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Abstract
One of the central goals of human genetics is the identification of loci with alleles or genotypes that
confer increased susceptibility. The availability of dense maps of single-nucleotide polymorphisms
(SNPs) along with high-throughput genotyping technologies has set the stage for routine genome-
wide association studies that are expected to significantly improve our ability to identify
susceptibility loci. Before this promise can be realized, there are some significant challenges that
need to be addressed. We address here the challenge of detecting epistasis or gene-gene interactions
in genome-wide association studies. Discovering epistatic interactions in high dimensional datasets
remains a challenge due to the computational complexity resulting from the analysis of all possible
combinations of SNPs. One potential way to overcome the computational burden of a genome-wide
epistasis analysis would be to devise a logical way to prioritize the many SNPs in a dataset so that
the data may be analyzed more efficiently and yet still retain important biological information. One
of the strongest demonstrations of the functional relationship between genes is protein-protein
interaction. Thus, it is plausible that the expert knowledge extracted from protein interaction
databases may allow for a more efficient analysis of genome-wide studies as well as facilitate the
biological interpretation of the data. In this review we will discuss the challenges of detecting epistasis
in genome-wide genetic studies and the means by which we propose to apply expert knowledge
extracted from protein interaction databases to facilitate this process. We explore some of the
fundamentals of protein interactions and the databases that are publicly available.
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Introduction
Measuring a million or more single nucleotide polymorphisms (SNPs) across the entire human
genome is now technically and economically possible. As a result, the domain of human
genetics is experiencing an information explosion and, at the same time, an understanding
implosion. That is, our ability to generate genetic data is far outpacing our ability to make sense
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of it. This is particularly true given the complexity of the genotype and phenotype mapping
relationship that results from phenomena such as epistasis, or gene-gene interaction, and plastic
reaction norms, or gene-environment interaction. There are several important challenges that
must be overcome before we can take full advantage of genome wide data to decompose the
genetic architecture of a complex trait into its component interacting parts (Moore and Ritchie
2004).

First, there is the need for powerful statistical methods to model the relationship between
combinations of SNPs and disease susceptibility. Genotype combinations increase
exponentially with the number of SNPs being analyzed, and there may not be enough subjects
to represent each combination. As a result, traditional parametric statistical approaches, such
as logistic regression, are not effective due to inaccurate parameter estimates. A second
challenge is the selection of which SNPs should be included in the analysis. Common human
diseases are likely to be the result of multiple interacting genetic factors that may not necessarily
also exhibit independent effects. This means that methods that employ exhaustive searches are
necessary to fully explore interactions in the absence of significant independent effects. Due
to the computational intensity of analyzing all pair-wise and multiple-way SNP combinations,
conducting genome wide genetic studies with thousands of SNPs is computationally infeasible.
A third challenge is the interpretation of gene-gene interaction models. Although we are able
to obtain a statistical model of interaction that confers risk for disease, we still need to be able
to interpret these results in the context of human biology so that they may be used for the benefit
of disease treatment and prevention.

The goal of this essay is to explore the challenges of detecting epistasis in genome-wide
association studies and to explore the use of expert knowledge from public databases to ease
the computational burden of detecting and characterizing interactions. It is already known that
depending on where the SNPs occur in the genome they can have an effect on protein structure
by changing amino acid sequences. These can be insertions, deletions, repetitions, non-sense,
mis-sense, or silent mutations. Whether they are in a coding region of the genome or not, these
SNPs may affect protein-protein interaction, protein expression, alternative splicing, stability,
folding, ligand binding, or catalysis, thus inducing or influencing disease state in individuals
(Wang and Moult 2001, Cavallo and Martin 2005). We focus here on the role of information
extracted from protein-protein interaction databases for improving the computational
efficiency of genome-wide studies of epistasis.

Challenges of Detecting Epistasis
Recognized for many years, epistasis has been described from two different perspectives,
biological and statistical (Cordell 2002; Moore and Williams 2005). Biological epistasis, as
defined by Bateson (1909) who coined the term, results from physical interactions among
biomolecules in gene regulatory networks and biochemical pathways at the cellular level that
are dependent on the genotypes of an individual. Statistical epistasis, as defined by Fisher
(1918), is deviation from additivity in a linear mathematical model that describes the
relationship between multilocus genotypes and phenotype variation at the population level.
While determining the relationship between the two remains a challenge, it is an important
endeavor if we wish to infer biological conclusions from statistical results.

