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Abstract

Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative
pre–mRNA splicing (AS) in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression
differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell
lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available
AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within
the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing
thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater
than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-
site usage. PCR validation shows that 42 out of 58 (72%) candidate gene regions undergo detectable AS, amounting to the
largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated
cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted
the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted
splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have
undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that
splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human
populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant
genes and it is likely some of these differences are involved in phenotypic diversity and susceptibility to complex diseases.
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Introduction

Alternative splicing (AS) allows for multiple mRNA isoforms to

be transcribed from a single gene locus, potentially creating much

greater protein diversity from our roughly 25 thousand human

genes [1]. AS is very common in higher order organisms and,

especially through the lens of newer, high throughput technolo-

gies, such as oligonucleotide arrays and transcriptome sequencing,

we are finally realizing the true extent and importance of AS. New

studies based on deep sequencing and micro-arrays with exon

junction probes estimate the proportion of genes undergoing AS in

humans between 74% and 94% [2–5] Hence, it is crucial to

understand the functions and the regulation of AS if we are to

arrive at a real grasp of regulation of gene expression and gene

networks. Although most isoform variation is thought to occur

between tissues, many differences exist among healthy individuals

in a population [6–8]. It is likely these differences are of genetic

origin and contribute to phenotypic diversity and disease

susceptibility. Many Mendelian disorders, such as cystic fibrosis

[9], have been explained by splicing errors caused by genetic

mutations [10]. This shows the importance of finding more

genetically driven isoform variations to understand the genetic

causes of complex diseases.

Until recently, AS differences were not detectable with

commercially available micro-array platforms. Due to low probe

densities, those platforms only aimed at measuring gene-level

expression and targeted mainly the 39 untranslated region (UTR)

of genes. The Affymetrix Exon Array, with its nearly 5.5 million

exon-targeted probes, is one of the recent genomic tools available

for profiling of splicing or transcript initiation/termination

differences between human tissues or between individuals.

In the prelude to this work, Kwan et al. [6] showed using Exon-

Array expression data from lymphoblast cell-lines of HapMap

individuals that cis-acting polymorphisms are associated with

many gene-level expression differences and isoform ratio differ-

ences between individuals of the HapMap CEPH population [11].

While the initial analysis detected numerous robust differential

splicing events that were genetically controlled, the study did not

attempt to identify the actual causal polymorphisms and it was not

clear whether it had sufficient statistical power and signal to noise

ratio to detect more subtle genetic influences on exon inclusion

levels. Given the high validation rate achieved for AS in the first

study, we expected to find many more inter-individual splicing

differences deeper, within the statistically less significant candi-

dates and also within the speculative content of the microarray,

which targets predicted or rarely expressed exonic regions.
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Moreover, we aimed to determine whether it was possible to

identify the causative polymorphisms – as opposed to extended

regulatory haplotypes – responsible for such changes. Thus, in

order to increase our detection threshold, in the analysis presented

here we made use of publicly available, prior AS information.

Using a customized heuristic optimized for the detection of AS

events and some visual curation, we selected a large sample of

candidate genetically regulated AS events. Subsequently, we

validated these events using RT-PCR, and in order to identify

likely causative SNPs, we re-sequenced the genomic DNA around

the alternatively spliced regions. Finally, we used in silico

predictions and, in selected cases, minigene assays, to verify the

causative nature of the detected polymorphisms. This new analysis

on the data demonstrates that the Exon Array can detect much

more subtle splicing differences than initially suggested and that

the speculative, non-core probesets, which constitute the majority

of the array, contain useful data for AS discovery. This study

constitutes the most in-depth analysis of cis-regulatory heritable

splicing differences to date, having validated quantitatively the

greatest number of cases and found a likely causative SNP is most

cases. Our results provide new insights in the genetic regulation of

splicing, demonstrate that subtle differences in alternative splicing

between humans are more frequent than initially detected, and

that the causative polymorphisms can be identified and validated

in reporter mini-gene systems.

