ID2, KCNK1, MFGES8, NME1,
LGB, PRL, PTGS1, PTHLH, RORA, STAT5A, TLR4 and XDH)
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were found to be associated with mammary gland pheno-
types (milk and mastitis traits) using two different study
approaches, LALBA, LEP, TP53 wusing three different
approaches, and CSN3, CSN1S1 and LTF using four differ-
ent approaches. Twenty-five genes were confirmed in mul-
tiple independent studies using the same approach; eleven of
them in association studies for milk traits (ABCG2, BoLA-
DRB3, CSN1S1, CSN3, DGAT1, GHR, LEP, LGB, LTF, PRL,
and STAT5A), three in association studies for mastitis traits
(BoLA-DRB3, IL8RA and TLR4) and 11 in mastitis expres-
sion experiments (C5AR1, CD14, IFNG, IL1B: IL6, ILS, LBP,
SAA3, TLR2, TLR4 and TNF). Genes ABCG2, BoLA-DRB3,
CSN1S1, CSN3, LEP, LTF and TLR4 were reported by at
least two different approaches and confirmed in at least two
independent studies for each approach. None of the miRNA
genes overlapped with candidate gene locations, but 10 of
them overlapped with QTL regions for different traits
(Table S5). Moreover, we performed miRNA target searches
in the collected candidate genes and found 359 putative
target sites, of which two genes (IL1B and CYP11B) in-
cluded polymorphic targets for miRNAs expressed in
mammary gland. Those miRNA:mRNA pairs can now be
experimentally tested for their possible involvement in the
regulation of gene expression in the mammary gland.

The highest density of QTL was found on BTA6 and
BTA14. As suggested by Khatkar et al. (2004), there are
two distinct QTL regions on BTA6 at 49 £ 5.0 cM and
87 £ 7.9 cM. Genes PPARGC1 (Weikard et al. 2005), SPP1
(Leonard et al. 2005) and ABCG (Cohen-Zinder et al. 2005;
Ron et al. 2006; Olsen et al. 2007), found in association
studies for milk traits, are located in proximity of
49 + 5.0 cM QTL region. In 87 £ 7.9 cM region, which
overlaps with several PP QTL, casein genes (CSNI1SI,
CSN1S2, CSN2 and CSN3) are located. Khatkar et al.
(2004) detected a genome-wide significant QTL for milk FP
and yield close to the centromeric end of BTA14 where the
DGAT1 gene is located. The DGAT1 gene that overlaps with
several milk fat QTL was found in association studies for
milk fat (Grisart et al. 2002; Kaminski et al. 2006; Kaupe
et al. 2007, Anton et al. 2008, Banos et al. 2008; Hradecka
et al. 2008; Kaminski et al. 2008) and in murine KO
experiments, which resulted in the absence of milk
production. As concluded by Grisart et al. (2002), the
DGAT1 gene which is involved in triglyceride synthesis is
the causative gene affecting milk fat on BTA14. Genes LEP
(Liefers et al. 2005; Banos et al. 2008; Chebel et al.
2008), PRL (Brym et al. 2005; He et al. 2006), CSN3 (Ka-
minski et al. 2006, 2008; Robitaille et al. 2007), DGAT1
(Grisart et al. 2002; Kaminski et al. 2006; Kaupe et al.
2007; Anton et al. 2008; Banos et al. 2008; Hradecka
et al. 2008; Kaminski et al. 2008) and STAT5A (Brym et al.
2004; Khatib et al. 2008) were reported in association
studies for milk traits and in murine KO experiments.

The LTF gene on BTA22 was found in mastitis expres-
sion experiments (Pfaffl et al. 2003), association studies for