Epistasis, along with other phenomena such as locus heterogeneity, phenocopy, and gene-
environment interaction are major sources of complexity in the mapping relationship between
genotype and phenotype in common human diseases. Detecting and characterizing epistasis to
gain an understanding of the genetic susceptibility to these diseases is not a simple task.
Traditional methods of analysis such as linear and logistic regression have had limited success
due to the sparseness of data in high dimensions. For example, when interactions among
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multiple SNPs are considered, there are many multilocus genotype combinations that may have
very few or no data points. This can lead to an increase in type I and type II errors due to
parameter estimates with very large standard errors. It is evident that we need research
strategies that embrace, rather than ignore, the complexity of the relationship between genotype
and phenotype (Templeton 2000; Moore 2003; Sing et al. 2003; Thornton-Wells et al. 2004;
Moore and Williams 2005; Rea et al. 2006).

Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-
free data mining method for detecting, characterizing, and interpreting epistasis in the absence
of significant independent effects in genetic and epidemiologic studies of complex traits such
as disease susceptibility (Ritchie et al. 2001, 2003; Hahn et al. 2003; Hahn and Moore 2004;
Moore 2004; Moore et al. 2006; Moore 2007). The goal of MDR is to change the representation
of the data using a constructive induction algorithm to make non-additive interactions easier
to detect using any classification method such as naïve Bayes or logistic regression (Moore et
al. 2006; Moore 2007). This is accomplished by first labeling each genotype combination as
high-risk or low-risk using some function of a discrete endpoint such as case-control status. A
new MDR variable with two levels is constructed by pooling all high-risk genotype
combinations into one group and all low-risk combinations into another group. Traditionally,
MDR constructed variables have been evaluated with a probabilistic naïve Bayes classifier that
is combined with 10-fold cross validation to obtain an estimate of predictive accuracy or
generalizability of epistasis models. While the MDR method has proven to be an effective way
of detecting epistasis in a number of diseases, to analyze all of the combinations of SNP
interactions in large datasets or genome-wide studies would be impractical even with access
to the largest and most powerful computers available.

To illustrate the scope of such an analysis, consider a recent report from the International
HapMap Consortium (Altshuler et al.2005) that suggests that approximately 300,000 carefully
selected SNPs may suffice to represent all of the relevant genetic variation across the human
Caucasian genome. If this is to be regarded as the lower limit of a genome-wide association
study, then approximately 4.5 ×1010 pairwise combinations (300,000 choose 2) and 4.5 ×
1015 three-way combinations (300,000 choose 3) would need to be exhaustively analyzed to
detect low-order epistasis using MDR. If 106 MDR evaluations can be computed each second,
then evaluation of each individual SNP would require less than one second of computer time.
However, computing all two-way and three-way MDR models would require more than 52,000
days of computer time. Access to a 1,000 processor supercomputer might reduce this to 52
days which is within the realm of possibility. However, extending this to all four-way
combinations is not computationally feasible. This adds to the many challenges of detecting
epistasis on a genome-wide scale (Moore and Ritchie 2004).

As previously mentioned, an important and understandably difficult goal in human genetics is
to determine which of the many thousands of SNPs are useful for predicting who is at risk for
common diseases. It was nearly a decade ago that Risch and Merikangas first seriously
proposed the testing of all known SNPs in the human genome for disease association either
directly or by linkage disequilibrium with other SNPs (Risch and Merikangas 1996), and today
this ‘genome-wide’ approach is expected to revolutionize the genetic analysis of common
human diseases (Hirschhorn and Daly 2005; Wang et al. 2005). Currently, it is possible to
measure more than a million SNPs with a genome-wide human SNP array available from
Affymetrix, and Illumina has released the Human1M DNA Analysis BeadChip that is capable
of profiling 1,000,000 SNPs on a single array across the human genome.