Results

Selecting candidate AS events
To optimize our chances of finding true AS events, we only

considered candidate probesets whose target genomic coordinates

overlapped an AS event catalogued in at least one database,

including KnownAlt [12], ASAP-II [13] and additional events

inferred directly from EST/mRNA genome annotations (see

Methods). We ranked candidates statistically according to both the

regression p-value and a custom-designed measure representing

the unexpectedness of the probeset’s fold-change in the context of

the other probesets in the gene (see Methods). Further, by visually

inspecting probeset fold-changes and regression P-values of the top

candidate genes in the UCSC Genome Browser, we selected 68

new potential AS events, along with 4 events from previous

analyses [6], for further validation and characterization. For the

purpose of this analysis, we chose events that would be easily

amplifiable via PCR, therefore excluding large intron retentions or

alternative transcript initiation/termination events. The UCSC

Genome Browser Tracks of selected candidates are available in

Table S1. The red ‘‘AS-marker’’ track indicates the position of the

affected exon.

PCR validation
In order to detect isoform ratio differences quantitatively as well

as qualitatively, we validated our candidate events using semi-

quantitative RT-PCR. Instead of performing the validations on all

57 individuals, we chose a strategic sub-sample of 10 individuals

from the HapMap CEPH population, which was the smallest

possible sample for which at least one individual was polymorphic

at every SNP associated with an AS event. The primers were

targeted to the two exons flanking each alternatively spliced

region. Product abundance was quantified as described in the

Methods. Figure 1A and 1B show examples of electrophoresis

readings from which the isoform ratios were estimated. Out of the

58 candidates which produced interpretable results, 22 showed a

significant association with the SNP (p,0.05, Figure 1B shows an

example), confirming that the AS event is under the control of a

cis-regulatory mutation, 10 showed a visible trend in the expected

direction, 7 showed clear differences in isoform ratios between

individuals but with no obvious trend linked to the SNP genotype,

and 3 showed visible isoforms with no detectable differences in

ratios. The remaining 16 showed no evidence of AS. It should be

noted that the small sample size (10 individuals) and limited

representation of different genotypes limits the power of this

validation approach. Thus, while observing a single PCR product

in all samples can be considered as a reliable indication of a false

positive result, observing two alternatively spliced products of the

expected sizes, even without achieving statistical significance, is

evidence supporting the initial microarray finding. Thus depend-

ing on the stringency of the validation criteria – detecting a

statistically significant association within the PCR data, versus

observing two alternatively spliced products - our validation rate is

between 38% and 72%. Table 1 shows all validated AS events

organized by the strength of the validation evidence.

Identifying causative polymorphisms
For all the candidates selected in this study and a few additional

validated candidates from the previous analysis [6], we sequenced

a region of 600–800 bps around the putative AS events in 2

individuals predicted to preferentially express one isoform and 2

individuals expressing the other. The selection of individuals was

based on both the genotype of the associated SNP and the micro-

array expression scores for the probeset of interest. Thus, even if

the associated SNP was not perfectly linked to the causative SNP,

selecting for extreme expression phenotypes increased the chances

that the 4 individuals would differ at the causative polymorphism.

Analysis of the sequencing results revealed 86 polymorphisms in

60 confidently sequenced regions, 76 of which were already

catalogued in dbSNP129 [14], and 10 which were novel. Out of

the 34 validated AS events which were successfully sequenced

(including 4 from the previous analysis), all showed at least one

SNP within the sequenced interval, as did 6 out of the 7 sequenced

regions which were negatively validated. For each gene in which

one or more SNPs were identified, Table S2 links to custom

Author Summary

Alternative splicing (AS), through the alternative use of
exons, can produce many different mRNA transcripts from
the same genomic locus, thus possibly resulting in the
production of many different proteins. We know that
splicing differences between individuals exist and that
these changes are often associated with genetic variants.
Thus far, very few of these associations have led to the
precise localization of the causative polymorphisms. In this
work, using in-depth analysis of previously published
splicing sensitive micro-array data from human cell lines,
we identified and validated a large number of splicing
changes which are highly correlated with nearby genetic
variations. We then sequenced the genomic DNA around
candidate exons and used in silico modeling tools to
identify causative SNPs for most of our candidates. Using a
plasmid reporter construct, we further demonstrated that
five selected SNPs reproduce the expected effect in vivo.
Our results indicate that genetically controlled splicing
differences between individuals may be more common
than previously suggested and can be very subtle; and
most are caused by SNPs affecting either the splice-site
region or exonic splicing enhancers (ESEs) sequences.

