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We derive an explicit formula for the propensity function �stochastic reaction rate� of a generic
bimolecular chemical reaction in which the reactant molecules move about by diffusion, as solute
molecules in a bath of much smaller and more numerous solvent molecules. Our derivation assumes
that the solution is macroscopically well stirred and dilute in the solute molecules. It effectively
extends the physical rationale for the chemical master equation and the stochastic simulation
algorithm from well-stirred dilute gases to well-stirred dilute solutions, with the former becoming a
limiting case of the latter. This extension is important for cellular systems, where the solvent
molecules are typically water and the solute �reactant� molecules are much larger organic structures,
whose relatively low populations often require a discrete-stochastic formalism. In the course of our
derivation, we illuminate some limitations on the ability of the classical diffusion equation to
accurately describe how a diffusing molecule moves on spatial and temporal scales that are relevant
to collision-induced chemical reactions. © 2009 American Institute of Physics.
�doi:10.1063/1.3253798�

I. INTRODUCTION

In order to evolve a chemically reacting system in time
in a “memoryless” way using as state variables only the mo-
lecular populations �or concentrations� of the reactant spe-
cies, the system must remain, at least to a good approxima-
tion, spatially homogeneous, either through the natural
motions of the molecules or by some exogenous means. That
is because deviations from spatial homogeneity will alter the
firing rates of the reactions in deviation-specific ways, and
the population changes that result from the reactions may in
turn alter the spatial inhomogeneities. So for chemical sys-
tems that are not kept spatially homogeneous, it will be nec-
essary to �i� augment the molecular population variables with
additional state variables that accurately characterize the spa-
tial inhomogeneities, �ii� deduce from the underlying micro-
physics the equations that govern the joint evolution of all
those variables, and �iii� solve those equations. This is a very
challenging task. In extreme cases, it will require meticu-
lously tracing the trajectories of the reactant molecules as
they move, collide, and chemically react, somewhat in the
manner of a “molecular dynamics” simulation.

Avoiding all that is, of course, why theorists and model-
ers like to work with spatially homogeneous systems. For
such systems, stochastic chemical kinetics, as embodied in
the chemical master equation �CME� and the stochastic
simulation algorithm �SSA�, provides a rigorous mathemati-
cal framework1 for evolving the molecular populations in a
memoryless way, provided the following is true: With xi de-
noting the molecular population of species Si, if the system is
given to be in state x= �xi� at the current time t, then the
probability that reaction channel Rj will fire somewhere in-
side the system in the next infinitesimal time interval
�t , t+dt� has the mathematical form aj�x�dt. When that is

true, the function aj is called the propensity function of reac-
tion channel Rj. Only if all reaction channels have propensity
functions will the CME and the SSA be valid. This caveat
also applies to the deterministic reaction rate equation
�RRE�—the set of coupled ordinary differential equations
traditionally used to describe how the species concentrations
evolve in time—because the RRE finds its rigorous justifica-
tion at the large-population limit of the CME and the SSA.2

Therefore, whether a given reaction channel in a given physi-
cal setting has a propensity function, and if so what the
mathematical form of that propensity function is, are impor-
tant questions for chemical kinetics. These questions cannot
be answered by mathematical hypothesizing; they must be
answered by looking to the physics of molecular behavior.

Unimolecular reactions are of course insensitive to the
spatial distribution of the reactant molecules. The problem is
with bimolecular reactions such as

S1 + S2 → products, �1�

since their two reactant molecules must find and collide with
each other before they can react. In this paper, we will be
concerned with reaction �1� only when the system is macro-
scopically well stirred and dilute. By macroscopically well
stirred, we mean that on the scale of the system volume �,
the molecules of each reactant species appear to have a ran-
domly uniform spatial distribution, but on the much smaller
scale of the average distance between those molecules, spa-
tial inhomogeneities are allowed. By dilute, we mean that we
can find a neighborhood around each reactant molecule
which is large compared to the molecule itself but small
compared to �, and which is only rarely occupied by a sec-
ond molecule of the same species.

We will also assume that our system is “at temperature
T.” This means that each rectilinear component of the veloc-
ity of a randomly chosen molecule of species Si can math-a�Electronic mail: gillespiedt@mailaps.org.
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ematically be regarded as a normal �Gaussian� random vari-
able with mean 0 and variance kBT /mi, where kB is
Boltzmann’s constant and mi is the molecule’s mass. This
implies that each rectilinear component of the velocity of a
randomly chosen S1 molecule relative to a randomly chosen
S2 molecule is normally distributed with mean 0 and vari-
ance kBT /m12, where m12�m1m2 / �m1+m2�.3 That in turn
can be shown to imply that the average speed of an S1 mol-
ecule relative to an S2 molecule is4

v̄12 =�8kBT

�m12
. �2�

With respect to reaction �1�, we suppose that an S1 mol-
ecule and an S2 molecule can be said to “collide” whenever
their center-to-center distance decreases to some value
�12�0. �If the molecules were hard spheres, �12 would be
the sum of their radii.� We further suppose that, if a collision
does occur, then with probability q=q�v̄12� reaction �1� will
immediately follow. Notice that q as thus defined is the prob-
ability that a randomly chosen pair of S1 and S2 molecules
will react according to Eq. �1� given that they have just col-
lided and were selected from a population of pairs that have
average relative speed v̄12. The latter condition is, by Eq. �2�,
a consequence of the molecules being at temperature T. For
example, in the circumstance that a colliding S1-S2 pair will
react if and only if their “collisional kinetic energy” �the
kinetic energy associated with the “head-on component” of
their relative velocity, the component along their line of cen-
ters at contact� exceeds a certain threshold value Et, it can be
proved4,1 that q=exp�−Et /kBT�, which is the famous Arrhen-
ius factor. However, for our purposes here we will make no
assumptions about the form of q, except to acknowledge that
it usually depends on v̄12 �or T�.

If the S1 and S2 molecules were moving about inside �
“ballistically” as in a dilute gas, so that their trajectories are
straight lines broken only by collisions with the container
walls and �much less frequently� with each other, then as
detailed in Appendix A, the well-stirred assumption allows a
simple but rigorous derivation of a propensity function for
reaction �1�. The result is

a�x1,x2� = 	��12
2 v̄21q

�

x1x2 �ballistic� . �3�

The “rigor” of the derivation of this result in Appendix A
stems from the facts that �i� it does not approximate averages
of products by products of averages, �ii� its mathematical
inferences invoke only the laws of probability, �iii� it never
has to imagine that any one molecule reacts more than once,
and �iv� it never has to imagine that reactions occur in non-
integer �e.g., infinitesimally small� numbers. An inspection
of this derivation will reveal that it ultimately hinges on the
fact that, in any infinitesimal time dt, a molecule will move a
distance that is proportional to dt. That is what leads to the
result that the probability for the reaction to fire in the next dt
is proportional to dt, as is required by the definition of the
propensity function.

In this paper, we will focus on a situation that is much

more typical of cellular systems, which of course are practi-
cally never dilute gases. We will assume that the S1 and S2

molecules are solute molecules that diffuse, with respective
diffusion coefficients D1 and D2, in a common bath of
chemically inert solvent molecules �see Fig. 1�. We will also
assume that the solvent molecules are much smaller, lighter,
and more numerous than the solute molecules, a situation
that characterizes many cellular systems where the solvent
molecules are water molecules and the solute molecules of
interest are much larger. In such a solvent bath, a solute
molecule will experience very many collisions with solvent
molecules between successive collisions with other solute
molecules, but the effect on the solute molecule of any one
of those solvent molecule collisions will be very small. This
type of “Brownian” diffusion is to be distinguished from
“self-diffusion,” where the solvent molecules are physically
identical to the solute molecules.

