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Abstract
When conducting an integrative analysis of data obtained from multiple independent studies, a
fundamental problem is to establish commensurate measures for the constructs of interest.
Fortunately, procedures for evaluating and establishing measurement equivalence across samples
are well developed for the linear factor model and commonly used item response theory models. A
newly proposed moderated nonlinear factor analysis model generalizes these models and procedures,
allowing for items of different scale types (continuous or discrete) and differential item functioning
across levels of categorical and/or continuous variables. The potential of this new model to resolve
the problem of measurement in integrative data analysis is shown via an empirical example examining
changes in alcohol involvement from age 10 to 22 across two longitudinal studies.

Integrative Data Analysis (IDA), or the simultaneous analysis of data obtained from two or
more independent studies, offers many potential advantages. As reviewed by Curran &
Hussong (this issue), correlated advantages of IDA include economy (i.e., reuse of extant data),
power (i.e, large combined sample sizes), the potential to address new questions not answerable
by a single study (e.g., combining longitudinal studies to cover a broader swath of the lifespan),
and the opportunity to build a more cumulative science (i.e., examining the similarity of effects
across studies, and potential reasons for dissimilarities). There are also many methodological
challenges associated with IDA, including the need to account for historical effects, regional
differences, and sample heterogeneity across studies (Curran & Hussong, this issue). Perhaps
the most fundamental challenge, however, is the need to construct commensurate measures
across studies for both predictors and outcomes. It is this task that is the central focus of our
paper.

Our paper takes the following course. First, we review the nature of the problem of
measurement in IDA and comment on ad hoc solutions that have previously been employed
for putting measures on common scales across studies. Second, we argue that psychometric
tools developed to assess measurement equivalence in other contexts can also be applied to
facilitate IDA, but that certain extensions of the underlying measurement models will often be
necessary. In particular, we provide a cursory review of the linear factor analysis model and
the 2-parameter logistic item response theory model, including the topics of factorial invariance
and differential item functioning. We then propose a new, more general measurement model
that we believe offers several additional advantages for IDA. Third, we apply this new approach
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to evaluate changes in alcohol involvement over adolescence and young adulthood in data
pooled from two independently conducted longitudinal studies. Fourth, we discuss the
limitations of our approach and areas in need of further methodological development.

The Problem of Measurement
Simply put, without common measures, IDA is a nonstarter. To simultaneously analyze data
from multiple studies, measures must be available from each study that reflect the same
construct, the construct must have the same theoretical meaning, and the scores for the construct
must be scaled commensurately. Clearly, if the same theoretical constructs are not measured
in each study, then an IDA involving those constructs cannot be conducted. Constructs given
the same label (i.e., “stress”), but measured based on different theoretical and operational
definitions (i.e., mental versus somatic, affective versus physiological), are similarly
incomparable in IDA. It is when the definition and measurement of constructs agrees across
studies that IDA becomes possible.

In an (impossibly) ideal world, each study in an IDA would measure the same constructs using
the same, gold-standard instruments. More realistically, however, each study is likely to
measure the same constructs differently, particularly if IDA was not planned at the outset. This
situation presents a fundamental challenge for IDA: How to put disparate measures of the same
construct on a common metric. The problem is, of course, not unique to psychology. Statistical
matching, a somewhat different approach to IDA developed within econometrics, also
emphasizes the need to harmonize measures across data sets (D'Orazio, Di Zio & Scanu,
2006). Harmonization refers to the recoding of variables so that they are scored with identical
values in each study. For instance, if one study recorded family income as an open-ended
continuous response, whereas a second study used an ordinal scale of <$10,000,
$10,000-19,999, $20,000-49,999, etc, then the two measures could be “harmozined” by
recoding the continuous response into the ordinal categories. Measurement harmonization is
thus a straightforward, face valid attempt to create commensurately scaled variables.

Harmonization may be a useful first step in developing commensurate measures for IDA, but
it is not sufficient. There is no guarantee that the harmonized values of a variable are truly
equivalent across studies. Although the scoring of the variable may be superficially identical,
how these scores map onto levels of the underlying construct may nevertheless differ. Even
for the simple example of reporting family income, it is possible that individuals under-report
their income when asked to provide a free response, but are less tempted to do so when asked
to indicate an income range. Although the continuous measure of income can be recoded to
match the ordinal income ranges, identical harmonized values (e.g., $10,000-19,999) may then
reflect somewhat higher levels of socioeconomic status in the first study than the second.
Similar problems may arise from subtle variations in item prompts or response category labels
(Steinberg, 2007; Rivers, Meade & Fuller, in press). Indeed, even identical items which do not
require harmonization may function differently across studies, due to differences in regional
interpretations, historical periods, or even placement of the items within study-specific test
batteries (Holland & Dorans, 2006).

Fortunately, there is a long psychometric literature on evaluating measurement equivalence
that can be brought to bear on this problem, provided that there is a set of identical or
harmonized items available for each construct across studies. Borrowing the parlance of item
response theory, we will refer to these items as common items, allowing also for the possibility
of non-common items that cannot be reasonably harmonized across studies. Given multiple
common items, the psychometric approach will allow us to formally test whether these items
function equivalently across studies, permitting IDA to take place. For instance, suppose that
a total of 20 items are administered across three studies to assess internalizing behavior, but
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only 10 of the items are common items that are shared (or harmonized) across studies. If even
some of the 10 common items measure internalizing behavior equivalently across the three
studies, then they can be used to ensure that the scores for internalizing behavior are scaled
commensurately across studies. The non-common items then provide extra information for
estimating the internalizing behavior scores in each study.

Historically, most psychometric models have focused on a single type of item (e.g., continuous
or binary), and allowed for tests of measurement inequivalence across two or more independent
groups. For IDA, this historical framework will take us far, allowing us to establish
commensurate measurement across independent studies so long as the items are of the same
type. But the traditional framework can sometimes be too limiting. For instance, in IDA we
will often be in the position of cobbling together measures for a construct from items that
weren't originally part of the same inventory (e.g., frequency of heavy drinking from a
questionnaire and diagnosis of alcohol dependence from a structured interview) and hence may
be heterogeneous with respect to type (e.g., a mix of continuous, count, ordinal, and/or binary
items). Furthermore, if we conduct longitudinal IDA we may also need to evaluate whether
items function equivalently at all ages. Such considerations will take us beyond the traditional
framework. We shall thus begin by considering two traditional modeling approaches, and then
expand beyond these to accommodate extra complexities that may often arise in IDA
applications.

Traditional Psychometric Models
In this section we review two traditional psychometric models that can be used to evaluate
measurement equivalence across samples (e.g., studies), the Linear Factor Analysis (LFA)
model and the 2-Parameter Logistic (2-PL) Item Response Theory (IRT) model. Both models
may be viewed as variants of latent trait analysis (Lazarsfeld & Henry, 1968; Bartholomew &
Knott, 1999), differing superficially in whether the items are continuous (LFA) or binary (2-
PL). Historically, however, LFA and 2-PL IRT models have been applied for different purposes
(e.g., dimensionality testing versus ability scoring) with different data structures (e.g., subtests
versus items as indicators) using different estimation approaches (e.g., analysis of summary
statistics versus raw response patterns), leading to subtle differences in terminology and
practice. Without intending to further reify the somewhat artificial distinction between factor
analysis and IRT, we thus review the LFA and 2-PL model separately, followed by a
consideration of the potential application of these models to solve the measurement problem
in IDA.

The Linear Factor Analysis Model
In the long and broad literature on factor analysis, one topic that has received sustained attention
is the issue of measurement equivalence or, as it is often referred to within this context, factorial
invariance (see Millsap & Meredith, 2007, for a historical review). As an entry point into this
topic, let us consider a LFA model in which a single latent factor is posited to underlie a set of
observed, continuous variables (indicators, or items). The model may be written as

(1)

where i indexes the item (from i = 1, 2,…, p) and j indexes the person (from j = 1, 2,…, N).
Note that Equation 1 is a simple linear regression of each observed item y on the latent factor
η, with the intercept and slope (loading) parameters indicated by ν and λ, and the residuals
indicated by ε. We will refer to ν and λ jointly as item parameters. Additionally, we will assume
that the factor and residuals are normally and independently distributed as ηj ∼ N(α, ψ) and
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. 1 The indicators are thus assumed to be conditionally independent (or locally
independent), given the latent factor. The covariances among the measured items then reflect
only the common influence of the latent factor η (i.e., COV (yij, yi′j) = λiλi′ψ for all i ≠ i′).

The factor model is said to be identified if a unique solution can be obtained for each parameter.
As long as there are at least three indicator variables, the one factor model is identified up to
the scaling of the latent factor (Bollen, 1989). The mean and variance of the latent factor are
arbitrary (given that it is an unobserved variable), so the scale of the latent variable must be
set by the analyst. One common strategy for scaling the factor is to set the intercept and factor
loading of a ‘reference item’ to zero and one, respectively. This identifies the model, places
the latent variable on the same scale as the reference item, and allows one to freely estimate
the factor mean and variance. Another strategy is to set the mean and variance of the factor to
convenient values. For instance, setting the factor mean and variance to 0 and 1, respectively,
identifies the model and puts the factor on a standard normal scale.