Certainly, with these technologies now available to the scientific community at more affordable
costs, it’s clear to see how such large amounts of data are being rapidly produced.
Unfortunately, due to the lack of logical methods to summarize this quantity of information
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within a biological context, investigators are at a loss when they reach the analysis stage in
their research. In fact, our ability to measure genetic information, and biological information
in general, is far outpacing our ability to interpret it. It is probable that most of these large scale
studies harbor a wealth of information about susceptibility genes that can be used to improve
the prevention, diagnosis, and treatment of common diseases. However, to access this
information to our full advantage, we need to address the specific technical challenges that
confront researchers in the analysis process, such as the computational limitation of a large-
scale genetic analysis with methods such as MDR and our ability to interpret it. We believe
that we can overcome this limitation by utilizing expert knowledge about our data to guide our
analysis as well as the biological interpretation of our results.

Expert Knowledge
Expert knowledge can be defined as existing biological or statistical information about the
problem at hand that can be incorporated into the analysis process to guide an algorithm in a
more directed fashion. For example, when considering SNPs or genes in a genetic analysis,
biological expert knowledge may be derived from what is known about the function of
biochemical pathways, Gene Ontology (GO), or expression information for that gene. Some
software packages make explicit use of expert knowledge from multiple sources. For example,
the bioPIXIE system makes use of existing biological expert knowledge to improve the
accuracy of its process-specific network prediction in S. cerevisiae (Myers et al. 2005). This
system takes user input from the biologist who enters proteins they want to evaluate for
functional relationships or that they expect to play a role in the same biological process. The
query is directed to a confidence-weighted network based on integrated data for additional
related proteins thus outputting a predicted network that is probabilistically biased towards the
biological processes represented in the initial of query proteins. bioPIXIE integrates gene
expression data, physical and genetic interaction data, and sequence and literature data with a
Bayesian network. Biological expert knowledge, such as that implemented in bioPIXIE, can
also be extracted from a number of other sources such as from pathway and gene information
from Kyoto Encyclopedia of Genes and Genomes (KEGG) or the Gene Ontology database
(GO), from literature based information by mining PubMed abstracts, or from interaction
information found in protein interaction databases, which we will focus on in the remainder of
this review.

In addition to biological information, it is also useful to use prior statistical knowledge to help
guide an epistasis analysis. For example, LOD scores from a prior linkage analysis could be
used to weight SNPs in certain chromosomal regions higher during a combinatorial epistasis
analysis. That is, SNPs from a certain pathway or chromosomal region would be evaluated for
interactions with a higher probability than others in the dataset. Statistical knowledge could
also come from filter algorithms that explicitly assess the quality of a SNP based on their
relationship with the clinical endpoint. The Tuned ReliefF (TuRF) algorithm is an example of
an algorithm that can assign high quality scores to SNPs involved in complex interactions
(Moore and White 2007). The TuRF algorithm uses a nearest neighbor approach to assess SNP
quality and thus doesn’t suffer from the computational limitations of an algorithm that
explicitly considers combinations of SNPs. As such, it is very useful for preprocessing the data
prior to analysis. Once computed, the TuRF scores can be used to select some reduced number
of SNPs for combinatorial analysis or can be used to help guide a computational search
algorithm.

Protein-Protein Interactions
Proteomics and the study of protein-protein interactions (PPI’s) are becoming increasingly
important in our effort to understand human diseases on a system wide level. While mass
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spectrometry has been a useful technology applied to the discovery of components in protein
complexes (Yates 2000), PPI’s have traditionally been measured using a variety of assays such
as immunoprecipitation and yeast two-hybrid (Y2-H). To reconstruct the entire network of
protein-protein interactions within cells remains a challenge, yet this is becoming a more
approachable problem. The field of proteomics is advancing and the aforementioned
techniques to detect PPI’s have been scaled up to measure interactions on a genome-wide level.
High-throughput techniques have also been developed to identify protein complexes using
affinity pull-down followed by mass spectrometry (Pelligrini et al. 2004), and systematically
constructed double knockout strains in yeast have proven to be useful for constructing a large-
scale view of genetic interaction networks (Tong et al. 2001). To complement these
experimental techniques, a number of computational methods have been developed that are
capable of identifying pairs of proteins that have co-evolved, suggesting that these proteins
may interact within that cell (Pelligrini et al. 1999, Pelligrini et al. 2004, Tan et al. 2004).
Thanks to the development and curation of protein interaction databases, which will be
elaborated on later, up-to-date information on these interaction networks is accessible and
publicly available to the scientific community.