The traditional way of mathematically describing diffu-
sional molecular motion is based on the classical diffusion
equation. A well known consequence of that equation is that
the root-mean-squared displacement in any time �t of a mol-
ecule with diffusion coefficient D will be of the order of
�D�t. This result has long been thought to pose a problem
for deriving a diffusional propensity function, since an analy-
sis along the lines of the ballistic derivation in Appendix A
would seem to lead to the conclusion that the firing probabil-
ity of reaction �1� in time dt is proportional to �dt instead of
dt. If that were true, then the mathematical assumptions
made in deriving the CME and the SSA would indeed be
compromised.

In Sec. II, we will explain why the �D�t prediction of
the diffusion equation does not preclude the existence of a
diffusional propensity function for reaction �1�. In Secs.
III–V we will derive, using a line of reasoning that is very
different from that employed in Appendix A, an explicit for-
mula for the diffusional propensity function. Our derivation
owes much to the pioneering analysis of diffusion-controlled
reaction rates of Collins and Kimball �CK�.5 But, as we

FIG. 1. An S2 molecule �the dark gray disk� surrounded by its “action
sphere” relative to the S1 molecules �the light gray disks�. Both species are
“solute” molecules that move about by diffusion in a sea of very many much
smaller “solvent” molecules �the small dark disks�. Of interest are collisions
of the S2 molecule with any S1 molecule, an event that happens when the
center of some S1 molecule touches the surface of the action sphere.
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elaborate in Sec. VI, our analysis takes a different approach
which yields a more specific result, and which in the end is
more rigorous because it takes proper account of the intrinsic
discreteness and stochasticity of what transpires at the mo-
lecular level. Our result shares with the Collins–Kimball re-
sult the satisfying feature that it smoothly segues to the dilute
gas result, in our case Eq. �3�, in an appropriate limit of the
physical parameters.

II. SOME RELEVANT FACTS ABOUT THE DIFFUSION
EQUATION

The traditional centerpiece of diffusion theory is the dif-
fusion equation:

���r,t�
�t

= D�r
2��r,t� . �4�

Here, ��r , t� is the average number of diffusing �solute� mol-
ecules per unit volume at point r at time t, and D is the
diffusion coefficient of those molecules relative to the sol-
vent molecules. The traditional “macroscopic” derivation of
this equation starts with the continuity equation

���r,t�
�t

= − �r • J�r,t� , �5�

which expresses the fact that matter is neither created nor
destroyed by diffusion. Here, the net flux J�r , t� is defined so
that its component n̂ •J�r , t� in the direction of the unit vec-
tor n̂ gives the average net number of molecules per unit
time crossing a unit area normal to n̂, and in the direction of
n̂, at point r at time t; by “net” we mean the average number
passing in the direction n̂ minus the average number passing
in the direction −n̂. The next step in the derivation is to
assume the validity of Fick’s Law,

J�r,t� = − D�r��r,t� , �6�

an empirical relation that effectively defines the diffusion
coefficient D. Substituting Eq. �6� into Eq. �5� immediately
yields the diffusion Eq. �4�.

Before it was widely accepted that a fluid consists of
many moving molecules, Eqs. �4�–�6� were regarded as state-
ments in continuum mechanics. The kinetic molecular hy-
pothesis was elevated to general acceptance by Einstein’s
famous analysis of Brownian motion in 1905 �Ref. 6� and its
subsequent experimental confirmation by Perrin and others.
Einstein essentially rederived the diffusion Eq. �4� from a
model of random molecular motion instead of from Eqs. �5�
and �6�. In so doing, he shifted the focus from the behavior
of a collection of many solute molecules to the behavior of
an individual solute molecule. From a modern perspective,
the key result of Einstein’s analysis was that ��r , t� in the
diffusion equation, if renormalized to unity, can be regarded
as the probability density function �pdf� of the position of an
individual solute molecule at time t. That leads immediately
to the conclusion that, if the x-component of the solute mol-
ecule at time 0 is known to be x0, then, assuming that the
motion of the molecule is unrestricted, its x-component at
any time t�0 will be the normal random variable with mean
x0 and variance 2Dt. In symbols,

X�t� = N�x0,2Dt� �t � 0� . �7�

Similar formulas hold for the y- and z-components of the
solute molecule’s position, with those three components be-
ing statistically independent of each other.

The result �7� implies that, in any time t, each rectilinear
component of the solute molecule’s position will suffer a
mean-squared displacement of 2Dt. That in turn implies a
root-mean-squared total displacement of �4Dt in two dimen-
sions and �6Dt in three dimensions. Equation �7� also im-
plies, because of the mathematical fact that N�m ,�2��m
+�N�0,1�, that if the diffusing molecule is at point �xt ,yt ,zt�
at time t, then its coordinates at any later time t+�t can be
computed as

xt+�t = xt + �2D�tnx, �8a�

yt+�t = yt + �2D�tny , �8b�

zt+�t = zt + �2D�tnz, �8c�

where nx, ny, and nz are independent samples of N�0,1�, the
normal random variable with mean 0 and variance 1. Formu-
lae �8�, or some mathematically equivalent version thereof,
are routinely used by modelers to numerically generate
�t-separated points along the trajectory of a diffusing mol-
ecule.

Einstein’s analysis contained, however, a caveat, which
he duly noted but which is not always accorded the full
measure of attention that it deserves. Einstein’s derivation of
the diffusion equation, and hence also of formulae �8�, makes
the assumption that any considered time increment must be
large enough that the solute molecule will experience in that
time very many collisions with solvent molecules.6 For many
purposes this restriction is not a problem, since even time
increments that are very small from a macroscopic point of
view will usually be large enough to satisfy that condition.
But the fact that Eq. �8� lacks a physical justification for �t
arbitrarily small, even though those equations are math-
ematically exact consequences of the diffusion Eq. �4� for all
�t, gives rise to two significant limitations. First, we cannot
use Eq. �8� to compute a physically reliable velocity of a
diffusing molecule, because that would require taking the
limit �t→0. Second, we have no physical license to use Eq.
�8� to construct a finely resolved trajectory of a diffusing
molecule, because that too would require taking �t arbi-
trarily small.