When the same instrument, or set of items, is administered to two or more independent groups
(e.g, male/female, ethnic groups, nationalities) it is often of interest to compare the groups on
the latent factor. To validly make such comparisons, one must first ensure that the latent factor
is equivalently defined and on a common metric across the groups. In general, it must be
possible to hold the item parameters (intercepts and loadings) equal over groups for the factor
means and variances to be directly comparable. That is, the observed variables must have the
same relationship to the latent factor in each group. When the item parameters are all equal
over groups, this is known as strong factorial invariance (Meredith, 1993). Often this equality
holds only for a subset of items, resulting in partial invariance (Byrne, Shavelson & Muthén,
1989; Reise, Widaman & Pugh, 1993).

In practice, factorial invariance is evaluated via the multi-sample factor analysis model
developed by Jöreskog (1971) and Sörbom (1974). A LFA model is fit simultaneously in two
or more independent samples, and across-group equality constraints on the item parameters
are evaluated using Likelihood Ratio Tests (LRTs; see Widaman & Reise, 1997). Briefly, an
LRT is computed by taking twice the difference in the log-likelihoods of the two models (with
and without equality constraints). This difference is distributed as a chi-square with degrees
of freedom equal to the number of equality constraints evaluated. A significant result indicates
that the equality constraints should be rejected; otherwise, they are retained. Even if equality
constraints are untenable for the full set of items, it may still be possible to retain these
constraints for a subset of the items, resulting in partial invariance. Several methods for
determining which items are non-invariant have been suggested (see Cheung & Rensvold,
1999). One common strategy is to use Modification Indices (MIs, also known as Lagrange
Multiplier tests), which indicate the expected improvement in model fit associated with freeing
each constraint in the model (Reise, Widaman & Pugh, 1993; Yoon & Millsap, 2007).

Given the potential for partial invariance, the method used to identify the model can be quite
important (Cheung & Rensvold, 1999). Use of the reference item method (i.e., constraining
the intercept and loading of one item to 0 and 1 in both groups) can be problematic, as it
implicitly assumes that the reference item is invariant across groups. If it is not, tests for
invariance for the remaining items will be incorrect. Similarly, one would not want to constrain
the mean and variance of the factors to 0 and 1 in both groups, as factor mean and variance
differences might then masquerade as intercept and factor loading differences, respectively.
Another option is to set the factor mean and variance to 0 and 1 in one group, then estimate

1Note that the normality assumption is used to motivate the maximum likelihood estimator for the model and to contrast with subsequent
models. Under certain conditions this estimator is consistent even when the residuals and factor(s) are not normally distributed (Browne,
1984).
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the factor mean and variance in the other group while placing equality constraints on one or
more item intercepts and loadings (Reise, Widaman & Pugh, 1993). Yoon & Millsap (2007)
implemented this approach by first placing equality constraints on all items and then releasing
these constraints, item by item, based on MIs until no further improvement in fit could be
achieved. They noted that this procedure works well when the number of non-invariant items
is small relative to the number of invariant items. Thus, as the number of invariant items
increases, so too does our confidence that we are measuring the same latent factor on the same
scale in each group, permitting across-group comparisons.

The 2-Parameter Logistic Model
As with factor analysis, the development of commensurate measures has long been a focus of
item response theory (Holland, 2007). To motivate the 2-PL IRT model we shall suppose that
there is a single latent trait or ability that underlies a set of binary item responses (e.g.,
mathematics proficiency, as reflected by a series of items scored correct or incorrect). Some
items may be more difficult than others, and some items may be more strongly related to the
latent trait than others. The 2-PL model allows for such differences, assuming a conditional
Bernoulli (i.e., binary) distribution for each item in which the probability of observing a score
of one (e.g., a correct response) is given by the function

(2)

where θj is the latent trait score for individual j, and ai and bi are referred to as the discrimination
and difficulty parameters for item i, respectively, or item parameters, collectively.2 The item
responses are assumed to be independent across individuals and conditionally independent
across items given the latent trait. Additionally, it is typically assumed that the latent trait is
standard normal, or θj ∼ N(0, 1). Note that this convention parallels one of the approaches used
in the linear factor analysis model to set the scale of a latent factor. With this assumption in
place, the discrimination and difficulty parameters can be estimated for each item.

The parameters of the 2-PL model have appealing interpretations. The difficulty parameter
(b) indicates the level of the latent trait at which there is a .5 probability for the item to be
scored one, (i.e., P(y = 1|θ = b) = .5). That is, one would expect 50% of examinees with latent
trait levels equal to the difficulty value to answer the item correctly. In contrast, the
discrimination parameter (a) indicates how rapidly the probability of answering correctly
increases as the latent trait increases. The role of these two parameters can also be seen by
plotting the Item Characteristic Curves (ICCs, also known as tracelines), or P(y = 1|θ) as a
function of θ, obtained by substituting the known or estimated values of a and b into Equation
2 for each item. Example ICCs for four items are depicted in Figure 1. The values of the
difficulty parameters for the four items are indicated by the vertical droplines, showing the
level of θ (in standard deviation units) at which each traceline attains a probability value of .
5. Note that as difficulty values increase, the ICCs move toward the right of the plot, indicating
that higher levels of the latent trait are required for the items to be scored one with appreciable
probability. The slopes of the ICCs are then determined by the values of the discrimination
parameters. Items with higher discrimination have steeper slopes, whereas those with lower
discrimination have flatter slopes. The items with steeper slopes are more highly related to the
latent trait.

2There is also a direct correspondence between the 2-PL model and the factor analysis model for binary indicators (Kamata & Bauer,
2008; Takane & DeLeeuw, 1987; Wirth & Edwards, 2007). Millsap and Yun-Tein (2004) provide a discussion of invariance testing with
binary items from a factor analytic perspective.
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Scoring is a major emphasis of IRT, and often the primary motivation behind applying a 2-PL
model. Although a variety of scoring methods have been developed, we shall focus on the
commonly used Expected a Posteriori (EAP) and Maximum a Posteriori (MAP) scoring
methods (see Thissen & Orlando, 2001). An EAP is the expected latent ability of person j
taking into account his or her correct and incorrect responses and the overall ability distribution
in the population. More technically, the EAP score is defined as the mean of the posterior ability
distribution for person j given j's vector of item responses. Similarly, a MAP is the mode of
the posterior ability distribution for person j. Both EAPs and MAPs are “shrunken” estimates,
meaning that the score obtained for person j will be closer to the marginal mean of the overall
ability distribution (across persons) as the amount of information available for person j
decreases. For instance, if a participant had missing values for all items, then the best score
estimate for this person would be the overall average, whereas with more non-missing values
a more individualized estimate could be obtained. In general, the inclusion of more items, and
more informative items, results in less shrinkage and greater certainty about an individual's
ability level.

Although the 2-PL model is often described within the context of ability testing, the same
model is of course relevant for the measurement of other psychological constructs, such as
dimensions of personality or psychopathology. Considering the latter case, the latent trait might
represent liability to pathology, measured by a set of binary symptom indicators (i.e., symptom
present or absent). Higher “difficulty” values would indicate higher symptom severity (i.e.,
that a higher level of underlying psychopathology is necessary to observe the symptom).

Within the context of ability testing, in particular, a great deal of attention has been paid to
establishing the equivalence of different tests and test forms. Indeed, psychometricians have
developed many designs and procedures for linking and equating test scores (see Holland &
Dorans, 2006). This emphasis is understandable: if a high stakes testing program uses multiple
test forms to increase security, the test scores obtained from each form should have an
equivalent meaning and metric. Similarly, if one wishes to track growth in an ability, then the
test scores obtained at different ages should be on the same scale, despite the necessity of
changing the items administered from one age to the next to make the test age-appropriate.
Within this context, one design of particular relevance for our purposes is the common-item
(or anchor-test) design, in which groups of examinees are given different tests (or test forms)
which contain a subset of common items. Similar scenarios are likely to arise frequently in
IDA.

Given the presence of a set of common items, one can directly test measurement equivalence
by evaluating whether individuals from different groups with equal values for the latent trait
have an equal probability of scoring the item correct. When this probability differs over groups
for a given item, this is referred to as Differential Item Functioning (DIF). A variety of methods
are available to evaluate DIF (see Angoff, 1993), many of which are primarily applicable when
there are a large number of examinees and a large number of items (e.g., the standardization
method or the Mantel-Haensel statistic). Here, we focus only on the direct IRT method in which
the parameters defining the ICCs (e.g., the a and b parameters in the 2-PL model) are directly
contrasted across groups by fitting a multi-sample IRT model (Thissen, Steinberg & Wainer,
1993). Our reasons for focusing on the IRT method are that it is both theoretically elegant and
more practically useful when the number of items and examinees is smaller than is typically
available within large-scale testing programs (Bock, 1993).