Some of these techniques have been actively employed in the study of the pathogenesis of
Huntington’s disease (HD), an autosomal neurodegenerative disorder that causes cognitive
impairment, psychiatric problems, and motor dysfunction. This inherited disease is caused by
the expansion of a polyglutamine (polyQ) tract in the huntingtin (htt) protein. Although this
protein was discovered over a decade ago, constructing the protein interaction network that it
belongs to is still an ongoing process that is providing clues about the function of htt and its
role in HD pathogenesis (Li, S. and Li, X. 2004). Many interaction partners for mutant and
wild-type htt have been elucidated over the past decade by Y2-H, affinity chromatography,
and immunoprecipitation. To follow these studies, recently, it was hypothesized that genetic
modifiers of HD nuerodegeneration should be enriched among htt protein interactors and to
test this, both high-throughput Y2-H screening and affinity pull-down followed by mass
spectrometry were utilized (Kaltenbach et al. 2007). This group was able to identify 104 htt
interactions with Y2-H and 130 interactions with their pull-down method. To elucidate the
biological relevance of these interactions, with a high-content validation assay, they also tested
a set of 60 genes encoding interacting htt proteins for their ability to act as genetic modifiers
of nuerodegeneration in the HD Drosophila model. Results showed that 45% of these genes
were high confidence genetic modifiers, much higher than the 1%–4% observed in unbiased
genetic screens, and that these genes were similarly represented among proteins discovered
with their Y2-H and pull-down/mass spectrometry methods. These results demonstrate that
these methods are equally useful for identifying biologically relevant interactions (Kaltenbach
et al. 2007).

Making use of information available in PPI databases such as KEGG and the Human Protein
Reference Database (HPRD) along with PubMed publications, another group evaluated the
commonality of molecular pathogenic mechanisms of neurodegenerative disorders including
HD along with Alzheimer’s disease (AD), Parkinson’s disease (PD), dentatorubral-
pallidoluysian atrophy (DRPLA) and prion disease (PRION), and amyotrophic lateral sclerosis
(ALS). They examined the PPI networks associated with causative proteins, such as htt, and
found 19 proteins common to all diseases from literature as well as 81 new common proteins
from their network constructed using database information. Many of these proteins identified
were previously characterized as being associated with the respective diseases. A relatively
high correlation between all diseases for all of their analysis was seen including commonality
in characteristic protein domains. They concluded that the interactions found in this study in
silico may serve to function in the common pathogeneic mechanisms among neurodegenerative
disorders (Limviphuvadh et al. 2007).
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As the effort continues to reconstruct the entire proteome, it would be to our advantage to
exploit the breadth of knowledge contained in PPI databases. Not only will we gain a greater
understanding of numerous biological processes, but also presumably be able to apply this
knowledge to advance other fields of research such as drug discovery, disease prognosis, and
the study of disease susceptibility. High-throughput molecular profiling approaches, such as
microarray technology, have already been successful in the advancement of these fields, yet,
likewise, a rate limiting step has been the ability to interpret the biological meaning of the data.
Often this problem has been approached from a pathway perspective that involves investigating
which pathways are perturbed in a case-control population, which pathways determine a good
or bad prognosis, or which pathways are activated or repressed in response to a certain stimuli
or compounds (Pelligrini et al. 2004). Such an approach can simplify the analysis and
interpretation of genome-wide or large-scale datasets. We wish to seek similar solutions to the
challenges we encounter when attempting to detect epistatic interactions in large datasets with
methods such as MDR.

Human Protein Interaction Databases
Currently, there exist numerous publicly available protein interaction databases that contain
information about human specific interactions (Table 1). The majority of PPI’s in these
databases are from curation of the literature by biologists, however some are incorporated by
direct deposit prior to publication by the investigator (Mathivanan et al. 2006). In a majority
of the PPI databases, the user will enter a protein of choice either by protein name or accession
number according to RefSeq, Genbank, OMIM, SwissProt, or Entrez Gene, and in return will
receive a list of protein interactors, information pertaining to the experimental evidence for
that interaction, as well as information about the protein itself. Another common feature of
most databases is the ability to visualize the network of the queried protein and its interactors.
We will touch on some of the key features of certain databases. For a more comprehensive
review and additional information on these databases please see (Mathivanan et al. 2006).