That these two limitations in fact have serious conse-
quences is made clear by the following result, which is
proved in Appendix B. If we use Eq. �8� to construct an
“n-point trajectory” of a diffusing molecule over a finite time
interval �0,��, by taking �t=� /n and then computing the
positions of the molecule at the n−1 intermediate times
�t ,2�t , . . . , �n−1��t, we will find that the length of the re-
sulting trajectory increases without bound as n is increased.
More precisely, each doubling of n increases the average
length of the trajectory by a factor of �2. Therefore, the
average length of the “true” trajectory, namely, the “fully
resolved” trajectory that is obtained in the limit n→� is
infinite. So according to Eq. �8�, a diffusing molecule
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traverses an infinitely long path in a finite time. That of
course would imply that the molecule travels with infinite
speed, a conclusion that can also be seen from Eq. �8�:

dx

dt
� lim

�t→0

xt+�t − xt

�t
= lim

�t→0

�2D�tnx

�t

= nx lim
�t→0

�2D

�t
= 	 � . �9�

This picture of a diffusing molecule moving with infinite
velocities, and hence infinite energies, and experiencing in-
finite accelerations as its velocity components switch infi-
nitely rapidly between +� and −�, is of course totally in-
compatible with any accepted physical theory of motion for a
mass particle. It is important to understand that this bizarre
behavior cannot be dismissed as an unimportant side effect
of the “infinite tails” of the Maxwell–Boltzmann distribution
for the velocity of a molecule at temperature T: The
Maxwell–Boltzmann distribution implies an average speed
that is finite �of the order of �kBT /m where m is the mol-
ecule’s mass�, whereas the result obtained in Appendix B for
Eq. �8� implies an average speed that is infinite.

We are accustomed in science and engineering to nu-
merically solving ordinary differential equations of the form
dx�t� /dt=A�x�t�� by using the Euler formula, x�t+�t�=x�t�
+A�x�t���t, or some refinement thereof, always with the as-
surance that we can get as accurate a solution as we require
simply by taking �t “small enough.” It is therefore tempting
to look at formulae �8� in the same way. But the situation
with formulae �8� is fundamentally different. Even though
those formulas represent the diffusion Eq. �4� exactly for all
�t, they provide a physically accurate description of the mo-
tion of a diffusing molecule only if �t is “sufficiently large.”
As we take �t smaller and smaller in Eqs. �8�, the resulting
more finely resolved representation of the trajectory of the
diffusing molecule becomes less and less physically accu-
rate, and eventually it becomes physically absurd. Making
matters worse, there is nothing in the Einstein derivation of
Eq. �8�, nor in the earlier macroscopic derivation of the dif-
fusion Eq. �4�, that tells us quantitatively when �t has been
chosen “sufficiently large.”

These difficulties with Einstein’s approach to diffusion
were effectively resolved by Langevin’s analysis of Brown-
ian motion in 1908,7 although that fact was not fully appre-
ciated at the time. By making some insightful assumptions
about the nature of the forces exerted on a solute molecule
by the surrounding solvent molecules, Langevin used New-
ton’s second law and some thermodynamic reasoning to ob-
tain a time-evolution equation for the velocity of the solute
molecule �in contrast with Einstein’s focus on the molecule’s
position�. A modern version of that analysis8 leads to two
results that are especially pertinent to our work here:

First, the Langevin approach reveals that formulae �7�
and �8� are physically accurate only when

t,�t 

mD

kBT
, �10�

where T is the absolute temperature of the system. Formulae

�7� and �8� therefore do have a wide range of validity, since
the right side of Eq. �10� is typically small from a macro-
scopic point of view. But the fact that the right side of Eq.
�10� is not zero means that formulae �8� indeed cannot pro-
vide us with physically reliable information about either the
velocity or the true trajectory of a diffusing molecule. In
particular, the popular notion that ever smaller choices for
�t in formulae (8) will produce ever more accurate repre-
sentations of the trajectory of the diffusing molecule is
wrong.

Second, in Langevin’s improved theory, a diffusing mol-
ecule always has a finite mean speed, roughly of the order of
�kBT /m, where m is the molecule’s mass. It follows that in a
truly infinitesimal time dt, a diffusing molecule will travel a
total distance that is proportional to dt. This does not contra-
dict Einstein’s result that the net displacement of the mol-
ecule over a sufficiently large time �t is proportional to ��t,
because the net displacement of the molecule and the total
distance traveled by the molecule in realizing that net dis-
placement are not the same thing. The latter will usually be
much larger than the former, because the trajectory of the
molecule over that time will be highly irregular and folded.

However, in chemical kinetics we usually do want to
work on timescales where “dt” is large enough to encompass
many collisions of a solute molecule with solvent molecules.
In that case, as we have just seen, even though the net dis-
placement of a solute molecule in time dt will indeed be
proportional to �dt, that net displacement will not be the
total distance traveled by the molecule; therefore, the con-
cern mentioned in Sec. I is groundless. But even if we could
use the improved Langevin theory to estimate the true dis-
tance traveled by the molecule in such a macroscopic dt, it is
not clear how that information could be used by an argument
along the lines of the ballistic derivation in Appendix A. For,
whereas in the ballistic case the effective “collision volume”
swept out by the S2 molecule relative to the S1 molecule in
time dt is easily related to the relative distance traveled in
that time, that relation will be much more complicated for
irregular, highly folded diffusional trajectories because of the
many rapid partial retracings of the same volume.

The bottom line here for our purposes is this: The long-
standing concern that the classical �D�t result in diffusion
theory might preclude the existence of a diffusional propen-
sity function is baseless, but there seems to be no way to
construct a simple derivation of the diffusional propensity
function that parallels the ballistic derivation in Appendix A.
For that reason, we will take a completely different approach
in the diffusional case.

III. THE AVERAGE DIFFUSIONAL REACTION RATE

We begin by picking at random one of the x2 S2 mol-
ecules inside �, and imagining it to be surrounded by two
concentric spheres. The smaller sphere has radius �12; it is
called the “action sphere,” because if the center of any S1

molecule lies on the surface of that sphere the two molecules
will be colliding. The larger sphere has a radius �12 which,
though very large compared to �12, is very small compared
to the dimensions of �, and also small enough that the
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sphere only rarely contains a second S2 molecule. The pos-
sibility of constructing the larger sphere follows from our
assumption that the solute molecules are “dilute” inside �.
Taking the common center of these two spheres as the origin
of coordinates, we assume the S1 molecules to be distributed
isotropically in the region between the surfaces of the two
spheres, and we let �1�r , t� denote the average number of S1

molecules per unit volume at distance r ��12�r��12� from
the origin at time t. Since the �12-sphere is very small com-
pared to �, then �1�r , t� may show a dependence on r
��12 without violating our hypothesis that the system is
“macroscopically” well stirred.

Relative to the S2 molecule and its two attached spheres,
the x1 S1 molecules move about with an effective diffusion
coefficient,9

D = D1 + D2, �11�

at least in the present circumstance where the system is dilute
in the solute molecules. So Fick’s law tells us that in the rest
frame of the S2 molecule, the instantaneous net radially out-
ward flux of S1 molecules at any r� ��12,�12� is

J1�r,t� = − D
��1�r,t�

�t
, �12 � r � �12. �12�

This implies that the net inward flow of S1 molecules to the
surface of the action sphere is


2�t� = 4��12
2 ��D

��1�r,t�
�r

�
r=�12

, �13�

where the subscript 2 is to remind us that this flow pertains
to a single S2 molecule. Since 
2�t� is the difference �the
average number of S1 molecules that strike the action sphere
in unit time� minus �the average number of S1 molecules that
are reflected by the action sphere in unit time�, then it must
be equal to �the average number of S1 molecules that are
absorbed by the action sphere in unit time�. And since ab-
sorption by the action sphere is tantamount to a chemical
reaction, then 
2�t� is the instantaneous average rate at
which S1 molecules are chemically reacting with the chosen
S2 molecule. The logically awkward fact that the S2 molecule
might very well disappear at the first such reaction will be
dealt with in Sec. V.