As described by Embretson & Reise (2000, p. 252-262), in the IRT method, the latent trait
mean and variance are set to 0 and 1 in the reference group, and are freely estimated in the
focal group. The mean and variance of the latent trait in the focal group are identified so long
as a subset of the common item parameters are held equal across groups. To determine DIF,
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one strategy is to initially constrain all item parameters to equality across groups. Then, one
item at a time, the a and b parameters can be allowed to differ by group. LRTs may be conducted
to determine whether allowing for different a and b parameters significantly improves the fit
of the model. A significant LRT is indicative of DIF. Note that this strategy is quite similar to
the one recommended for evaluating partial invariance in the linear factor model by Reise,
Widaman & Pugh (1993) and Yoon & Millsap (2007). Further heightening the similarity, Glas
(1998) suggested using MIs (rather than LRTs) to detect DIF in multi-sample IRT models.

Potential Application In IDA
The procedures reviewed above for the LFA and 2-PL models can be directly applied within
the context of IDA to place scores on the same measurement scale across studies. Suppose that
all items for a factor (or trait) are common items, available in each study. Then a muti-sample
LFA or 2-PL model could be estimated, depending on whether the items are continuous or
binary, with equality constraints on some or all of the item parameters. So long as there is a
subset of invariant (or non-DIF) items, the mean and variance of the factor can be validly
compared across studies because the factor has been placed on the same metric. Further, the
factor can be treated as an outcome or predictor in other analyses with assurance that the metric
of the factor is identical over studies. In some cases, such relationships can be examined directly
in the model (e.g., by moving from a factor analysis to a structural equation model), whereas
in other cases we may need to generate scale scores for use in a second stage analysis (e.g.,
when the measurement and structural models are too complex to be fit simultaneously, see e.g.,
Curran et al., 2008). For either purpose, the ideal is for more of the items to be invariant than
not, lending greater confidence to the assertion that the latent variables are commensurately
scaled across studies (Reise, Widaman & Pugh, 1993; Steenkamp & Baumgartner, 1998).

In principle, the latent factor can be put on the same scale when less than half (even just one)
of the items is invariant over studies (Steenkamp & Baumgartner, 1998). In practice, however,
the likelihood of correctly identifying the invariant and non-invariant items decreases as the
proportion of non-invariant items increases (French & Finch, 2008; Millsap, 2005; Yoon &
Millsap, 2005). If the wrong item(s) are selected as invariant, then across-study comparisons
will be biased. Unfortunately, in many IDA applications, a large number of “common” items
will actually be harmonized variables, and harmonization may fail to produce items that
function equivalently across studies (e.g., the harmonized income items discussed previously).
Hence, for IDA, we must expect to observe (and tolerate) more DIF than we would typically
find if we were to administer an identical scale to distinct samples.

IDA will often pose additional challenges. Many of these challenges again arise from the use
of different measurement instruments across studies. First, there will often be many non-
common items unique to each instrument (and thus each study). These non-common items may
be viewed as “missing” for the other studies. Fortunately, the maximum likelihood estimator
permits partially missing data under the Missing at Random (MAR) assumption (Arbuckle,
1996; Wothke, 2000; see Schafer & Graham, 2002). As data for the non-common items would
be missing by design (due to the use of different measurement instruments across studies), the
MAR assumption would seem quite plausible. The inclusion of non-common items is thus not
as problematic as might be supposed.

Second, the number of common items may in some cases be quite small. In the extreme, there
might be only one common item against a field of non-common items. In this case, constraining
the item parameters of the solitary common item to be equal across studies putatively puts the
factor on the same scale, but there would be no opportunity to conduct DIF (invariance) tests
for this (or any other) item. The advantage of multiple common items is the ability to conduct
DIF tests to formally evaluate, rather than simply assume, measurement equivalence over
studies.
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Third, there may be no items that are common to all studies. Fortunately, this situation can be
accommodated as long as the studies can be chained together in some fashion. For instance, if
item sets A and B were available in Study 1, item sets B and C were available in Study 2, and
item sets C and D were available in Study 3, invariance constraints on the B and C item
parameters would place the factor on a common metric in all three studies. This would permit
the comparison of Study 1 and Study 3, despite the fact that no common items were available
for those two studies. In effect, the items administered in Study 2 enable the disjoint items sets
from Studies 1 and 3 to be linked together.3 An example of how measures can be linked across
studies in this manner to facilitate IDA is described by Curran et al. (2008). They used IRT
methodology to develop a commensurate measure of internalizing behavior across three
longitudinal studies, one which used a subset of items from the Child Behavior Checklist
(CBCL; Achenbach & Edelbrock, 1981), a second which used the full CBCL in addition to
the Brief Symptom Inventory (BSI; Derogatis & Spencer, 1982), and a third which used only
the BSI. The second study provided information with which to equate internalizing scores
across all three studies. This situation parallels the common-item design used to construct
developmental scales, in which each pair of adjacent grades receives a set of common items
so that test scores can be linked in a chain across all of the grades (Kolen & Brennan, 2004, p.
372-380).

Two other challenges associated with IDA are somewhat more problematic for traditional
psychometric models. The first of these is that the items available for a given construct may
vary in scale type (i.e., continuous, ordinal, binary, count) across or within studies. The LFA
model is appropriate only for continuous items, whereas the 2-PL model is appropriate only
for binary items. Similarly, most other psychometric models were explicitly developed for
items that are homogenous with respect to scale type, limiting their application for IDA. Recent
years, however, have seen the development of more flexible measurement models that can
accommodate items of different types, and we will see that this generalized modeling
framework can greatly facilitate IDA. A second challenge is that we will often anticipate DIF
both across and within studies. For instance, Curran et al. (2008) examined DIF for the CBCL
and BSI internalizing items over three studies, between genders, and across age groups. Given
the limitations of current multi-sample modeling approaches, Curran et al. (2008) evaluated
DIF across these dimensions non-simultaneously and by splitting the sample on age (10-17
years versus 18-33 years). Clearly, it would be preferable to be able to evaluate DIF across
multiple variables simultaneously and without the need to bin continuous variables like age
into discrete groupings. In particular, artificial categorization may greatly reduce the power to
detect DIF (see MacCallum, et al. 2002, for a general discussion of problems caused by
categorizing continuous variables). We focus on addressing these two additional challenges in
the remainder of the paper through the development of a new, more general model, which we
call Moderated Nonlinear Factor Analysis (MNLFA).

Moderated Nonlinear Factor Analysis
We shall begin by describing recently proposed Generalized Linear Factor Analysis (GLFA)
models that can incorporate items of mixed scale types, including binary, ordinal, continuous
and count variables (Bartholomew & Knott, 1999; Moustaki, 1996; Skrondal & Rabe-Hesketh,
2004). We will then show how the GLFA model can be extended so that observed variables
like study or age can serve as moderators of the model parameters. We will continue to focus
on models with a single factor to simplify the exposition, although multifactor models are also
possible.

3If some studies share no common items with any other studies, one can conduct a “measurement study” in which all or some of the
items from each of the original studies are administered to new (but similar) participants. The measurement study would then be included
in the IDA to knit together the measures from the original studies.
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The Generalized Linear Factor Analysis Model
Paralleling the Generalized Linear Model (GLM) for observed regressors (McCullagh &
Nelder, 1989), the GLFA model may be written as

(3)

or, equivalently, as

(4)

where μij is the expected value of item i for person j. Similar to the other models we have
considered, individuals are assumed to be independent of one another, and item responses are
assumed to be conditionally independent across items within individual. Like the LFA model
in Equation 1, νi and λi represent the intercept and factor loading for the item and ηj is the latent
factor, assumed to be normally distributed as ηj ∼ N(α, ψ). Unlike Equation 1, however, the
model given in Equation 3 is written in terms of the expected value, hence the absence of a
residual term. Uncertainty in the actual item response is instead implicitly included in the model
by specifying the (conditional) response distribution for the item, where this distribution may
be chosen to be any member of the exponential family (e.g., normal, Poisson, binomial, etc).
In relation to a typical GLM, νi + λiηj takes on the role of the linear predictor, and gi is the link
function. The inverse link function is . For example, for a binary item, a natural choice for
the response distribution is the Bernoulli distribution (or binomial distribution with one trial).
This distribution is defined simply as P(yij = 1|ηj) = μij and P(yij = 0|ηj) = 1 – μij. By also
choosing the logit link for gi, one obtains the usual logistic regression model, with the caveat
that the single predictor is a latent factor.