One of the largest publicly available databases is the Human Protein Reference Database
(HPRD), which to date has over 38,000 PPIs, over 270,000 pub-med links, access to curated
pathways, as well as information about post-translational modifications (PTMs), domain
architecture, protein functions, enzyme–substrate relationships, subcellular localization, tissue
expression, and disease association of genes. An interesting feature of this database is the
Protein Distributed Annotation System that enables researchers to annotate proteomic
information in the context of HPRD data so that it is easily shared with the rest of the scientific
community. Another large and growing database that has similar components is BioGrid, which
currently houses approximately 42,800 human PPI’s, but altogether contains > 200,000
interactions from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis
elegans, Mus musculus, and Drosophila melanogaster in addition to Homo Sapiens.

Other available databases that are smaller than the HPRD and BioGrid yet offer additional
unique features are The Biomolecular Interaction Network Database (BIND), the Molecular
Interaction database (MINT), the Database of Interacting Proteins (DIP), and Reactome. For
example, BIND and MINT provide confidence scores for each interaction, specifically for Y2-
H experiments in BIND. In MINT, this score is based off of the number of interactions, the
number of citations, and the type of experiment conducted to detect that interaction, while in
BIND the score is based off of shared or related GO annotations, phenotypic profiling,
homologous interactions, domain structure, and the number publications (Mathivanan et al.,
2006). MINT also contains information pertaining to protein interactions with promoter regions
and mRNA. Unique to DIP, the user can select to have certain PPIs evaluated based on
paralogous interactions, common expression profiles of interactors, or through domain
interaction preferences.

Pattin and Moore Page 6

Hum Genet. Author manuscript; available in PMC 2009 November 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Reactome is not specifically a PPI database, but a curated resource for human pathway data
based on biologic reaction networks. Reactome reactions are described as taking place between
‘physical entities’ which include not only proteins, but also nucleic acids, single small
molecules, macromolecular complexes, and even subatomic particles. All proteins, genes, and
reactions are cross-referenced to a variety of widely used databases such as Entrez Gene, Online
Mendelian Inheritance in Man (OMIM), and KEGG, and each reaction is supported by
evidence from biomedical literature as well as documented with approved citations (Vastrik
et al., 2007). The user has the ability to search the database using a reaction name, gene name,
protein name, or any of several alternative identifiers. Reactions in the output are represented
graphically, and the user has the option to click on ‘top level’ pathways to delve deeper into
the hierarchy with increasing detail at each level. Additionally, one can select for non-human
species and all accession numbers for all genes and proteins involved can be downloaded. For
a more in-depth review of this database please see (Vastrik et al. 2007).

Resources such as the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING),
Unified Human Interactome (UniHI), and GeneNetwork access a number of the reviewed
databases to integrate protein interaction information. STRING incorporates PPI information
from HPRD, BioGrid, MINT, BIND, DIP, as well as imports known reactions from Reactome
and KEGG pathways. Automated textmining of PubMed abstracts and information from other
databases such as the Saccharomyces Genome Database (SGD) and WormBase supplement
this information. For interactions in organisms that have not been confirmed experimentally,
STRING is capable of running a set of prediction algorithms and transferring known
interactions from model organisms to other species based on the prediction orthology for those
proteins (von Merring et al. 2007). The user however, has the option to select which organism
the queried protein and its interactors will pertain to. Each interaction is given a numerical
confidence score based on the experimental evidence and orthological evidence behind that
interaction, which allows the user to filter networks according to a desired confidence
threshold.

UniHI integrates protein-protein interactions not only from large Y2-H screens and curated
databases such as HPRD, DIP, BIND, Reactome, and others we haven’t discussed but also
predicts interactions based on orthology and computational textmining approaches. This
database also provides detailed information about each interaction including statistical
interaction validation by gene co-expression data and validation by shared path length
according to GO co-annotation hierarchy. The source of the interactions are also documented
and provided along with links to access more about that particular source of information. A
useful feature of UniHI is that it allows for a highly target search by which the user can exclude
certain mapping approaches like Y2-H, display only proteins that are common interaction
partners to multiple proteins in a query, display only interactions in that occur in multiple maps,
or display only direct interactions (Chaurasia et al. 2007).