In order to evaluate the right side of Eq. �13�, we evi-
dently need to know the derivative of �1�r , t� with respect to
r at r=�12. Finding �1�r , t� requires solving the diffusion Eq.
�4�, which in this spherically symmetric case reads

��1�r,t�
�t

= D
1

r

�2

�r2 �r�1�r,t��, ��12 � r � �12� . �14�

To solve this equation, we must specify one initial condition
and two boundary conditions, and we must do that in a way
that is physically appropriate. The initial condition is of
course the function �1�r , t=0�, and the need to specify it
raises the question of what physically defines the instant
t=0. For the propensity function of reaction �1�, which is our
concern here, t=0 should be the instant immediately after the
most recent reaction event. But because of the relative isola-
tion of the S2 molecules inside their individual �12-spheres,

the average distribution of S1 molecules inside the
�12-sphere of the chosen S2 molecule just after the last reac-
tion event is not likely to be very different from what it was
just after the reaction event before that, or the one before
that. This observation suggests that a physically reasonable
choice for the function �1�r ,0� in our case would be the
time-stationary solution �1�r� of the diffusion Eq. �14�. That
choice would in turn imply that

�1�r,t� � �1�r� ��12 � r � �12; ∀ t� , �15�

where �1�r� is the solution of

�2

�r2 �r�1�r�� = 0 ��12 � r � �12� . �16�

This is of course an approximation. But it seems a reasonable
one in the biochemical context that we are mainly interested
in, where the pace of chemical reaction events is usually
slow. Situations will undoubtedly arise where this is not an
acceptable approximation, and for those the results obtained
below will not apply.

Two successive integrations of Eq. �16� yield

r�1�r� = �r + � , �17�

where � and � are integration constants. They must be de-
termined by imposing two boundary conditions. An obvious
choice for one boundary condition is to require the S1 con-
centration “far away” from the surface of the action sphere to
be the current “well-stirred” value, x1 /�. Remembering that
�12
�12, we thus take

�1��12� = x1/� � c1. �18�

For the second boundary condition, we shall require the S1

concentration at the surface of the action sphere, �1��12�, to
be some value between 0 and c1, but we will leave that value
unspecified for now. Upon substituting r=�12 and r=�12 into
Eq. �17�, and using Eq. �18�, we get the two equations

�12�1��12� = ��12 + � ,

�12c1 = ��12 + � .

Upon subtracting the first equation from the second, an then
invoking the facts that �1��12��c1 and �12��12, we obtain
�=c1. Substituting that result into the first equation then
yields �=−�12�c1−�1��12��. Equation �17� thus becomes

�1�r� = c1 −
�12�c1 − �1��12��

r
��12 � r � �12;�12 � �12� .

�19�

From Eq. �19�, it follows that the derivative on the right
side of Eq. �13� is

� ��1�r�
�r

�
r=�12

=
c1 − �1��12�

�12
. �20�

Notice that Eq. �20� implies that, given the boundary condi-
tion �18�, if we specify either the value of �1 at r=�12 or the
value of ��1 /�r at r=�12, the other will be uniquely deter-
mined; therefore, it really makes no difference which of
those two values we specify for the second boundary condi-
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tion. Substituting Eq. �20� into Eq. �13� gives for the average
rate at which S1 molecules are reacting with the chosen S2

molecule,


2 = 4��12D�c1 − �1��12�� . �21�

Here, D is given by Eq. �11� and c1 is given by Eq. �18�;
however, the value of �1��12�, apart from being between 0
and c1, remains unspecified.

At this point, Smoluchowski’s10 pioneering approach to
this problem simply assumes that �1��12�=0, so that the av-
erage rate �21� becomes


2 = 4��12Dc1 � 
2
Smol. �22�

But taking �1��12�=0 implies that every S1 molecule that
strikes the action sphere is immediately absorbed, meaning
that reaction �1� ensues, and that should happen only in the
case that q=1. Sveshnikoff11 later sought to correct this de-
ficiency by simply multiplying Smoluchowski’s result by q:


2 = 4��12Dc1q � 
2
Sves. �23�

But CK �Ref. 5� later pointed out that this formula cannot be
correct either, because it is self-contradictory: The assump-
tion �1��12�=0 that underlies the Smoluchowski result as-
sumes that every S1 molecule that collides with the action
sphere is absorbed, whereas the circumstance q�1 says oth-
erwise. CK �Ref. 5� went on to develop a new approach to
this problem, and they obtained a result that has many attrac-
tive features. Our analysis below is strongly inspired by the
CK analysis, and we will obtain a result that is almost the
same as theirs; however we will use a very different line of
reasoning which, arguably, has a more rigorous physical jus-
tification.

We start by noting that the Fick’s Law result �21� only
tells what the net inward flow 
2 of S1 molecules at the
surface of the action sphere would be if, given an S1 molecu-
lar concentration of c1=x1 /� far from the action sphere, the
S1 concentration at the surface of the action sphere were
�1��12�. Equation �21� is correct so far as it goes, but it is
incomplete in that it does not tell us what the value of either

2 or �1��12� is. We will adopt the unorthodox view that this
incompleteness of Eq. �21� is an inevitable consequence of
the fact that any theory of diffusion based solely on the clas-
sical diffusion equation cannot provide a physically accurate
description of the behavior of the S1 molecules on the small
space-time scale of the immediate neighborhood of the sur-
face of the action sphere, where the collision and reaction
must take place. That’s because �see Sec. II� the classical
diffusion formulas �8� give only net displacements over suf-
ficiently large times �t, and hence do not describe either the
velocity or the trajectory of the S1 molecule in the final mo-
ments before its collision with the action sphere. Clearly the
terminal relative velocity and trajectory of the two colliding
molecules will be important in determining whether a reac-
tion ensues.

Physical considerations suggest that, in the short span of
time immediately preceding the collision of an S1 molecule
with the action sphere, and more specifically when the center
of the S1 molecule is closer to the surface of the action
sphere than the mean-free-path of an S1 molecule with re-

spect to the solvent molecules, the S1 molecule will be mov-
ing freely with a finite velocity. In other words, sufficiently
close to the surface of the action sphere, the S1 molecule will
be moving ballistically in the manner of a dilute gas mol-
ecule. Embracing this premise, we next recall a well known
result from elementary kinetic theory:4 In a dilute gas that is
in thermal equilibrium with a constant average molecular
density �, the average number of molecules striking the walls
of the containing volume per unit area and per unit time is
equal to �1 /4��v̄, where v̄ is the average speed of the mol-
ecules. In Appendix C, we derive the following extended
version of that result for our problem here:

4��12
2 �

1
4�1��12�v̄12

= the average rate at which S1 molecules are

colliding with the surface of the action sphere.

�24�

Since the average fraction of these collisions that result in a
reaction �1� is q=q�v̄12�, then the average rate at which S1

molecules are reacting with the chosen S2 molecule can be
obtained simply by multiplying the average collision rate
�24� by q. And since the resulting average reaction rate is
what we have previously called 
2, we conclude that


2 = ��12
2 �1��12�v̄12q . �25�

Notice that our last step, multiplying the collision rate
�24� by the fraction q of the collisions that result in a reaction
to get the reaction rate �25�, is reminiscent of Sveshnikoff’s
tactic of multiplying the Smoluchowski rate �22� by q to
obtain his result �23�. But a careful comparison reveals an
important difference, and at the same time exposes the flaw
in Sveshnikoff’s logic: The Smoluchowski rate �22� is itself a
reaction rate, not a collision rate; therefore, its multiplication
by the collision-conditioned reaction probability is unwar-
ranted.