For ordinal outcomes, a slight modification of Equation 3 is required because one must
simultaneously model multiple category probabilities. In this case, the response distribution
would be indicated as multinomial, with C categories. A model is then specified for C – 1
cumulative probabilities, denoted as μcij = P(yij ≤ c) where c = 1, 2,…, C – 1 (the cumulative
probability for the last category must, by definition, be 1, so is not modeled). The term μij in
Equation 3 is replaced by a vector of cumulative probabilities, each of which is modeled as

(5)

where τci is a threshold parameter and the other parameters are interpreted as before. The
motivation for the threshold parameter follows from thinking about the ordinal variable as a
coarse representation of an underlying continuous variable. Say the ordinal item has 3
categories. When the underlying continuous variable is below τ1i then the observed score is
equal to 1. If it exceeds τ1i, it is equal to 2 or 3. Categories 2 and 3 are, in turn, separated by
τ2i. The full set of thresholds and the intercept νi are not jointly identified. Commonly, τ1i is
set to zero so that νi (and all other thresholds) can be uniquely estimated. Alternatively, νi can
be set to zero so that all thresholds can be estimated. In either case, choosing the logit link for
gi results in the equivalent of a cumulative logit or proportional odds model with a latent
regressor.
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A defining feature of the GLFA model is that Equation 3 is linear in form (as is Equation 5).
Since ηj is normally distributed, ranging over the real line, this implies that gi(μij) must also
range from -∞ to ∞. But the range of expected values possible for a given item may not be
infinite. The role of the link function gi is thus to transform the (often) limited range of μij into
values that range between -∞ to ∞. Seen the other way around, the inverse link function 
maps the infinite range of values obtained from the linear predictor, νi + λiηj, into an interval
that is appropriate for the expected value of the item. For instance, for a binary item, selecting
the logit link ensures that the GLFA implies expected values (predicted probabilities) only
between zero and one. Note that the link function is subscripted by i to indicate that this choice
is item specific, as items with different response distributions will demand different link
functions.

To clarify the components of the GLFA model, we shall consider how it subsumes the LFA
model in Equation 1 and the 2-PL IRT model in Equation 2. Let us first assume all items are
continuous. To reproduce the normal-theory LFA model, we would specify that the conditional
response distribution of each item is normal, written in symbols as . We
would also choose the identity link, defined as gi(μij) = μij, to relate the linear predictor to the
conditional mean of each item. Equation 3 would then reduce to

(6)

which is precisely what the LFA model in Equation 1 also implies. Thus the GLFA model in
Equation 3 reduces to a conventional LFA if all items are assumed to be conditionally normal
and the identity link function is selected for each item.

Now let us suppose that all items are binary. To reproduce the 2-PL model, we would chose a
Bernoulli response distribution for each item, i.e., yij|ηj ∼ BER(μij) and the logit link function,
which may be defined as gi(μij) = ln [μij/(1 – μij)]. Equation 3 would then take the form

(7)

To see the relation of this model to Equation 2 better, we can re-express Equation 7 using the
inverse link function:

(8)

The terms within the exponential function in the denominator can then be rearranged to result
in

(9)
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Comparing to Equation 2, we can see that this model is an alternative, but equivalent,
parameterization of the 2-PL model where ai = λi and bi = −νi/λi (and the notation ηj is used
in place of θj to represent the latent factor; Takane & de Leeuw, 1987).

The real power of this generalized framework, however, is that we can select different response
distributions and different link functions for different items included in the same analysis. Thus,
unlike many traditional psychometric models, not all items need be of the same scale type. We
can, for instance, simultaneously choose the identity link and normal distribution for a
continuous item, the logit link and Bernoulli distribution for a binary item, and the log link and
Poisson distribution for a count item. Ordinal items may also be included by selecting a
multinomial distribution and using a logit link function for the cumulative probabilities. This
generality depends on the assumption of conditional independence for the items, which permits
the model to be defined by unique univariate distributions for each item, rather than a
multivariate distribution for the full set of items (see Bartholomew & Knott, 1999, p. 4, and
Appendix). The assumption of conditional independence is not overly restrictive, as sources
of dependence can be accommodated by adding more latent factors to the model (i.e., method
factors), although this can make estimation of the model more difficult.

Moderated Nonlinear Factor Analysis
The MNLFA model extends the foregoing GLFA model in several ways. First, we do not
require that the response distributions for the items belong to the exponential family. One could
use, for instance, a censored normal distribution for continuous subscale scores that exhibit a
lower and/or upper bound. Or one might select a zero-inflated Poisson distribution for a count
item which exhibits an excess of zeros. Second, although we will not explore this in depth here,
we do not require a linear predictor – the items may be nonlinear functions of the item
parameters and the latent factor (such as in a 3-PL model, see Thissen & Orlando, 2001). What
is most important for the present purposes, however, is that we also allow the parameters of
the model to be moderated by observed predictors, including both discrete (e.g., study) and
continuous (e.g., age) variables. It is this last extension of the model, inspired in part by de
Boeck & Wilson's (2004) work on “explanatory” IRT models, that offers us the opportunity
to test whether our measures are commensurately scaled (i.e., invariant) when conducting IDA.

In MNLFA, the key parameters of the factor model (i.e., the indicator intercepts, factor loadings
and factor mean and variance) are permitted to vary as a function of one or more exogenous
moderator variables. More specifically, we express variance parameters as a log-linear function
of the moderators (this prevents the predicted variance from ever being negative), and all other
parameters as linear functions of the moderators (other functions could, however, be
entertained). In the current context, we are particularly concerned with moderation of the item
parameters, as this would indicate DIF, or a lack of measurement invariance.

Recall that when evaluating measurement invariance, either within the factor analytic or IRT
modeling frameworks, it is important to first model differences in the factor mean and variance
that might otherwise masquerade as DIF. Thus, the first change we make to the GLFA model
described above is to allow the factor mean and variance to differ across levels of the exogenous
moderators. The latent factor is thus now assumed to be distributed as ηj ∼ N(αj, ψj) with

(10)
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(11)

An observed moderator variable is indicated as xq, with Q moderators in total. Although this
same notation is used in each equation (and those to follow), the moderators included in the
equations could potentially differ. The effect of a moderator on the factor mean is given by the
term αq, whereas the effect of a moderator on the factor variance is given by the term ωq. The
parameters α0 and ψ0 are the factor mean and variance of η when all moderators are equal to
zero. Typically, we will fix α0 and ψ0 to 0 and 1, respectively, to set the scale of the latent
factor and identify the model. The remaining parameters in Equations 10 and 11 may then be
estimated so long as at least a subset of the items display invariant intercepts and factor loadings.

To test for non-invariant items, we also allow for moderation of the item parameters. We shall
thus modify Equation 3 to be

(12)

where the additional j subscripts on ν and λ indicate that the intercepts and loadings may now
differ (deterministically) across individuals as a function of the moderators. In particular, we
shall express both the intercepts and loadings for the items as linear functions of the moderators
as follows:

(13)

(14)

Here, ν0i and λ0i are the intercept and factor loading values for item i for an individual scoring
zero on all moderators. The parameters νqi and λqi indicate how the intercept and factor loading
for item i change as a function of the level of the moderator xq, holding all other moderators
constant.

For ordinal items, the set of item parameters also includes thresholds (see Equation 5), which
can similarly be specified as linear functions of the moderator variables:

(15)

Here, τ0ci is the value of threshold c for item i when all moderators are zero and τcqi conveys
the effect of moderator q on threshold c.
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Finally, some items may be characterized by response distributions that include a variance (or
scale) parameter, as is true for the normal and censored normal distributions. For such items
it may also be necessary to model differences in this parameter. For instance, for an item with

a conditional normal distribution, , the variance parameter may be expressed
as the log-linear function

(16)

The parameter  indicates the unique variance of the item when all moderators are zero; exp
(δqi) is the factor by which the unique variance increases for each unit change in xq, holding
all other moderators constant.

Given the complexity of these equations, it is helpful to consider how they relate to the more
traditional multi-sample LFA and 2-PL models. Suppose that there is a single binary moderator,
x1, indicating the group (e.g., study) membership of each individual. The reference group is
coded x1 = 0 and the focal group is coded x1 = 1. Additionally, the latent factor is scaled by
setting α0 = 0 and ψ0 = 1. In this situation, Equations 10 and 11 reduce to

(17)

(18)

For the reference group (i.e., when x1 = 0), the factor mean and variance are then simply 0 and
1 (as exp (0) = 1). For the focal group (i.e., when x1 = 1), the factor mean is α1 and the factor
variance is exp(ω1). For instance, if ω1 = .7, then the factor variance in the focal group is exp
(.7) = 2, or twice as large as the factor variance in the reference group. Note that this
parameterization is directly equivalent to the parameterization recommended by Yoon &
Millsap (2007) and Embretson & Reise (2000, p. 252-262) for fitting multi-sample linear factor
analysis and 2-PL IRT models, respectively, in which the factor mean and variance are set to
0 and 1 for one group, but freely estimated in the other.

Similarly, when the item parameters are moderated by a single binary predictor Equations 13
and 14 reduce to

(19)

(20)

Here, ν0i and λ0i are the intercept and factor loading for item i within the reference group. For
the focal group, the intercept and factor loading are ν0i + ν1i and λ0i + λ1i, respectively. Thus,
λ1i and λ1i represent differences in the intercepts and factor loadings across groups (i.e., DIF).
In multi-sample factor analysis or IRT, it is more conventional to directly estimate the intercepts
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and factor loadings for the two groups, rather than their differences, but the two approaches
yield equivalent results.