Genetic Determinants of Alternative Splicing
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UCSC Genome Browser tracks which indicate the position of

SNPs and the associated fold-change in sequenced individuals.

For 24 of the genes, we could identify a SNP within 20 bases of

a relevant splice-site. Using the MaxEntScan algorithm [15],

which calculates the theoretical strength of splice-sites based on

maximum entropy, we could verify whether the expected effects of

many SNPs adequately explained the difference in micro-array

expression between the sequenced individuals. In all 17 cases

where differences in splice site strength could be calculated, the

micro-array results and the maximum entropy scores of the

polymorphic splice-site sequences agreed on the direction of the

effect (See Table 2). Figure 2 shows the types of AS events and the

relative position of the affected splice-site, which is crucial to

understanding the direction of the expression changes. For an

additional 16 cases where a SNP was present within the affected

exon, we used the ESE Finder 3.0 online tool [16] to predict ESEs

affected by the SNP and assign them a matrix-based affinity score

(see Table 3). In 13 out of the 16 exons, the predicted change in

the number and/or affinity of ESE motifs was concordant with the

probeset expression change. Although, in some of these cases,

identifying the affected splice-site is not obvious, we are still able in

all cases to infer the direction of the predicted probeset expression

change, as shown in Figure 2. The 3 for which the predicted effect

was in disagreement were the 3 cases with the smallest expression

fold-change. This result is encouraging, particularly since it only

concerns the binding preferences of 4 splicing factors, out of

possibly dozens, and the less than perfect agreement between

predictions and results likely reflects the relative lack of detailed

understanding of ESE motifs as compared to splice-site consensus

sequences.

Out of the 4 validated and sequenced AS regions remaining, 1

had a SNP inside the retained intron (HNRPH1) and 3 had one or

more intronic SNPs around the cassette exon (IL6, WDR67 and

SIDT1). It is likely that intronic SNPs play a role in determining

isoform levels through their effect on intronic splicing enhancers

(ISEs) or silencers (ISSs). We used another online software tool,

SpliceAid [17], to detect ISEs or ISSs but only one of the 3 cases,

showed qualitative agreement with the expression data (data not

shown), indicating that we are either looking at the wrong

candidate SNPs or that our understanding of ISEs/ISSs is not yet

detailed enough to predict the effect of all these polymorphisms.

Since we only sequenced approximately 200 base pairs from each

exons, and introns generally span thousands of bases, causative

SNPs are likely to be found further away in the intron. Intronic

SNPs were found in many cases in conjunction with exonic SNPs,

but there were often multiple intronic SNPs. Since we only looked

for qualitative agreement between in silico predictions and the

observed splicing differences, looking at many SNPs per gene

would surely have caused more chance correlations and we would

have been unable to rank the effects of SNPs affecting different

splicing factors. For this reason, we prioritized exonic or splice-site

bordering SNPs, for which there was almost always a single

candidate.

In vivo validation of causative SNPs
In order to assess whether the candidate SNPs truly cause the

splicing differences in vivo, for 6 genes we sub-cloned the exon and

surrounding intronic sequence from individuals of different genotypes

into a minigene expression vector [18]. Placing the exon of interest

between two constitutive exons within the reporter construct allows

determining the effect of the SNP on candidate exon inclusion levels.