Equations �25� and �21� are two equations in the two
unknowns 
2 and �1��12�. Solving those two equations si-
multaneously is straightforward. The result is

�1��12� =
4Dc1

4D + �12v̄12q
, �26�


2 =
4��12

2 Dv̄12qc1

4D + �12v̄12q
. �27�

Since 
2 is the average reaction rate per S2 molecule, then
the average rate 
 at which reactions �1� are taking place
throughout the entire system can be obtained simply by mul-
tiplying 
2 by the number x2 of S2 molecules in the system.
Upon doing that, and then replacing c1 by x1 /�, we conclude
that the average rate at which reactions �1� are taking place
inside � is


 = 	4��12
2 Dv̄12q�−1

4D + �12v̄12q

x1x2. �28�
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IV. TWO LIMITING REGIMES

There are two noteworthy limiting regimes of the diffu-
sional reaction rate formula �28�. These are defined by the
relative magnitudes of the two terms in its denominator. The
first regime is characterized by the condition

� �
�12v̄12q

4D
� 1 �ballistic regime� . �29�

In this circumstance, it is convenient to write the denomina-
tor in Eq. �28� as

4D + �12v̄12q = 4D�1 + �� .

Equation �28� then takes the form


 = 	��12
2 v̄12q�−1

1 + �

x1x2. �30�

For �→0, this reduces exactly to the ballistic, dilute gas
reaction rate corresponding to the propensity function �3�,
which is why we call condition �29� the ballistic regime of
Eq. �28�. Notice that Eq. �26� can now be written �1��12�
=c1 / �1+��, and this, for ��1, is only slightly less than the
value �1��12�=c1. The physical situation here is this: Fickian
diffusion is capable of bringing S1 molecules to the vicinity
of the action sphere at a much faster rate than the ballistic
kinetics at the surface of the action sphere can cause those
molecules to have reactive collisions. This would happen, for
instance, if q were very close to zero.

The other regime of interest is the opposite extreme,

�−1 �
4D

�12v̄12q
� 1 �diffusional regime� . �31�

For this circumstance, we write

4D + �12v̄12q = �12v̄12q�1 + �−1� ,

so that Eq. �28� becomes


 = 	4��12D�−1

1 + �−1 
x1x2. �32�

For �−1→0, this is the Smoluchowski diffusional reaction
rate that follows from Eq. �22�, which is why we call this the
diffusional regime of Eq. �28�. Notice that Eq. �26� can now
be written �1��12�=c1�−1 / �1+�−1�, and this, for �−1�1, is
very nearly zero. So the physical situation in this case is this:
The ballistic motion of the S1 molecules near the surface of
the action sphere is capable of removing those molecules
through reactive collisions at a much faster rate than Fickian
diffusion can bring those molecules to the immediate vicinity
of the action sphere.

In considering the limiting cases �29� and �31�, we
should not suppose that all the variables in Eq. �28� can be
varied independently of each other. For example, D�D1

+D2 will generally depend on both �12 and v̄12 �the latter via
the system temperature T�.

V. FROM AVERAGE REACTION RATE TO
PROPENSITY FUNCTION

Two important issues remain to be addressed. First, we
need to understand how 
2 in Eqs. �21� and �25� can be the
average rate at which a single S2 molecule reacts with the
x1 S1 molecules, in light of the fact that the very first such
reaction might annihilate that S2 molecule. And second, our
real goal in this paper is to derive not a reaction rate, but a
propensity function a�x1 ,x2�, for reaction �1�. That function
will exist if and only if the probability that a reaction �1�
event will occur somewhere inside � in the next infinitesi-
mal time dt can be written in the form a�x1 ,x2�dt. As we
shall now show, these two issues can neatly be resolved to-
gether.

The assertion that 
2 in Eqs. �21� and �25� is the aver-
age rate at which a particular S2 molecule reacts via Eq. �1�
with the x1 S1 molecules must mean, by the very definition
of rate, that if dt is an infinitesimally small interval of time,
then


2dt = the average number of reactions �1� that

a particular S2 molecule will undergo

in the next dt . �33�

Since this average number is proportional to dt, it is itself
infinitesimally small, and in particular is �1. But the small-
est nonzero number of reactions that can actually occur dur-
ing dt is 1. The only way that these two facts can be com-
patible with each other is for the S2 molecule to react in the
next dt either once or not at all, with the latter being much
more likely than the former. It is obvious physically that this
is what really happens. And from a logical standpoint, this
view avoids the awkwardness of pretending that the S2 mol-
ecule somehow survives its first reaction to have other reac-
tions.

So, let p denote the probability that the chosen S2 mol-
ecule will react according to �1� in the next dt. Then �1− p� is
the probability that it will not react in dt. Therefore, the
average number of reactions that the S2 molecule will expe-
rience in the next dt is

p · 1 + �1 − p� · 0 = p .

Since this average number is also given by Eq. �33�, it fol-
lows that p=
2dt. Thus we proved that


2dt = the probability that a particular

S2 molecule will undergo reaction �1�

in the next dt . �34�

The difference between the view of 
2dt expressed in
Eq. �34� and the view expressed in Eq. �33� might seem
academic, but it is very significant from a logical standpoint:
Eq. �34� allows our analysis to proceed rigorously, using the
laws of probability. Thus, by the addition law of probability,
we can compute the probability that any of the S2 molecules
inside � will react according to �1� in the next dt simply by
adding up the reaction probabilities �34� of all x2 S2

molecules.12 Since that sum yields a simple factor of x2, we
have
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2x2dt = the probability that any S2 molecule

in � will undergo reaction �1�

in the next dt . �35�

But the probability on the right side of Eq. �35� is by defini-
tion a�x1 ,x2�dt, where a is the propensity function. And Eqs.
�27� and �28� show that 
2x2=
. Thus we conclude that
a�x1 ,x2�=
, or, by Eq. �28�,

a�x1,x2� = 	4��12
2 Dv̄12q�−1

4D + �12v̄12q

x1x2. �36�

Equation �36� is the central result of this paper.

VI. COMPARISON TO COLLINS–KIMBALL

As mentioned earlier, our analysis owes much to the
work of Collins and Kimball.5 In this section we will clarify
the connection of our work to theirs, using our notation.

In Ref. 5, CK begin by solving the diffusion equation for
the S1 molecular concentration �1�r , t� exterior to the action
sphere around a chosen S2 molecule. In doing that, they use
the initial condition �1�r ,0�=x1 /�, whereas we use the ini-
tial condition �1�r ,0�=�1�r�, the latter being the time-
stationary solution of the diffusion equation. The choice of
CK leads to an initial time-dependent spike in the net flux to
the surface of the action sphere, as some of the S1 molecules
infinitesimally close to that surface are immediately ab-
sorbed. Our view is that an exact spatially homogeneous ini-
tial condition would be very difficult to establish in a real
laboratory setting, and in any case it would not keep re-
establishing itself after each reaction event for the next reac-
tion event. Our choice of initial condition seems a physically
more reasonable approximation for the “successive reaction”
scenario that applies to the propensity function problem. And
this choice has the added practical benefit of removing time
from the resulting formulas.