Finally, if all items are assumed to have conditionally normal response distributions, as in the
linear factor analysis, then we would also need to account for differences in the unique
variances of the items across groups via Equation 16. With the binary moderator, Equation 16
simplifies to

(21)

where  is the conditional variance of the item for the reference group, and  exp(δ1I) is
the conditional variance of the item for the focal group. Thus, exp(δ1i) is the ratio of the
conditional variances for the two groups, where a value of exp(0) = 1 would indicate equal
variances. Again, this parameterization differs from the LFA model, in which the conditional
variances for the two groups are usually estimated directly, rather than their ratio, but the results
are equivalent.

Thus, Equations 10, 11, 13, 14, and 16 can be specified to fully replicate a multi-sample LFA
or 2-PL model if the only moderator is a grouping variable. More generally, however, these
same equations can accommodate multiple moderators which may be categorical and/or
continuous. We must recognize, however, that there will often be practical limitations to the
amount of moderation that can be assessed given the extent of information available in the
data. The evaluation of DIF should therefore be motivated by specific theoretical and/or
methodological concerns. For instance, in our empirical demonstration of IDA, we will
simultaneously evaluate DIF as a function of study and chronological age (measured
continuously). DIF across studies is expected due to concerns with harmonized items, whereas
DIF by age is anticipated due to changes in alcohol use norms over the long period of
development under consideration.

Example: Measuring Alcohol Involvement
As children enter adolescence and then progress to adulthood, rapid and important changes
take place in their involvement with alcohol. Here, we investigate these changes using data
from two independent longitudinal studies from age 10 to 22. We begin by briefly describing
each study sample. We next discuss the items available for measuring alcohol involvement
within each study and then proceed through the analysis. We describe both a general model
fitting strategy and the generation of scale scores for later analyses.

Samples
For each study, a primary objective was to contrast the development of children of alcoholics
(COAs) to matched control participants (children of non-alcoholics). The first study is the
Adolescent/Adult Family Development Project (AFDP; Chassin, Rogosch & Barrera, 1991),
which includes 246 COAs and 208 controls. AFDP includes data from three annual interviews
conducted when the target child was an adolescent (10-16 years of age at Wave 1, 1988) and
a young-adult follow-up interview conducted approximately 5 years after Wave 3 (age 17-23).
The second study is the Alcohol and Health Behavior Project (AHBP; Sher, Walitzer, Wood
& Brent, 1991). In this study, 489 college freshmen (250 COAs and 237 controls) completed
four annual assessments beginning in 1987. The age span represented in the AFDP study
permits us to examine how alcohol involvement changes over early adolescence through
emerging adulthood. Supplementing this data with the AHBP data allows us to examine
consistency in the pattern of change identified in early adulthood and augments our ability to
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detect effects in this important developmental period. Table 1 reports the number of participants
observed at each age in each study.

Since the MNLFA model requires conditional independence of the response vectors across
participants, we randomly selected a single time point of data per participant (despite the
availability of repeated measures) to create a “calibration sample” for establishing the
measurement properties of the alcohol involvement factor. In fitting models to the calibration
sample, a key goal is to obtain valid item parameter estimates that can be used to generate scale
scores for the full set of observations. This strategy was also used by Curran et al. (2008) to
ensure independence across participants when estimating 2-PL models to obtain measures of
internalizing behavior for IDA. In total, our calibration sample included observations from 454
and 484 participants from AFDP and AHBP, respectively, as shown in Table 1. After fitting
the MNLFA models to the calibration sample, scoring for the alcohol involvement factor was
carried out for the entire set of 3602 observations (1728 from AFDP and 1874 from AHBP)
to permit future analyses (e.g., growth curve modeling of alcohol involvement) to include all
repeated measures (see, e.g., Curran et al., 2008).

Indicators of Alcohol Involvement
We consider five indicators of alcohol involvement, listed in Table 2 in decreasing order of
severity. Disorder is an indicator of the presence or absence of alcohol abuse or dependence,
as determined by the Diagnostic Interview Schedule (DIS-III-R) in the AFDP sample or the
DIS-III in the AHBP sample. Consequences is a count of the number of both consequences of
alcohol use and symptoms of alcohol dependence experienced over the past year by the
participant (e.g., got in trouble at school or work, got into a physical fight, destroyed property,
etc), with a maximum number of nine. Response scales differed within and between studies
for specific consequences and symptoms, so these were collapsed into binary values and
summed to produce the overall count. Heavy Use is an ordinal item indicating how often
participants consumed 5 or more alcoholic drinks within the past year. In AFDP, the original
items were scored from 0 to 7, whereas in AHBP, they were scored from 0 to 9, with somewhat
different category labels in each study. Due to sparseness in the endorsement of some response
options, and to make the heavy drinking items comparable across studies, the responses were
harmonized into three categories, 0 = not in the past year, 1 = less than once a month, and 2 =
once a month or more. The Use Frequency indicator was based on similar items, except with
reference to any use of alcohol. The original items were again harmonized into three categories,
0 = not in the past year, 1 = less than once a month, and 2 = once a month or more. Finally,
Expectancies is a measure of positive alcohol expectancies and was computed as the mean of
four items scored 0 to 4 in each of the two studies (e.g., drinking alcohol helps me when I feel
tense or nervous, helps me celebrate social occasions, etc.). The wording of the items and
anchor labels differed slightly between studies.

The indicators of alcohol involvement culled from the two studies thus differ in their response
scales: one is dichotomous, one is a count, two are ordinal, and another is a bounded continuous
variable. This necessitates use of a model which will allow for alternative response distributions
and link functions for the indicators. Additionally, although we have attempted to make the
items comparable in a face valid way through harmonization, it is unclear whether the items
will in fact function equivalently across studies. Alcohol use norms also change with age,
potentially altering the significance of certain item responses (e.g., frequency of use, given
increasing acceptability and availability of alcohol in young adulthood relative to early
adolescence). For these reasons, we need to allow the parameters of the model to be moderated
by study and age, necessitating the use of an MNLFA model. No other model can address all
of these issues simultaneously; only the MNLFA enables the IDA to move forward.
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Measuring and Modeling Alcohol Involvement
Our analysis of alcohol involvement from age 10 to 22 involved four steps. First, we conducted
a nonlinear factor analysis that pooled across the two studies (assuming all parameters to be
equal over groups, i.e., without moderation). Second, we expanded this model by permitting
the factor mean and variance to vary both as a function of (continuous) age and (discrete) study.
Third, we evaluated possible DIF over study and age by simultaneously testing whether these
two variables moderated the intercepts or factor loadings of the indicators. Fourth, we generated
alcohol involvement scores across all timepoints based on the estimates obtained from the
calibration sample. The results from each step are described below in turn. All models were
fit using the NLMIXED procedure in SAS 9.1 using adaptive quadrature with fifteen quadrature
points (see Appendix for details on estimation and scoring). Documentation on how to arrange
the data, fit the models, and graph the results is provided at <address to be determined>.
Although we do not provide the details here, we also conducted a small-scale simulation study
based on our sample characteristics to confirm that NLMIXED would provide unbiased
estimates for our MNLFA mods when using 15 quadrature points.

Nonlinear Factor Analysis of Alcohol Involvement—We posited a one-factor model
for the five indicators, shown in path diagram form in Figure 2. Within the diagram, a single-
headed arrow indicates that the variable pointed to is regressed on the variable from whence
the arrow originated, whereas a double headed arrow indicates a variance or residual variance
parameter. For the current set of indicators, only Expectancies has a response distribution with
a variance parameter, hence it is the only indicator shown with a double-headed arrow. Means
and intercepts are implicit but not depicted. The latent variable is labeled as η and is interpreted
to represent alcohol involvement. To identify the model, the mean and variance of η were set
to zero and one, respectively. All item intercepts and loadings could then be estimated. Table
2 summarizes the response distributions and link functions selected for each item.

The estimates obtained from this initial model are presented in Table 3. Of primary interest are
the factor loadings, all of which were positive and statistically significant. This implies that as
a participant's level of η goes up, they have increasingly positive alcohol expectances, use
alcohol more frequently, engage in heavy drinking more often, report more adverse
consequences of alcohol use, and have a higher probability of meeting criteria for abuse or
dependence. This pattern of results is consistent with the interpretation of η as an ‘alcohol
involvement’ factor. Relative comparisons of the item parameters are somewhat
uninformative, however, given the different scale types and link functions of the items. A better
understanding of how the indicators relate to the factor can be obtained by graphing the
relationships, similar to the ICC or traceline curves conventionally used in IRT analyses. For
the binary and ordinal items, Figure 3 plots the probabilities of the item responses as a function
of η. For the count and continuous items, the expected value of the indicator is plotted against
the value of η. These plots were constructed by selecting values of η between -2.5 and 2.5 (in
standard deviation units) and using these in combination with the estimated item parameters
in the inverse link function to obtain the corresponding predicted values for μ for each item
(see Equation 4).