We used sequencing to verify that the sub-cloned construct differed

only at the SNP positions we had previously predicted to be

responsible for the differential splicing event. In 5 out of the 6 cases,

the putative causative SNP was the only SNP present. MMAB

however contains 3 closely neighboring SNPs which are perfectly

linked. We transiently transfected the constructs into HeLa cells and

assessed the presence of different isoforms using RT-PCR. Figure 3

shows the electrophoresis band migrations along with the SNP

genotypes. For CAST, ERAP2, and PARP2, for which the candidate

SNP is very close to the splice-site, we demonstrate that the predicted

SNP causes a complete switch in 59 splice-site usage (PARP2,

Figure 1. Validating isoform eQTLs from automated capillary
electrophoresis of RT–PCR products. (A,B) Example capillary
electrophoresis fluorescence readings for the AMACR gene for
individuals with AA and GG genotypes for SNP rs3195676. (C) Estimated
isoform ratios of the AMACR gene for each individual, as a function of
the SNP Genotype. See Methods for details.
doi:10.1371/journal.pgen.1000766.g001

Genetic Determinants of Alternative Splicing
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ERAP2, Figure 3A and Figure 2B) or a complete skipping of the exon

(CAST, Figure 3C). In the 3 other cases, ATP5SL, MMAB and

AMACR, for which the candidate SNPs were found in the exon and

were predicted to disrupt ESEs, the assay shows a visible but subtle

change in isoform ratios (Figure 3D) in the expected direction. We

used the Agilent 1000 DNA chip to quantify the results for these three

cases because their gel bands are less convincing than the first three

cases. We included the capillary electrophoresis readings as Figure

S1. The quantification of the isoforms from the peaks show that the

smallest difference between individuals of different genotypes, the first

Table 1. RT–PCR validated AS candidates.

Gene Probeset ID Gene region AS Type Most likely Causative SNP1 Array regression P-value PCR validation regression p-val2