Except for this different choice of initial condition, we
followed CK’s overall strategy of deriving two equations–
our Eqs. �21� and �25�, CK’s Eqs. �25� and �27�–and then
solving those equations simultaneously for �1��12� and 
2,
the latter being the net flow of S1 molecules to the action
sphere around the chosen S2 molecule. But there are some
noteworthy differences in our equations and equations of
CK, not only in their forms but also in how they are derived.

With regard to the Fick’s law equation, which is our Eq.
�21�, CK go through a lengthy preliminary argument aimed
at justifying the “reaction rate” interpretation of that equation
in light of the fact that the chosen S2 molecule cannot react
more than once. We achieve a simpler and arguably more
convincing resolution of that problem in Sec. V by taking
explicit account of the intrinsically discrete-stochastic nature
of molecular reactions. Also, the analysis of CK seems to
suggest that, because Fick’s law in its usual form expresses
the net flux to the surface of the action sphere as being di-
rectly proportional to the value of ��1 /�r there �as in our Eq.
�13��, we are consequently obliged to make that value one of
our boundary conditions. But having chosen for one bound-

ary condition the value of �1 far from the action sphere �see
our Eq. �18��, we can in fact choose for the other boundary
condition either a value for ��1 /�r at r=�12 or a value for
�1��12�; because, as can be seen from our Eq. �20�, specify-
ing either of those two values will uniquely determine the
other. Therefore, it is permissible to use as the second bound-
ary condition a value for �1��12�, as we have done in our Eq.
�21�.

But our Eq. �21� also shows that, if we reason from the
diffusion equation alone, we will not obtain a formula for 
2

that is directly proportional to �1��12�. This poses a problem
for CK in deriving their second equation, which corresponds
to our Eq. �25�, as is evidenced by the way in which they
present that equation �adapted to our notation�:

“An obvious modification is to assume that the probabil-
ity that �an S1 molecule� reacts with �an S2 molecule� is
proportional to the probability that the �S1 molecule� lies
between �r=�12 and r=�12+�R�, where �R is a small dis-
tance. This is equivalent to the assumption �
2

=k4��12
2 �1��12��, where k is in the nature of a specific reac-

tion rate.”5

In contrast, our derivation of Eq. �25� proceeds from the
premise that, in the final stage of the collision-reaction pro-
cess, the two molecules are not moving diffusionally, but
ballistically, as in a dilute gas. That approach allows us to see
that what CK have called k is in fact the quantity �1 /4�v̄12q.
CK subsequently attempt to justify their second equation
with a lengthy analysis that models the position of the S1

molecule as a jump Markov process. But that argument is
quite complicated, and it establishes the proportionality of
the rate to �1��12� only at the expense of a physically im-
plausible limiting assumption: the frequency of collisions
must go to infinity while the probability of a reaction given a
collision must go to zero in such a way that their product
remains finite. These same assumptions were embraced by
Andrews and Bray13 in more recent adaptation of the result
of CK. But in fact, no modeling of the position of a diffusing
particle as a Markov process, whether it be of the “jump”
kind as CK did5 or the “continuous” kind as Einstein did,6

will be able to describe the velocity and the true trajectory of
the molecule in a physically accurate way, for reasons ex-
plained in Sec. II. Furthermore, our Eq. �21�, which is de-
rived directly from the diffusion equation, makes it clear that
the diffusion equation by itself does not imply that the net
flux of S1 molecules to the surface of the action sphere is
directly proportional to �1��12�. None of these difficulties
arise, however, if one derives the second equation from di-
lute gas kinetic theory, as we have done here. And as we
have shown in Appendix C, there is a plausible physical
rationale for using dilute gas kinetic theory in the immediate
vicinity of the surface of the action sphere.

If we make allowance for the facts that the result of CK
has a transient time dependence arising from their choice of
a strictly uniform initial condition, and also that what CK
call k is not a reaction constant but simply �1 /4�v̄12q, our
formula �28� for the diffusional reaction rate is equivalent to
the result of CK. But our analysis here has gone farther: It
extended that reaction rate result to a stochastic context �in
Sec. V� to obtain the propensity function �36�. A serendipi-
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tous bonus of that stochastic extension is that it makes the
entire derivation more rigorous, because we no longer have
to imagine that a molecule can react more than once, or that
reactions can occur in noninteger numbers.

VII. SUMMARY AND CONCLUSIONS

We have derived in Eq. �36� a formula for the propensity
function of the bimolecular reaction �1� when the reactant
molecules move about diffusionally in a common bath of
smaller, more numerous, chemically inert solvent molecules.
Our derivation assumes that the system is kept macroscopi-
cally well-stirred and dilute. The former means that, on the
scale of the containing volume �, the spatial distributions of
the S1 and S2 molecules appear to be randomly uniform, in
that persistent spatial nonuniformities on the scale of � be-
yond what would be expected from ordinary random fluctua-
tions do not develop. The dilute assumption means that the
reactant molecules are, on average, well enough separated
that they move about practically independently of each other.
These conditions will not be satisfied in some cellular sys-
tems, specifically those in which the solute �reactant� mol-
ecules crowd each other severely, and for those systems our
results here will not hold. The dilute scenario we focused on,
in which each solute molecule typically collides many times
with solvent molecules before it collides with another solute
molecule, does tend to stir the system to some degree; how-
ever, some form of exogenous stirring might still be needed.
In a cell, such exogenous stirring might be produced by the
natural flexing of the cell’s membrane, together with the gen-
eral “jostling about” that cells within living organisms typi-
cally experience.

In Eq. �36�, D is the sum �11� of the diffusion coeffi-
cients of the two reactant molecules, �12 is the average dis-
tance between their centers when they collide, v̄12 is their
average relative speed �2� at temperature T, and q=q�v̄12� is
the probability of a reaction given a collision at that tempera-
ture. When diffusion is fast in the sense that 4D
�12v̄12q,
formula �36� limits to the dilute gas propensity function �3�.
In that case, the diffusion process is able to bring two reac-
tant molecules close together more easily than the collision
process can initiate a reaction between them; a circumstance
that will arise for instance if q�1. When diffusion is slow in
the sense that 4D��12v̄12q, formula �36� limits to
�4��12D�−1�x1x2, a form that was anticipated by
Smoluchowski.10 In this limit, the collision process can ini-
tiate a reaction between two reactant molecules more readily
than the diffusion process can bring those molecules into
close proximity. The virtue of Eq. �36�, of course, is that it
holds for values of the physical parameters anywhere in be-
tween these extreme limits. And even if one is unable to
determine the values of such parameters as �12 or D or q in
Eq. �36�, the proof given here that a propensity function does
exist in the form cx1x2 will provide a license to estimate the
numerical value of c from kinetic rate experiments.