Examining the plot for Disorder, we can see that the probability of meeting criteria for abuse
or dependence is very low for values of η below the mean. The probability of disorder increases
rapidly as η exceeds the mean, reaching .56 when η is one standard deviation above the mean,
and about .92 when η is two standard deviations above the mean. Similarly, for Consequences,
we can see the expected number of consequences or symptoms is roughly zero for values of
η below the mean. One consequence is predicted for individuals who are one standard deviation
above the mean on η, and approximately four consequences are predicted for individuals who
are two standard deviations above the mean. Turning to our two ordinal items, the three lines
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in these panels trace out the probability that the indicator will be scored 0, 1, and 2, respectively,
as a function of η. For Heavy Use, we can see that individuals below the mean on η are most
likely to report no heavy alcohol use in the past year, individuals just above the mean on η are
most likely to report heavy use less than once a month, and individuals with high levels of η
are most likely to report heavy use more than once a month. For Use Frequency, the curves
are similar, but shifted to the left. This shift simply indicates that participants will engage in
occasional or frequent alcohol use at lower levels of η than they will engage in occasional or
frequent heavy alcohol use. Finally, in the lower left of Figure 3 we see the relation between
η and positive alcohol expectancies. The plot is slightly nonlinear given the lower censoring
at zero. For uncensored observations, the average Expectancy score increases by about .5 units
(on a 0 to 4 scale) for each standard deviation increase in η.

Age and Study Differences in Alcohol Involvement—The analysis presented above
incorporated no information about study differences or age differences in alcohol involvement.
To gain a better sense of what these effects might be, we conducted a preliminary graphical
analysis. We first computed the observed means for each indicator at each year for the two
studies. These means were then transformed by the same link functions listed in Table 2 for
the indicators and plotted as a function of Age and Study in Figure 4.4 The purpose of applying
the transformations was to put the graphs into the scale of the linear predictor for each item
(i.e., Equation 3). Figure 4 provides us with two important pieces of information. First, it shows
a consistent developmental pattern in which rapid increases are observed until about age 17 or
18, after which little further change is observed. The uniformity of this trend is consistent with
our assumption that all of these variables are reflections of a single underlying factor,
supporting the validity of the model. Second, consistent differences across age or between
studies are indicative of factor mean shifts, whereas minor inconsistencies suggest possible
age or study DIF. Here, study differences are less pronounced and less consistent than
developmental differences. In particular, AHBP participants report more consequences of
alcohol use and higher frequencies of alcohol use and heavy use, but have less positive alcohol
expectancies. The two studies are similar on disorder rates. The inconsistency of the study
differences suggests that the indicators may not be functioning equivalently across the two
studies, a finding that is not suprising given the use of harmonized indicators.

To model overall age and study differences in alcohol involvement, we fit the MNLFA model
depicted in Figure 5. The moderation of the factor mean and variance by Age and Study is
indicated by arrows to the factor and factor variance, respectively. Based on the plots in Figure
4, we elected to model age-related changes in mean levels of alcohol involvement with a
piecewise linear model (Raudenbush & Bryk, 2002, pp. 178-179). This entailed constructing
a new age variable, labeled “Age17” which was scored as Age in Years −17 for participants
17 and under, and simply scored zero for participants older than age 17. Study is coded 0 for
AFDP and 1 for AHBP. The model for the factor mean was then specified as

Note that the intercept of this equation, α0, was set to zero to identify the factor mean, implying
that the factor mean is zero from age 17 onwards in the AFDP study. We did not include a
second slope to allow for mean changes after age 17, as is sometimes done in piecewise linear
models, because the plots in Figure 4 suggested relative stability from 17 to 22 years of age.

4Note that at some ages the transformations were undefined (e.g., a log of zero), in which case no points are plotted in Figure 4 for those
particular ages. Additionally, age 17 was not plotted for the AHBP study, given that there were only two participants of that age in the
calibration sample.
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Similarly, the relative uniformity of the developmental trends observed in Figure 4 suggested
no need for an interaction between age and study.

The model for the factor variance was specified via the log-linear equation

The parameter ω1 allows for continuous changes in the variance of the latent factor from age
10 to age 17, with stability assumed thereafter, and the parameter ω2 allows for study
differences in the variance of the factor. The model was identified by setting the ψ0 coefficient
to 1, implying that the variance of the factor in the AFDP study is 1 from age 17 to age 22.

Overall, the inclusion of these four effects in the model resulted in a large improvement in
model fit, as indicated by the likelihood ratio test (χ2(df=4) = 4066.10, p < .0001). There was
a significant age effect on the factor mean (α̂1 = .43, SE=.05, p < .0001), but the age effect on
the factor variance was not significant (ω ̂1 = −.03, SE = .07, p = .66). We also detected
significant study differences in the factor mean (α̂2 = .48, SE = .09, p < .0001) and variance
(ω ̂2 = −.47, SE = .17, p < .01). As seen in Figure 6, the study differences indicated that the
overall level of alcohol involvement is higher in the AHBP sample than the AFDP sample,
whereas the variance is somewhat smaller. This pattern of results may be due to the fact that
the AHBP sample is college-based, whereas AFDP is community based. To better determine
the validity of these mean and variance differences across age and study, we next evaluated
the assumption that the indicators are functioning identically for all participants.

Evaluating Measurement Invariance—We employed a stepwise procedure to evaluate
DIF, similar to the strategies described earlier for LFA and 2-PL models. Both Age and Study
DIF were considered, with Age DIF limited to the span between 10 and 17 years of age.5 We
first examined the improvement in the log-likelihood that was obtained by allowing for Age
and Study DIF in a single indicator, considering each indicator in turn. If allowing for DIF
resulted in a significant improvement in model fit for more than one indicator then we
determined the indicator for which DIF most improved the model fit. Allowing for DIF in this
indicator, we then examined the additional improvement in model fit that would accrue by
allowing for DIF with a second indicator, considering each remaining indicator in turn. This
process was repeated until no significant improvement in model fit was obtained by allowing
for DIF in any additional indicator. The total possible number of likelihood ratio tests involved
in evaluating DIF in this way for five indicators is 14, so a Bonferroni-corrected alpha level
of .004 was used to select the indicators with significant DIF (alternatively, we could have used
the Benjamini-Hochberg procedure to control the false discovery rate; Thissen, Steinberg &
Kuang, 2002;Thissen, Steinberg & Wainer, 1993).

Allowing for Age and Study DIF in the intercept and loading of the Use Frequency indicator
resulted in the largest improvement in model fit (χ2 (4) = 129, p < .0001). Retaining the DIF
parameters for Use Frequency, we then tested each remaining indicator for DIF. The largest
improvement in model fit resulted from including Age and Study effects on the intercept,
loading and residual variance of the Expectancies indicator (χ2 (6) = 102, p < .0001). Also
allowing for DIF in the Disorder indicator further improved the fit of the model (χ2(4) = 32.1,
p < .0001). The model with DIF for Use Frequency, Expectancies, and Disorder could not be

5This choice reflected our belief that DIF would be most likely to occur during periods of rapid developmental change. Such mean
changes are not, however, necessary to observe DIF. As an alternative, we could have modeled DIF by specifying the intercepts and
loadings as linear or quadratic functions of continuous age. Additionally, given the current specification (using the Age17 variable and
partialling study DIF) and the age ranges within the two studies, the age DIF obtained here pertains only to AFDP.
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further improved by allowing for DIF in either Heavy Use (χ2(4) = 5.0, p = .29) or
Consequences (χ2(4) = 8.1, p = .09). The intercepts and loadings of these two indicators are
thus considered to be invariant to Age and Study. Heavy Use and Consequences thereby form
the most stable components of the alcohol involvement latent factor. For the other three
indicators, we removed DIF parameters that were estimated as non-significant to arrive at a
final model. Removing these parameters did not result in a significant decrement in model fit
(χ2(7) = 9.0, p = .25). The final, reduced model is shown in Figure 7. Moderation of the indicator
intercept is shown as a direct arrow from the moderator to the indicator, whereas moderation
of the factor loading shown as an arrow pointing to the arrow originating from η.

For Use Frequency, all four DIF parameter estimates were significantly different from zero.
Both the intercept and factor loading for this indicator increased from age 10 to age 17. The
meaning of these effects can be seen visually in Figure 8. Each panel of Figure 8 displays the
predicted response probabilities (tracelines) for the Use Frequency categories for a particular
age and study. Comparing across the first three panels, we can see that, holding constant η,
older individuals are more likely to endorse the 1 or 2 categories of this indicator. This reflects
the fact that, for young adolescents (e.g., age 10), drinking at all (even less than once a month)
is indicative of a relatively high level of alcohol involvement. For older adolescents and young
adults, engaging in occasional or even frequent alcohol use is more normative and does not
necessarily indicate a high level of overall alcohol involvement. In addition to these age effects,
there were also significant positive effects of study on the intercept and loading of the Use
Frequency indicator. These effects are seen in the comparison of the bottom two panels of
Figure 8. As can be seen, in AHBP, the tracelines are shifted to the left, indicating that the 1
and 2 category responses are observed at lower levels of η in this sample than AFDP. One
possible explanation for why alcohol use is more common at lower levels of η in the AHBP
sample is that it is a college-based sample (whereas AFDP is not) for which higher levels of
alcohol use may be more normative.