GeneNetwork is comprised of known interactions from BIND, HPRD, Reactome, and KEGG.
Similar to STRING, GeneNetwork supplies predicted interactions based on biological process
and molecular function annotation from the GO database. Additional experimental data is
incorporated such as co-expression data from ~450 microarrays from the Stanford Microarray
Database (SMD) and the NCBI Gene Expression Omnibus (GEO). Human yeast two-hybrid
and interactions based on orthologous high-throughput protein-protein interactions from lower
eukaryotes are also included. After submitting a query for a given gene, the user is returned a
list of interactors each of which have an overall likelihood score along with likelihood scores
for that interaction based on microarray co-expression, human PPI prediction, and orthologous
PPI predictions. Positive evidence of known interactions from HPRD, BIND, KEGG, and
Reactome is indicated in additional columns. A recent study used this database to rank the best
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positional candidates in susceptibility loci on the basis of their interactions using a method they
developed known as the “Prioritizer” (Franke et al. 2006).

A recent study examining protein-protein interaction networks for human inherited
neurodegenerative disorders characterized by ataxia (i.e loss of balance or coordination)
illustrates how these databases have been used to help us better understand pathogenic
mechanisms underlying human diseases. Lim et al., (2006) examined protein interaction
networks involved in cerebellar Purkinje cell degeneration which is the primary cause of
coordination and balance loss in inherited ataxias. They developed a network for 54 proteins
involved in 23 ataxias first by Y2-H screens and then expanded this network based on
information from literature-curated and evolutionarily conserved interactions. Relevant direct
PPI’s were added from available interaction networks developed by Rual et al., 2005, and
Stelzl et al., 2005, and binary interactions were indentified for the 54 ataxia associated baits
and 561 interacting prey proteins using literature based information from, BIND, HPRD, DIP,
MINT, and the mammalian protein-protein interaction database (MIPS). Also 1527 potential
human interlogs (i.e. potentially evolutionarily conserved interactions) were indentified from
more than one species using the InParanoid database. Since 68% and 63% of literature-curated
and interlog interactions are annotated to similar GO compartments, this group suggests that
these identified interactions are of similar quality to interactions they identified in their Y2-H
screens. The network demonstrated that several ataxia proteins interact and that there are shared
pathways and mechanisms in this class of diseases. This study by Lim et al. will hopefully be
able to provide additional knowledge about individual protein function and candidate genes
for other diseases with similar phenotypes.

These are just a few of the more widely used publicly available databases that provide
information on protein-protein interactions. Certainly, each one has unique features that allow
researchers to gain access to vast amounts of useful biological information that can be broadly
applied. In order to utilize this abundance of information as expert knowledge, we need to
identify the important information we want to extract, which database or databases will provide
us with this, and the method by which we will extract and apply that information.

Expert Knowledge from PPI Databases
We wish to exploit protein interaction data to improve the genetic analysis of common human
diseases. As we have illustrated, the information available to the scientific community in
curated protein interaction databases is abundant, and there are specific issues that need to be
addressed in order to use this information as expert knowledge and apply it to the genetic
analysis of genome-wide studies.

One possible method would be to identify all of the genes associated with the SNPs in a dataset
for whose protein products have evidence of direct interaction with each other and filter that
dataset accordingly. Filtering based on the direct interactions may prove to be a simple solution,
but doing so may ignore potentially important biological information. Interactions do not have
to be direct, and it may be beneficial to include the SNPs and genes to a certain level according
to their indirect interactions, in other words, by taking a more pathway based approach. Another
or an additional option would be to utilize or develop a confidence score for present interactions
based on information available from a PPI database or even multiple databases. As mentioned,
MINT, BIND, STRING, and GeneNetwork all provide a confidence score for interactions
based on information such as the type of experiment conducted to detect that interaction and
the supporting literature for that interaction. Specific metrics could be developed that would
allow all SNPs or genes to be prioritized or weighted based on biological information about
their interactions or allow investigators to filter SNPs or genes based on a determined
interaction confidence threshold.
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If one were to take any of these approaches, it would appear that the vital information to extract
from these databases would be the direct and indirect interaction partners found in the data set
(to a certain level) as well as the evidence or confidence score to support those interactions.
While this also seems to be a rather simple approach, one needs to consider that the number
of databases available that could provide this information is abundant and that this information
may not be consistent between databases. For example, Mathivanan et al. (2006), thoroughly
reviews the features of a number of databases including MINT, BIND, HPRD, DIP, and
Reactome and concludes that while there may be good overlap at the protein level between
these databases, the level of overlap between PPI’s is not as great. They also find that for PPI’s
that do overlap between databases, there exists a difference in annotation partly on account of
differences that arise according to how biologists interpret the experimental results. This
presents an obstacle when attempting to apply this expert knowledge from multiple databases
and may lead to the exclusion of important interactions or the inclusion of non-influential
interactions in a dataset. Considering this, it may be beneficial to use an integrated database
such as STRING or GeneNetwork which have, in their respective ways, brought together the
various information in a number of databases.