C14orf129 3550335 59 UTR Alternative SS rs2053588 3.40E-06 1.90E-09

C8orf59 3142947 59 UTR Cassette exon chr8:86318715 3.10E-27 1.30E-06

AMACR 2852757 Coding Cassette exon rs10941112 2.40E-08 2.70E-06

USP8 3593685 Coding Cassette exon rs4775889 3.40E-06 7.10E-06

PLD2 3707250 Coding Alternative SS rs3764897 1.80E-06 5.30E-06

ZNF419 3843285 Coding Cassette exon rs11672136 3.00E-07 7.10E-06

UEVLD 3365492 Coding Cassette exon rs56151250 2.70E-08 2.30E-05

SMAD5 2830027 59 UTR Cassette exon unknown 2.00E-05 1.60E-04

TMEM77 2427753 59 UTR Cassette exon rs3762374 2.70E-15 1.70E-04

SERGEF 3365169 Coding Cassette exon rs211146 1.20E-10 1.90E-04

MMAB 3470844 Coding Cassette exon rs2287180 4.20E-08 8.00E-04

SNORD49 3712109 Coding Cassette exon unknown 5.70E-07 9.50E-04

RNASEN 2852054 Coding Cassette exon rs55656741 4.50E-06 4.30E-03

DUSP18 3957502 59 UTR Cassette exon rs5753268 1.70E-10 6.30E-03

IFI44L 2343481 Coding Cassette exon rs1333973 1.40E-06 7.80E-03

SH3YL1 2537134 Coding Cassette exon rs62114506 1.10E-09 1.10E-02

SLC3A2 3333716 Coding Cassette exon unknown 1.40E-11 1.10E-02

WDR67 3114099 Coding Cassette exon rs6984928 1.30E-08 1.40E-02

WARS 3579582 59 UTR Cassette exon rs941928 1.10E-13 1.50E-02

TMEM149 3859924 Coding Alternative SS rs17638853 7.90E-07 1.60E-02

DMKN 3859789 Coding Cassette exon rs4254439 2.00E-06 2.20E-02

RBCK1 3873192 Coding Cassette exon rs41281892 1.00E-07 2.50E-02

ESPL1 3415861 Coding Alternative SS rs6580942 3.10E-09 correct trend

RGL3 3850922 Coding Cassette exon unknown 2.80E-06 correct trend

XPNPEP3 3946515 Coding Cassette exon unknown 7.80E-09 correct trend

SGOL1 2665585 Coding Cassette exon rs61729306 1.70E-10 correct trend

GTF3C2 2545738 59 UTR Cassette exon unknown 3.10E-07 correct trend

PPIL2 3938300 39 UTR retained intron rs12484060 1.00E-10 correct trend

ACP1 2466156 Coding Cassette exon rs11553746 2.70E-12 correct trend

MGC16169 2780811 Coding Cassette exon rs12639869 2.90E-17 correct trend

CCDC41 3466174 59 UTR Cassette exon chr12:93353207 1.70E-05 correct trend

DDX19A/B 3667169 Coding Cassette exon unknown 7.30E-04 correct trend

HNRPH1 2890160 Coding retained intron rs34734159 4.10E-13 variable ratios

BCKDHA 3834195 Coding Alternative SS rs12602 9.20E-05 variable ratios

FAM64A 3707965 39 UTR retained intron rs7218283 3.40E-13 variable ratios

ZNF83 3869658 Coding retained intron rs7248435 2.70E-10 variable ratios

IKIP 3467329 Coding Cassette exon unknown 2.40E-05 variable ratios

SIDT1 2636499 Coding Cassette exon rs2271494 6.70E-04 variable ratios

IL6 2992594 Coding Cassette exon rs2069832 8.10E-05 variable ratios

VISA 3874507 Coding Alternative SS rs17857295 1.10E-12 isoforms detected

UBAP2 3203812 Coding Cassette exon rs307682 1.30E-07 isoforms detected

USP36 3772596 39 UTR retained intron unknown 2.20E-07 isoforms detected

1Coordinates are given when SNP does not exist in dnSNP. ‘‘Unknown’’ indicates there was no sequence information or very poor quality sequencing results.
2P-value of the most significant correlation between an isoform’s ratio and the associated SNP genotype.
doi:10.1371/journal.pgen.1000766.t001
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PLoS Genetics | www.plosgenetics.org 4 December 2009 | Volume 5 | Issue 12 | e1000766



and last columns for the AMACR gene in Figure 3, consists of a 1.5

fold difference in isoform ratios, confirming that all the changes in

isoform ratios were measurable and in the expected direction. Why

significant variation exists between individuals with the same

genotype is hard to say, especially considering that the plasmid

inserts were confirmed to have the same sequence. The differences

must come either from changes incurred during transfection (a single

transfection assay was performed for each plasmid) or from biological

or technical noise. Except for MMAB, for which any one of the 3

SNPs or even a combination of all 3 could be causative, these results

demonstrate the causative nature of our candidate SNPs and confirm

that both systematic splicing differences as well as more subtle,

quantitative, differences exist between individuals and the extent of

the change is reflective of the position of the causative SNP and of in

silico predictions of its effect.

Detecting signs of positive selection
In order to gain insight into the persistence within human

populations of SNPs with such drastic effects on the structure of

the expressed transcripts, we wanted to assess whether some of the

causative SNPs showed signs of recent positive selection. We

performed two tests. Using the program fdist2 [19], we calculated

Table 2. SNPs affecting splice-sites.

Gene SNP ID/new SNP AS Type1 Splice-site sequence2 Maximum Entropy Score3 Probeset Expression4