The constant c in the formula a�x1 ,x2�=cx1x2 is called
the reaction probability rate constant. The physical interpre-
tation of c is that cdt is the probability that a randomly cho-
sen S1-S2 molecular pair will react according to �1� in the

next dt. Comparing with Eq. �36�, we see that c is given by

c =
4��12

2 Dv̄12q�−1

4D + �12v̄12q
. �37�

In deterministic chemical kinetics, the average reaction rate
per unit volume, namely, the average reaction rate 
 divided
by �, is usually written 
 /�=kc1c2, where ci is the average
concentration of species Si, and k is called the reaction rate
constant. If we substitute into this expression the formula for

 in Eq. �28�, and note that ci=xi /�, we find that the deter-
ministic reaction rate constant k is given by

k =
4��12

2 Dv̄12q

4D + �12v̄12q
= �c . �38�

Notice that k is independent of �. This relation between k
and c gets altered slightly if species S1 and S2 are the same.
In that case, the number of distinct reactant pairs x1x2 in Eqs.
�28� and �36� gets replaced by �1 /2�x1�x1−1�. The propen-
sity function is then written c�1 /2�x1�x1−1� with c still being
given by Eq. �37�. But the average reaction rate per unit
volume is by convention written kc1

2. So, since deterministic
chemical kinetics assumes that x1
1, the relation between
the deterministic and stochastic rate constants when species
S1 and S2 are the same is k=�c /2.

Simple algebra allows us to write Eq. �38� in the form

1

k
=

1

kd
+

1

kb
, �39�

where

kd � 4��12D, kb � ��12
2 v̄12q . �40�

Note that kd is the diffusional reaction rate constant of
Smoluchowski, which holds when D is “small” in the sense
of condition �31�, while kb is the ballistic reaction rate con-
stant that follows from the dilute gas propensity function �3�
derived in Appendix A. This result has an interesting heuris-
tic interpretation: If we think of the reaction rate constant k
as a kind of “conductance” for the overall reaction process,
then 1 /k takes the character of a “resistance” for that pro-
cess. In expressing that resistance as a sum of two other
resistances, Eq. �39� suggests that the reaction process resis-
tor actually consists of two resistors in series, one with con-
ductance kd and the other with conductance kb. The resulting
physical picture is that diffusion first brings two reactant
molecules close to each other via a diffusional resistor, and
then ballistic dynamics causes them to react via a ballistic
resistor. This “pipeline” picture of the overall reaction pro-
cess supports the view advanced in Sec. III, that diffusional
dynamics gives way to ballistic dynamics when the reactant
molecules get sufficiently close together.

There has long been a concern that a propensity function
might not exist in the diffusional case. This concern stemmed
from the prediction of the classical diffusion equation that a
diffusing molecule will, in a time �t, move an average dis-
tance proportional to ��t. That result would seem to suggest,
by the reasoning used to derive the dilute gas propensity
function in Appendix A, that the probability that a reaction
will occur in the next infinitesimal time dt would be propor-
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tional to �dt. But we have shown here that this concern is
unfounded for two reasons. First, the diffusion equation does
not give a physically valid description of either the velocity
of a diffusing molecule or the finely resolved trajectory of a
diffusing molecule—features that are required to decide
whether a collision will lead to a reaction. And second, even
when we allow dt to be microscopically large, so that the
average net displacement in time dt is proportional to �dt,
that net displacement will not be a measure of the distance
actually traveled by the molecule during that time.

The inverse dependence of the propensity function �36�
on the system volume � stems from the fact that two reac-
tant molecules will have a harder time finding each other
when � is large than when � is small. An important conse-
quence of this inverse-� dependence is that the propensity
function diverges linearly with the size of the system in the
thermodynamic limit, wherein the molecular populations xi

and the system volume � are imagined to approach infinity
in such a way that all the concentrations xi /� remain con-
stant. This limiting behavior of propensity functions turns
out to be crucial for proving that when the system is suffi-
ciently large, its behavior is accurately described by the set
of coupled ordinary differential equations that are used in
traditional deterministic chemical kinetics.2

Finally, we emphasize again that when the “macroscopi-
cally well-stirred” condition is not maintained, the system
will not be accurately described by the theory developed
here. In particular, if diffusion is slow, then in the absence of
some form of exogenous stirring, reaction �1� might gradu-
ally “unstir” an initially well-stirred system. The nature of
that unstirring would depend on what appears on the right
side of reaction �1�; e.g., the spatial inhomogeneities that
would develop if reaction �1� destroyed S1 molecules would
be different from the spatial inhomogeneities that would de-
velop if reaction �1� created S1 molecules. The situation
would be further complicated if, as nearly always happens in
biochemical systems, other reaction channels are present that
can also affect the spatial distribution of the reactant mol-
ecules. As discussed briefly in Sec. I, the most reliable way
of dealing with spatially inhomogeneous systems is to first
find some set of state variables that describe not only the
types but also the locations of the reactant molecules, and
then evolve all those variables in time in a physically correct
way. But that is not an easy thing to do, as it leads us closer
to a “molecular dynamics” analysis. Some detailed studies
have been made of a few simple isolated reactions under the
condition that the solvent molecules are physically identical
to the solute molecules, i.e., the diffusion is of the “self-
diffusion” kind rather than the “Brownian motion” kind that
we have been concerned with here. These studies show that
if one wishes to maintain the view that the rate at which
reaction �1� occurs is proportional to the product of the S1

and S2 molecular populations �or concentrations�, then the
proportionality “constant” will depend explicitly on time.
The seminal papers of Zhou and Szabo14 provide a window
into those studies.
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APPENDIX A: A RIGOROUS DERIVATION OF THE
BALLISTIC „DILUTE GAS… PROPENSITY FUNCTION

From the x1x2 pairs of S1 and S2 molecules inside �,
randomly pick one, say the jth pair. By “randomly” we mean
that we do not know the positions of the chosen molecules;
we know only that they will be distributed over � in a ran-
domly uniform way. Go to the rest frame of the S1 molecule,
and observe the S2 molecule moving with some relative
speed v21

�j�. Ascribe about the center of molecule 2 a sphere of
radius �12; this is called the “action sphere,” because if the
center of the S1 molecule lies on the surface of that sphere
then the two molecules will be colliding. See Fig. 2.

In the next infinitesimal time dt, the action sphere, mov-
ing with the S2 molecule, will sweep out relative to the S1

molecule an infinitesimal region of volume ��12
2 �v21

�j�dt, as
shown in Fig. 2. The probability that a collision will occur
between these two molecules during that time will be equal
to the probability that the center of the S1 molecule lies in-
side that region.15 By the well-stirred assumption, together
with the assumption that the molecules occupy a negligibly
small fraction of the system volume �, this probability will
be the volume ratio ���12

2 v21
�j�dt� /�. This ratio, then, is the

probability that the jth S1-S2 pair of molecules will collide in
the next infinitesimal time dt. Multiplying this by q gives, by

FIG. 2. In a dilute gas, and from the point of view of a randomly chosen S1

molecule �light gray�, a randomly chosen S2 molecule �dark gray� moves
with speed v21. In the next infinitesimal time dt, the S2 molecule will drag
the action sphere of radius �12 a distance v21dt, and in so doing will sweep
out the shaded “collision volume” dV. If the center of the S1 molecule lies
inside dV, the two molecules will collide in the next dt. The figure shows
how the radius �12 of the action sphere would be related to the radii of the
two molecules if those molecules were hard spheres. More generally, �12 is
the average or effective distance between two of these molecules at the
instant of their collision.
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the multiplication law of probability, the probability that the
jth S1-S2 pair of molecules will react according to Eq. �1� in
the next dt. And then summing that over all x1x2 S1-S2 pairs
in � gives, by the addition law of probability, the probability
that any of those pairs will react according to �1� in the next
dt:16

�
j=1

x1x2 	��12
2 v21

�j�dt

�
q
 =

��12
2 qdt

�
	x1x2

1

x1x2

�

j=1

x1x2

v21
�j�

=
��12

2 qdt

�
x1x2v̄21

= 	��12
2 v̄21q

�
x1x2
dt .