For Expectancies, there was a significant study effect on the intercept, such that positive alcohol
expectancies were a half-point lower in the AHBP sample than the AFDP sample (on a scale
of 0 to 4) at any given level of η. This effect is consistent with our earlier observation that, in
Figure 4, only Expectancies showed a lower mean level in the AHBP sample than the AFDP
sample (all other indicators have comparable or higher mean levels in AHBP). The intercept
difference for Expectancies absorbs this discrepancy. Additionally, the residual variance was
negatively related to age. From age 10 to age 17, the standard deviation of the residuals
decreased from 1.8 to .8. One interpretation of this effect is that Expectancies become a more
reliable indicator of alcohol involvement as adolescents increase in age and enter adulthood.

Finally, there was a significant positive effect of age on the intercept for Disorder. As shown
in Figure 9, the probability of meeting criteria for abuse or dependence at a given level of η is
lower for younger adolescents than older adolescents or young adults. One possible explanation
for this finding is that diagnostic interviews based on DSM criteria for adults are insensitive
to alcohol disorder in adolescents (Martin et. al, 1995, 1996).

Allowing for DIF for these three items resulted in a stronger effect of Age on the factor mean
(α̂1 = .50, SE=.06, p < .0001) and, more so, the factor variance (ω ̂1 = −.12, SE = .06, p = .053).
The factor mean difference across studies diminished (α̂2 = .30, SE = .10, p < .01), whereas
the factor variance difference increased (ω ̂2 = −.57, SE = .19; p < .01). These new estimates
account for the fact that some indicators are non-equivalent (show DIF) across Age and Study.

Scoring—We next computed MAP scores for the alcohol involvement factor. Such scores
are particularly useful when subsequent models cannot realistically be estimated
simultaneously with the measurement model of the MNLFA, such as growth curve modeling
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(e.g., Hussong et al. 2007, 2008). Of course, in using scores one must take care to evaluate
their quality. To this end, we plotted the standard errors of the alcohol involvement MAPs for
the calibration sample in Figure 10. Notice that the standard errors are much higher for low
scores. This pattern reflects the fact that the indicators included in our model do not provide
much information on low levels of alcohol involvement. Returning briefly to Figure 3, we can
see that most of the “action” in the item plots takes place around or above the mean of η, with
comparatively little information to discriminate between individuals much below the mean.
The sole exception is the plot for the Expectancies indicator, for which the expected value
steadily increases as a function of alcohol involvement. Indeed, it is precisely for this reason
that we included the Expectancies indicator in the model – to better differentiate between
individuals with relatively low levels of alcohol involvement, who had perhaps not yet begun
drinking alcohol. Nevertheless, we can see that the majority of the information provided by
the indicators remains at the high end of the scale, as evidenced by the lower standard errors
at and above about -1 in Figure 10.6

For comparison, we also computed MAPs from our preceding two models, a nonlinear factor
analysis without age or study effects, and a nonlinear factor analysis where only the factor
mean and variance were conditional on age and study (but no DIF). Our primary purpose was
to determine which model extensions had a meaningful impact on the scores. As can be seen
in Figure 11, the inclusion of age and study effects on the factor mean and variance resulted
in noticeably different MAPs than those produced from a nonlinear factor analysis model
without age or study effects, especially for individuals with low levels of alcohol involement.
Tuning the scores to the specific age and study of the participant thus appears to have been
quite important. In contrast, the additional inclusion of age and study DIF had much less
influence on the scores. The fact that DIF was relatively inconsequential for scoring in the
present analysis provides some additional confidence that we are in fact measuring the same
construct in each study at each age. In other applications, the impact of DIF on the scores may
be more marked.

Using the parameter estimates obtained from the full model (including DIF), we next generated
MAPs for all of the repeated measures (not just those included in the calibration sample). Figure
12 shows boxplots of the MAP scores obtained at each age in each study, with white boxes
indicating AFDP and gray boxes indicating AHBP. Superimposed on the boxplots are the
means (bold lines) ± two standard deviations (light lines) implied by the final MNLFA fit to
the calibration sample (akin to Figure 6, but now incorporating DIF). As can be seen, the
boxplots follow the mean trends quite closely. As implied by the model, there is an overall
linear increase in alcohol involvement from age 10 to 17, after which the mean level of alcohol
involvement is stable through age 22. Further, a slightly higher level of involvement is observed
in the strictly college-based AHBP sample than the community-based AFDP sample.

In contrast to the mean trends, however, the dispersion of the MAP estimates disagrees with
the model-implied pattern. The boxplots indicate increasing dispersion with age, whereas the
model implies decreasing dispersion with age. The reason for this disagreement relates to the
point made above, that there is less information for estimating low alcohol involvement scores.
As noted previously, when items provide less information, as occurs here at lower levels of
alcohol involvement, MAPs are shrunken more towards the marginal means (i.e., the MAPs
are pulled towards the bold lines in Figure 12). Since alcohol involvement increases with age,
there is less shrinkage at older ages (where scores are relatively high) than younger ages (where

6Note that the scale of η is not the same in Figures 3 and 10. Figure 3 was generated from a model in which η was scaled as a standard
normal, with mean 0 and standard deviation 1. The scores shown in Figure 10 were generated from a model in which η was scaled to be
standard normal for 17 year olds in the AFDP study. Nevertheless, making relative comparisons between the two figures can be helpful
for seeing why the standard errors are higher in Figure 10 for lower estimates.
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scores are relatively low). When MAPs are plotted across age, as in Figure 12, there is then
the appearance of increasing variance when, in fact, individual differences in alcohol
involvement are narrowing. The skew seen in the MAP distributions observed at the younger
ages is likely of the same origin. In general, one must be mindful that factor score estimates
may not always have the same properties as the true scores (Grice, 2001), potentially distorting
the results of subsequent analyses, such as growth models. To mitigate the problem, one can
try to identify additional indicator variables to improve score estimation and fill in gaps in
information (i.e., provide greater information about individual differences at the low end of
the scale), however we do not pursue this further here.

Conclusions, Limitation, and Directions for Future Research
A fundamental challenge of IDA is that we require commensurate measures, but independently
conducted studies often measure constructs using different items, inventories, or even modes
of assessment. Harmonization provides an ad hoc and face valid way to score items similarly,
but this alone does not ensure that the item scores have the same meaning with respect to the
underlying construct. Traditional and novel psychometric models offer an opportunity to
formally test this assumption, and to relax it for a subset of items as necessary. Procedures for
testing whether items function similarly across samples are well-developed for both the linear
factor analysis model and other commonly used IRT models. Where these procedures may
prove overly restrictive, however, is in their requirement that each item or indicator of the latent
factor be of the same scale type (e.g., all continuous or all binary) and their inability to evaluate
measurement equivalence across both categorical and continuous variables. The proposed
MNLFA model overcomes both of these limitations. Our application of this model involved a
combination of binary, ordinal, count, and bounded-continuous items, and simultaneously
allowed for DIF due to Study and Age. It is difficult to imagine another strategy that could
have been used to combine these indicators into a single, commensurately scaled summary
measure. Additionally, it is worth noting that, although our example included only common
items, items unique to each study can also be included in an MNLFA and this may result in
different numbers of items for different studies.

One assumption that remains restrictive, however, in both the MNLFA as well as more
traditional psychometric models, is that the sample units are independent of one another. It was
this assumption that led us to sample one record per person from the AFDP and AHBP studies
to create our analysis sample, despite the availability of repeated measures for each participant.
Clearly, the use of all available observations would be preferable, as this would improve
estimation. It would also allow the MNLFA to be expanded from a measurement model to a
model of greater substantive interest. For instance, we could model individual trajectories of
change in alcohol involvement directly within the MNLFA rather than through subsequent
analyses of MAP scores (similar to a second-order growth model; Sayer & Cumsille, 2001,
Johnson & Raudenbush, 2006). Unfortunately, evaluating the likelihood function of the model
via deterministic methods of numerical integration like quadrature becomes increasingly
intractable as the number of random effects needed to account for dependence due to clustering
increases. The development and application of improved stochastic methods of estimation may
help to overcome this limitation in the future and should be the focus of continued
methodological research (Cai, 2008; Fox, 2003; Fox & Glas, 2001).

More broadly, the problem of measurement can also be minimized at the design stage.
Investigators embarking on new studies should take care to include measures used in similar
studies, either in whole or in part, to facilitate possible future IDA. No harmonization will be
necessary for the identical items, likely resulting in fewer items displaying DIF. With a higher
ratio of non-DIF to DIF items, we can have greater confidence that the measurement is truly
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commensurate over studies, strengthening the IDA. In general, a coordinated effort to adopt
standard measures across studies would greatly benefit IDA.