Database of mammary gland genetic markers

milk phenotypes (Kaminski et al. 2006, 2008) and associ-
ation studies for mastitis resistance or susceptibility (Woj-
dak-Maksymiec et al. 2006). Lactoferrin (LF), with its
strong iron binding properties, is known to have several
biological functions including host defence against micro-
bial infection and anti-inflammatory activity. The multi-
functional roles of LTF were reviewed by Ward et al.
(2005). The finding that inflammation and involution of
the mammary gland induces mammary expression of LF
led to the suggestion that the LTF gene is a strong func-
tional candidate for mastitis resistance or susceptibility
(Kerr & Wellnitz 2003). As reported by Wojdak-Maksymiec
et al. (2006), two alleles of LTF, A and B, were found in the
studied population. The highest SCC was found in milk of
the AB genotype, whereas the lowest one was found in
cows of the AA genotype. The TLR4 gene on BTA8 was
found in mastitis association and expression studies. Its
differential expression was confirmed in two different
experiments (Goldammer et al. 2004; Zheng et al. 2006)
and association of its sequence polymorphisms with mas-
titis traits was found in two different studies (Sharma et al.
2006b; Wang et al. 2007). Therefore, TLR4 may be a
strong candidate for functional studies to enhance mastitis
resistance in cattle. The expression of the FEZF2 gene on
BTA22 has been reported to be induced by mastitis and its
sequence variation is associated with mastitis resistance or
susceptibility (Sugimoto et al. 2006); cows susceptible to
mastitis have a three-base insertion in a glycine-coding
stretch of the gene. Sequence variation of the BTA23-
located BoLA-DRB3 gene has also been reported to be
associated with milk traits and mastitis resistance or
susceptibility (Sharif et al. 1999; do Nascimento et al.
2006; Rupp et al. 2007). As suggested by do Nascimento
et al. (2006), this might be due to a direct action of bovine
major histocompatibility complex alleles on immune func-
tion, whereas effects on production traits might be only
indirect and explained by better general health conditions
of more productive animals. PTGS1 (Pfaffl et al. 2003),
ACTB (Lee et al. 2006), TP53 (Schwerin et al. 2003) and
ETS2 (Zheng et al. 2006) genes were found in mastitis
expression studies and murine KO experiments that re-
sulted in increased tumorigenesis of mammary gland and
abnormal lactation. To address the developmental-specific
expression profiles in the mammary gland, a new specialized
microarray containing about 6000 highly enriched unique
sequences from mouse mammary libraries (mammochip)
has been developed and applied for expression profiling of the
mouse mammary gland during development (Miyoshi et al.
2002). Comparison of gene expression in the wild type lac-
tating and virgin mammary gland and in KO for the inhibitor
of differentiation 2 (Id2) gene revealed four distinct groups of
genes showing different expression profiles.

Major lactoprotein genes (CSN1S1, CSN1S2, CSN2,
CSN3, LALBA and LGB) exist in different genetic variants
that code for chemically different protein variants. The
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genetic variants of milk proteins have diverse effects on
milk composition and cheese making ability. It is possible
that effects on milk composition and cheese making ability
are not the direct consequence of polymorphisms at lac-
toprotein gene loci but rather the consequence of QTL
linked to the different genetic variants of these genes. Be-
sides protein variant studies, milk protein genes have been
also identified by other study approaches: (i) CSN1S1 in an
epigenetic study (Vanselow et al. 2006), expression
experiments for milk traits (Ron et al. 2007), and in
association studies for milk traits (Prinzenberg et al. 2003;
Kuss et al. 2005; Sanders et al. 2006), (ii) CSN2 in knock-
out experiments in mice which resulted in abnormal lac-
tation and abnormal milk composition, (iii) CSN3 gene in
association studies for milk traits (Kaminski et al. 2006;
Robitaille et al. 2007), expression experiments for milk
traits (Ron et al. 2007) and in KO experiments in mice
which resulted in abnormal lactation and abnormal milk
composition, (iv) LALBA in KO experiments in mice which
resulted in abnormal mammary gland morphology and in
abnormal milk composition, expression experiments for
milk traits (Ron et al. 2007) and (v) a LGB in association
study for milk traits (Kuss et al. 2003).

Epigenetic modifications to the DNA sequence and asso-
ciated chromatin are also known to regulate gene expres-
sion and contribute significantly to the phenotype.
Variation in the epigenotype between genetically identical
individuals can be associated with phenotypic differences.
Moreover, the recent evidence suggests that the epigenome
can be affected by environmental factors and that these
changes can last a lifetime (Whitelaw & Whitelaw 2006).
The CSN1S1 gene has been reported to be epigenetically
regulated during mastitis (Vanselow et al. 2006).

Some of the genes which we identified on the cross-cut
between different approaches or which were reported in
multiple independent studies using the same approach
were already identified and verified to affect QTL in cattle
(i.e. ABCG2 and DGATI1), while others represent back-
ground for subsequent functional studies. Possible criterion
to determine priority for further candidate gene analysis
can be differential expression of the gene in the target
organ, known physiological role to the trait (Ron et al.
2007) and positional overlapping with QTL of interest. The
current database of cattle candidate genes and genetic
markers for mammary gland development, milk produc-
tion traits and resistance or susceptibility to mastitis con-
sists of 934 unique loci. The project is ongoing and we
plan to update the database periodically with further
publications.
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