Other issues that arise concern the bias that may exist across all databases, or the fact that genes
and SNPs in the dataset may be unannotated or anonymous. How does one deal with
anonymous SNPs or ones that are not in coding regions? It may be that a researcher wishes to
consider this SNP as part of the gene that it is closest to or perhaps they may consider what
annotated SNPs are in linkage disequilibrium (LD) with it. Also, there are many proteins in
the human proteome that have not been studied thoroughly or even studied at all and may be
underrepresented or non-existent in these databases. To add to this, there exists a bias of
experimental methods for capturing certain interactions, for example, Y2-H experiments are
not entirely adequate to detect interactions with integral membrane proteins (Mathivanan et al.
2006). Keep in mind that just because an interaction is not detected on the biological level, it
does not mean that this interaction does not exist or will not be seen at the statistical level, and
alternatively, what is detected statistically, may not have any biological relevance (Moore and
Williams 2005). Therefore we must be aware of and concerned about the amount of important
information we may potentially be missing due to bias and lack of annotation and what types
of studies this type of expert knowledge is appropriate for.

Likewise, some may argue that using expert knowledge is a bias in and of itself despite bias
in the databases. The ability to conduct a genome wide association study has been said to ‘relax’
the need for a strong prior hypothesis because the whole genome can be analyzed at once
(Chanock et al. 2007). Those in support of ‘genomic agnosticism’ believe that when conducting
genome wide analysis, they will assume every SNP in the genome to be equally functional
(Carlson 2006). This brings us back to the issue of what information we may be missing by
applying expert knowledge. While the benefits of conducting an unbiased GWAS study are
valid, such as having no prior hypothesis, elimination of bias, and inclusion of all information,
we are still at a loss for computational power to conduct these studies and fully explore all
interactions.

These issues demonstrate the need for a method to evaluate the metrics and information we
extract from these databases. Making use of data that is available and that has already been
evaluated for interactions would aid in this process. With access to data where the biological
importance of the results is known and the interactions are known, we could determine if this
same information is retained after applying expert knowledge. Therefore we may be able to
gage the amount of information we gain or, on the other hand, that we may lose by applying
expert knowledge. Since we are also concerned with the efficiency of evaluating genome-wide
studies, we may want to explore simulated large scale datasets that are already imbedded with
known epistatic interactions, both physical and statistical. We would then be able to compare
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metrics we develop based on information from these databases. This will hopefully allow us
to achieve the most meaningful results in the most efficient manner.

Conclusion/Outlook
The expanding field of human genetics and the availability of high-dimensional datasets from
genome-wide studies make it computationally expensive and impractical to carry out a genetic
analysis study utilizing data mining methods such as MDR. However, to complement this
expansion, there has also been much advancement in the field of proteomics with the
availability of high throughput methods to detect and characterize protein interactions and with
the development of curated protein interaction databases to provide the scientific community
with access to this information. Since there is no indication that technological advancements
in either field will come to a halt anytime soon, the amount of valuable genetic and proteomic
data produced will continue to grow.