In sum, the problem of measurement, although fundamental for IDA, can be solved through
the careful application of psychometric models. Further, the continued development and
refinement of these models will offer new opportunities for IDA in the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix: Estimation and Scoring for the MNLFA Model
The full MNLFA model exceeds the current estimation capabilities of most latnet variable
modeling software. At present, the more restrictive GLFA model can be fit via maximum
likelihood estimation with several software packages, including GLLAMM (Rabe-Hesketh,
Pickles & Skrondal, 2001) and Mplus (Muthén & Muthén, 2007). A large number of MNLFA
models can also be fit by these programs if the desired response distributions are included
among the software options and the linear form of Equation 12 is adopted. Moderation of the
factor mean and item intercepts can be accomplished within these programs by regressing the
factor and items, respectively, on the exogenous variables (see Muthén, 1989). In addition,
factor loading differences can potentially be modeled in Mplus by including interaction terms
between the moderators and the latent factor in the model. Allowing for moderation of variance
parameters and thresholds by exogenous variables is, however, somewhat more challenging
within current software. To our knowledge, the multi-sample framework is the only available
option within these programs which allows for the moderation of all types of parameters, and
this approach requires a single categorical moderator variable to define the samples. Thus the
full MNLFA model cannot be fit using currently available latent variable modeling software.

Fortunately, as we now consider in detail, estimation of the full MNLFA can be carried out in
SAS by capitalizing on the fundamental similarity between nonlinear mixed effects models
and nonlinear factor analysis. Let γ be a vector of all model parameters to be estimated. γ is
composed of two subvectors: π, parameters governing the distribution of the latent factor(s)
(i.e., parameters in Equations 10 and 11), and ϖ, parameters governing the conditional item
distributions (i.e., parameters in Equations 13-16). Further, let yj be a vector of item responses
and xj be a vector of values for the exogenous moderator variables for sample unit j. The
marginal likelihood for the model may be written as

(A1)
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where φ(ηj|xj,ϖ) is the (normal) density function for the latent factor(s) and fi(yij\ηj; xj, φ) is
the (conditional) univariate response distribution for item i. Note that the first product operator
in Equation A1 follows from the assumption that the item response vectors are independent
across sample units after conditioning on xj. Similarly, the second product operator in Equation
A1 follows from the assumption that, within sample unit, the item responses are independent
after conditioning on ηj and xj. This second assumption permits the specification of distinct
(conditional) univariate density functions for each item, allowing for items with different scale
types (e.g., Bernoulli for binary, Poisson for count, etc).

The likelihood function in Equation A1 is of the same form as that optimized by the SAS
NLMIXED procedure (SAS Institute, 2008, p. 4375-4376). The NLMIXED procedure was
originally developed for fitting nonlinear mixed effects models. Such models are designed for
clustered data structures in which multiple observations are taken within each Independent
Sampling Unit (ISU), e.g., multiple individuals within each of many groups, or repeated
measures on each of many individuals. Naturally, observations taken on the same ISUs are
expected to be more similar to one another than observations taken on different ISUs. This
dependence of observations due to unobserved heterogeneity across ISUs is accounted for by
including random (ISU-specific) effects in the model. For instance, a random intercept term
accounts for general (unexplained) differences in the level of the dependent variable across
ISUs. Customarily, the random effects are assumed to be normally distributed, and the
observations within clusters are assumed to be independent, conditioning on the random
effects.

Parallels between mixed effects models (both linear and nonlinear) and latent factor/trait
models have been noted by many authors (see Bauer, 2003; de Boeck & Wilson, 2004; Curran,
2003; Mehta & Neale, 2005; Rijmen et al., 2003; Skrondal & Rabe-Hesketh, 2005). For a
typical latent variable model, item responses may be construed as “clustered” within
participant. The dependence of the item responses within participants is assumed to arise
through individual differences on one or more latent factors, which may be viewed as the
random effects of the model. Accounting for the latent factors, the item responses are assumed
to be conditionally independent, just as observations are assumed to be independent within
clusters after conditioning on the random effects. Hence, regarding j as ISU, item responses i
= 1, 2,…, P within j as clustered observations within ISUs, and latent factors as random effects,
Equation A1 equally describes the marginal likelihood for a nonlinear mixed effects model.
Given the correspondence between the two models, the NLMIXED procedure can be used to
fit the MNLFA model, minimizing − log L(γ) to arrive at the parameter estimates.

To compute the likelihood, the NLMIXED procedure implements numerical methods to
approximate the integral in Equation A1, including fixed-point Gauss-Hermite quadrature and
adaptive Gaussian quadrature. These approaches involve approximating the integral as a
weighted sum over pre-defined locations on the distribution of η. The quality of this
approximation depends on the number of locations (i.e., quadrature points) and their placement
with respect to the distribution of η. Non-adaptive quadrature selects the locations for all units
with respect to the marginal (“prior”) distribution of η, and the locations are fixed across
successive iterations. If the locations are not well selected initially (which may occur as a
consequence of supplying poor start values to the algorithm) then fixed-point quadrature can
yield inferior estimates (see Skrondal & Rabe-Hesketh, pp. 167-169; Molenberghs & Verbeke,
2004). In contrast, adaptive quadrature selects the locations at each iteration with respect to
the posterior distribution of η) given the data and current estimates of γ. More specifically, the
points are centered around the posterior mode. Additional details on the NLMIXED procedure,
including quadrature and optimization algorithms, may be obtained from SAS Institute
(2008, Chapter 61).

Bauer and Hussong Page 23

Psychol Methods. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To compute the posterior mode, either for estimation or scoring purposes, NLMIXED makes
use of the following version of Bayes' Theorem:

(22)

where f(ηj|yj; xj;γ^) is the posterior distribution of ηj given the vector of parameter estimates
γ^ and the observed data for unit j. The posterior is proportional to the product of the normal
“prior” for the factor and joint likelihood of the item responses. Thus, minimizing the negative
log of this product returns the mode of the posterior distribution for unit j (SAS Institute,
2008, p. 4376). This value is referred to in the IRT literature as the Maximum a Posteriori
(MAP) estimate of ηj (Bock & Aitken, 1981). With adaptive quadrature, this value is updated
across iterations for the selection of the quadrature point locations. Regardless of the method
of quadrature, however, MAPs can be computed for all units based on the final parameter
estimates to serve as scale scores for the factors (i.e., factor score estimates).

One subtle difference between Equation A1 and the typical form of the marginal likelihood
for a nonlinear mixed effects model bears special mention, namely the subscripting of fi, the
density function for the item. As described previously, this subscripting is necessary to permit
the density function to differ across binary, ordinal, continuous and count items. More typically,
nonlinear mixed effects models are fit to multiple observations on the same dependent variable
within ISUs, and a common distribution is assumed for all observations. For instance,
observations might be repeated measures on a binary variable, in which case a Bernoulli
distribution could be assumed at all occasions. Fortunately, the different item distributions of
the MNLFA model can be accommodated by the NLMIXED procedure through the use of
programming statements to toggle between user-defined log-likelihoods for the different items.
Practically, one includes IF-THEN statements in the program to indicate IF the response is to
Item 1, THEN the log-likelihood is computed from the user-defined function log(f1), IF the
response is to Item 2, THEN the log-likelihood is computed from the user-defined function log
(f2), etc. Example code demonstrating the use of these features of the NLMIXED procedure
for fitting and scoring the Alcohol Involvement models presented in this paper is available at
<address to be determined>.
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Figure 1.
Tracelines of four items in a 2-PL. Vertical droplines indicate item difficulties culties with
values, from left to right, of -1, -.5, 0, and .75, with corresponding discriminations of .5, 1, .
75, and 1.5.
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Figure 2.
Path diagram of nonlinear factor analysis model where the factor η measures alcohol
involvement.
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Figure 3.
Relationships between each measured variable y and the latent alcohol involvement factor η.
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Figure 4.
Observed proportions/means of the indicator variables, submitted to link function
transformation, plotted as a function of Age and Study (× = AFDP; ○ = AHBP); plots for Use
Frequency and Heavy Use are based on proportions scoring 1 or 2 versus 0.
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Figure 5.
Path diagram for moderated nonlinear factor analysis model with age and study effects on the
mean and variance of the Alcohol Involvement factor, η.
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Figure 6.
Estimated Age and Study differences in Alcohol Involvement: Bold lines indicate means, light
lines indicate ± 2 standard deviations; solid lines indicate AFDP and dashed lines indicate
AHBP.
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Figure 7.
Path diagram for moderated nonlinear factor analysis model with Age and Study effects on the
factor mean and variance and on item parameters for indicators displaying DIF.
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Figure 8.
Tracelines for the Frequency of Use indicator demonstrating DIF as a function of Age and
Study.
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Figure 9.
Tracelines for the Disorder indicator showing DIF by Age.
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Figure 10.
Standard errors for MAP factor score estimates obtained from the MNLFA model with DIF,
as a function of the estimated factor score value.
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Figure 11.
MAP estimates obtained from models with and without age and study effects on the factor
mean and variance and item parameters (DIF).
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Figure 12.
Boxplots of MAP factor scores obtained at each age for the two studies, shown in relation to
the model implied means (bold lines) and ± two standard deviations (light lines): AFDP
indicated with white boxes and solid lines, AHBP indicated with gray boxes and dashed lines.
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