Since this is the probability that reaction �1� will fire some-
where inside � in the next dt, the coefficient of dt is, by
definition, the propensity function of reaction �1�; hence the
result �3�.

APPENDIX B: DIFFUSIONAL TRAJECTORY LENGTH
VIA THE DIFFUSION EQUATION

For a solute molecule at the origin O at time 0, suppose
we use Eq. �8� with �t=� /n to compute the successive loca-
tions Pi of the solute molecule at the n equally spaced times
ti= i�� /n� �i=1, . . . ,n� between time 0 and some fixed time �.
Let L�n ,�� be the total length of the broken line P0P1¯Pn,
where P0=O, and let R� be the length of the net displacement
P0Pn in time �0,��. We will prove here that, with 
¯ � de-
noting an average over infinitely many repeated such n-point
constructions,17


L�n,��� = �n
R�� , �B1�

where


R�� = ���D� �in two dim.� ,

4�D�/� �in three dim.� .
� �B2�

Since it follows from this result that L�n ,��→� as n→�,
we conclude that the average “true” length of any finite-time
trajectory constructed from Eq. �8� is infinite.

The proof of Eqs. �B1� and �B2� in two dimensions goes
as follows. With R�= �X� ,Y�� denoting the diffusing mol-
ecule’s position at time �, Einstein’s result �7�, from which
formulas �8� were derived, tells us that X� and Y� are statis-
tically independent normal random variables with means 0
and variances 2D�. Their joint pdf is therefore

PXY�x,y ;�� = �4�D��−1 exp	−
x2

4D�

exp	−

y2

4D�



�− � � x,y � �� . �B3�

Define the polar coordinates R� and �� of R� in the usual
way:

X� = R� cos ��, Y� = R� sin ��.

The joint pdf of the two random variables R� and �� is
related to that of X� and Y� by

PR��r,�;�� = PXY�x,y ;��� ��x,y�
��r,��

� ,

where the Jacobean is for the transformation x=r cos �,
y=r sin �. That Jacobean is easily found to be equal to r, so

PR��r,�;�� = �4�D��−1r exp	−
r2

4D�



�0 � r � �;0 � � � 2�� . �B4�

Integrating PR� over � then gives the pdf of the net displace-
ment R�:

PR�r;�� = �2D��−1r exp	−
r2

4D�

 �0 � r � �� . �B5�

From Eq. �B5�, it is straightforward to show that the mean
net displacement of the molecule in time �0,�� is


R�� � �
0

�

rPR�r;��dr = ��D� . �B6�

Equation �B6� not only establishes the two-dimensional
version of Eq. �B2�, it also tells us that the mean distance
between any two successive points in an n-point representa-
tion of the trajectory is


�Pi−1Pi�� = ��D�t = ��D��/n� . �B7�

Therefore,


L�n,��� � ��
i=1

n

�Pi−1Pi�� = �
i=1

n


�Pi−1Pi��

= n��D��/n�

= �n�D� . �B8�

This, together with Eq. �B6�, establishes Eq. �B1� for the two
dimensional case. The proof of Eqs. �B1� and �B2� for the
three dimensional case proceeds analogously.

APPENDIX C: DERIVATION OF EQUATION „24…

According to Eq. �19�, the average concentration �1�r� of
S1 molecules at a distance r from the center of the action
sphere rises from the value �1��12� at the surface of the ac-
tion sphere to the value c1 at distances 
�12 from that sur-
face. Since that rise is smooth, we can find a �r�0 that is
small enough that the approximation

�1�r� � �1��12� for all r � ��12,�12 + �r� �C1�

holds to any desired degree of accuracy. And if the �r that
satisfies that requirement is not already smaller than the
mean-free-path for collisions of an S1 molecule with the sol-
vent molecules, we reduce �r until that condition too is sat-
isfied. Then, everywhere inside the spherical shell around the
action sphere of outer radius �12+�r, we have, to a good
approximation, ballistically moving S1 molecules with a con-
stant average concentration �1��12�.

Now let �A be an infinitesimally small area element at
some point Q on the surface of the action sphere. Since our
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system has a finite total energy, there must be some finite
upper bound vmax on the speed of any S1 molecule relative to
the chosen S2 molecule. Let

�t = �r/vmax. �C2�

Then all S1 molecules that can possibly strike the area ele-
ment �A within the next time �t must lie inside the hemi-
spherical volume �� of radius �r whose flat side is tangent
to the action sphere at Q, and which is otherwise external to
the action sphere. See Fig. 3. Let d�� be an infinitesimal
volume element of �� with polar coordinates �r� ,�� ,���
relative to a coordinate frame whose origin is at Q and whose
polar axis is in the direction of OQ�.

We now make the following three observations: First,
the average number of S1 molecules inside d�� is
�1��12�d��. Second, since the infinitesimal area element �A
subtends at d�� a solid angle �A cos �� /r�2, then the average
fraction of the molecules in d� that will be traveling in a
direction that intersects �A is �A cos �� /4�r�2. And third,
letting f�v� denote the pdf of the speed of an S1 molecule
relative to the S2 molecule, the average fraction of the mol-
ecules in d� traveling toward �A that are going fast enough
to reach �A within the next �t is �r�/�t

vmaxf�v�dv. It follows from
these facts that the average number of S1 molecules that will
collide with the area element �A in the next �t is

N2
coll��t� =� � �

��
��1��12�d���

���A cos ��

4�r�2 ��
v=r�/�t

vmax

f�v�dv . �C3�

Since

d�� = �dr���r�d����r� sin ��d��� = r�2dr�du�d��,

where we have put cos ��=u�, then the integrals in Eq. �C3�
can be written more explicitly as

N2
coll��t� = �

r�=0

�r

dr�r�2�1��12��
u�=0

1

du�	 �Au�

4�r�2

��

��=0

2�

d���
v=r�/�t

vmax

dvf�v�

=
�1��12��A

4�
�

0

�r

dr��
0

1

du�u�

��
0

2�

d���
r�/�t

vmax

dvf�v� .

The �� and u� integrals are easily performed, yielding fac-
tors of 2� and 1/2 respectively, so this expression reduces to
the double integral

N2
coll��t� =

�1��12��A

4
�

0

�r

dr��
r�/�t

vmax

dvf�v� . �C4�

Switching the order of integration over r� and v transforms
Eq. �C4� to

N2
coll��t� =

�1��12��A

4
�

0

vmax

dv�
0

v�t

dr�f�v�

=
�1��12��A

4
�

0

vmax

dv�v�t�f�v�

=
�1��12��t�A

4
�

0

vmax

vf�v�dv �C5�

N2
coll��t� =

�1��12�v̄12�t�A

4
. �C6�

Dividing Eq. �C6� by �t gives the average rate at which
S1 molecules are colliding with �A. Then summing that over
all the infinitesimal surface elements on the action sphere
replaces �A with 4��12

2 , and yields formula �24� for the av-
erage rate at which S1 molecules are colliding with the action
sphere.
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