We have proposed that expert knowledge extracted from protein interaction databases may
reduce the computational burden of large-scale and genome-wide studies as well as facilitate
the biological interpretation of the data. It is important to keep in mind that SNPs are not the
only form of genetic variation that can influence disease susceptibility. Copy number variation
and sequence repeats have been shown to be influential as well. For example, a triplication of
a gene known as α-synuclein, was shown to cause Parkinson’s disease (Singleton et al.
2003). This evidence would have been missed in a typical SNP analysis. Like the tools for
conducting genome-wide studies of SNPs, technology to investigate these other types of
variations are also advancing. Since we suspect that studies involving other forms of genetic
variation will run into similar problems with large scale data analysis, we hope that our methods
may in some way be applicable to facilitate such studies. We also hope that exploiting expert
knowledge helps us in understanding the relationship between biological and statistical
epistasis. We can begin to dissect this relationship by simply examining if epistatic interactions
detected statistically, such as with MDR or other methods, are also found to exist at the protein
level in the interaction databases mentioned. To illustrate this, we used a number or databases
to query the protein interactions represented by significant SNP interactions in two genetic
association studies. Coutinho et al. (2007) used MDR to analyze seven candidate genes in the
serotonin metabolic and neurotransmission pathways mapping autism linkage regions and
reported a significant interaction between polymorphisms in the 5-hydroxytryptamine
(serotonin) receptor 5A (HTR5A), integrin beta 3 precursor (ITGB3), and sodium dependent
serotonin transporter (SLC6A4) (P=0.001). Evidence for physical interactions between
SLC6A4 and HTR5A is found for these genes in the STRING database when querying HTR5A
and is based on evidence from textmining. When querying SLC6A4 or ITGB3 in STRING,
evidence for interaction between these two genes is provided and is also based on information
from textmining. Both interactions use this specific paper along with others as sources of
evidence. Another genetic study analyzed interactions in polymorphisms influencing levels of
tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 1(PAI-1), which
influence risk of arterial thrombosis (Asselbergs et al. 2007). Using a 2-way ANOVA statistical
test, they found significant interactions between polymorphism in the bradykinin B2 gene and
ACE (p=0.003) on t-PA in females and between polymorphisms in bradykinin B2 and
angiotensin II type 1 receptor (AT1R/AGT1R) on t-PA in males (p=0.006). This latter
interaction was also significant for PAI-1 levels in both males and females. Strong evidence
for interaction for all three of these genes is seen when querying STRING (Figure 1.) and is
supported by both experimental and textmining evidence. One or more of these interactions
are found in the databases that STRING integrates such as HPRD, BIND, Reactome, MINT,
BioGrid, DIP, KEGG annotated pathways, and DIP.
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Certainly, biological interactions representative of statistical interactions are present in these
databases, but we need to get to be able to exploit these resources to their full potential. To do
so we need to develop a logical method to evaluate the information in these databases and also
the metrics developed from this information in order to incorporate this type of expert
knowledge into our analysis. While we don’t expect this to be a simple task, success in similar
endeavors (Moore and White 2007; Myers et al. 2005) have assured us that it is an import and
worthwhile one that needs to be explored.

Once we have been able to successfully develop these methods, not only will we improve the
ease at which we will be able to identify important epistatic interactions in genome-wide
studies, but we will gain an understanding of the physical biology that underlies these
interactions and perhaps their role in a given disease. We expect these expert knowledge-based
methods to enhance our comprehension of common human diseases and eventually lead to an
improvement in the prevention, treatment, and diagnosis these diseases.
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Figure 1.
Illustrates the protein interaction network as displayed in STRING when querying ACE.
Interactions between ACE, BDKRB2, and AGTR1 are seen. Evidence for these interactions
is derived from both experimental evidence (purple lines) and text mining evidence (green
lines).
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Table 1

Lists the protein interaction databases reviewed, citations for these databases, and the website from which they
can be accessed.

PPI Database Citation Website
HPRD Mishra G et al. (2006) Nucleic Acids Res 34: D411–D414 http://www.hprd.org
BioGRID Breitkreutz BJ et al. (2008). Nucleic Acids Res 36: D637–D640 http://www.thebiogrid.org
BIND Alfarano C et al. (2005) Nucleic Acids Res 33: D418–D424 http://bind.ca
MINT Chatr-aryamontri A et al. (2007) Nucleic Acids Res 35: D572–D574 http://mint.bio.uniroma2.it
DIP Salwinski L et al. (2004) Nucleic Acids Res 32: D449–D451 http://dip.doe-mbi.ucla.edu
Reactome Vastrik I et al. (2007) Genome Biol 8: R39 http://www.reactome.org
STRING von Mering C et al. (2007) Nucleic Acids Res 35: D358–D362 http://string.embl.de
GeneNetwork Franke L et al. (2006) Am J Hum Genet 78: 1011–1025 http://www.genenetwork.nl
UniHI Chaurisa G et al.(2007) Nucleic Acids Res 35: D580–4 http://www.mdc-berlin.de/unihi
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