C8orf59 new SNP A aagGTaaaa 8.38 138

aagGAaaaa 0.19 12

DMKN rs4254439 C cggGTgagc5 8.18 117

aggGTgagc 7.75 11

ERAP2 rs2248374 B6 atgGTaagg5 9.33 69

atgGTgagg 7.61 297

MGC16169 rs12639869 C aagGTatgt5 9.79 225

aatGTatgt 5.87 26

PLD2 rs3764897 A cagGTagag5 7.10 140

cggGTagag 2.04 43

SH3YL1 rs62114506 C atgGTaagt5 11.01 118

atgGTaact 6.06 22

TMEM77 rs3762374 C gttGTgagt5 6.59 2552

gttGTgaat 24.72 394

ZNF419 rs11672136 D ccatAGgtt5 8.87 56

ccaaAGgtt 6.65 13

PARP2 rs2297616 A ctgGTaaga 9.45 1378

ctgGTagga5 6.77 86

ULK4 rs1716698 C aagGTaggg5 8.76 123

aagGTcggg 3.63 13

FAM64A rs7218283 E6 ttgcAGgaa5 5.25 12

ttgaAGgaa 1.79 73

IFI44L rs1333973 C aagGTatgt5 9.79 4602

aagGTttgt 7.81 711

PPIL2 rs12484060 B6 cagGTtggc5 5.52 154

tagGTtggc 2.04 370

OVGP1 rs1264894 D acacAGggc 10.03 101

gcacAGggc5 9.22 28

TMEM149 rs17638853 A cagGTgagc 9.60 193

cagATgagc5 1.42 32

C14orf129 rs2053588 B6 cagGTactg 9.04 9

caaGTactg5 0.23 62

CAST rs7724759 C tcgGTgagt5 11.11 647

tcaGTgagt 7.68 117

1See Figure 2 for a graphical depiction of the two alternative isoform structures and the relative postion of the SNP-affected splice-site.
2Upper-case bases represent consensus donor/acceptor site and bold font indicates SNP.
3Maximum entropy score as calculated using MaxEntSCan [15].
4Averaged PLIER-summarized expression score for each homozygous genotype.
5Ancestral genotype, as inferred from the chimpanzee genome.
6Cases for which an inverse correlation between splice-site strength and probeset expression is expected based on the two isoform structures and the position of the
affected splice-site, as shown in Figure 2.

doi:10.1371/journal.pgen.1000766.t002
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the fixation index (Fst) of all 41 re-sequenced HapMap SNPs

based on the frequencies in the 4 available populations (see

Methods), and compared the results to a simulated dataset. The

average Fst was significantly greater than expected (p = 0.046) by a

small margin. One SNP had a Fst above the 99.999th percentile

relative to the simulation dataset, rs6580942 (A/C), the best

candidate SNP in the ESPL1 gene. This is very significant, even in

a sample of 41 (p = 4.1E-3). The C allele has a frequency of 0% in

the African (YRI) and Asian (CHB+JPT) populations compared to

33% in the Caucasian population (CEU). We then calculated the

highest relative extended haplotype homozygosity (REHH) in the

CEU population considering various size blocks below 500 kb

centered on the same 41 SNPs (see Methods for details). We

performed the same analysis on 300 randomly chosen SNPs in

genes as a control. There was no significant difference between the

average highest REHH of our sequenced SNPs and the control

set. No SNP showed a REHH score above the 99th percentile of

the control set. However, we noticed that rs10941112 (A/G), the

best candidate SNP from the AMACR gene, had both a Fst above

the 97th percentile, with the A genotype varying from 0% in the

African population to 37% and 62% in the Asian and Caucasian

populations respectively, and a REHH above the 97% percentile,

with the A allele showing 122.5 fold greater homozygosity for a

block of 391 kB around the SNP than the G allele. The combined

extreme result in both tests is highly unlikely (p = 8.0E-4) and is

indicative of positive selection. These two analyses have brought to

light strong evidence suggesting that the SNPs rs6580942 and

rs10941112, in the ESPL1 and AMACR genes, respectively, have

undergone recent positive selection. Other than these 2 SNPs,

there is no strong evidence of positive selection, indicating that

many of our re-sequenced HapMap SNPs may be selectively

neutral.

Discussion

Can we tell how much splicing variation exists between
individuals?

Previous micro-array studies have often attempted to estimate

the real amount of AS or gene-level differences simply from

counting the number of cases which surpass a multiple-testing

corrected significance threshold [6,8], placing complete faith in the

results of the micro-array as well as the normalization, summa-

rization and whichever AS detection algorithm was used. The first

problem with such an approach is that many sources of noise can

cause false positives, like SNPs within probes, cross-hybridizations

or technical noise, as well as other distortions such as probesets

responding unevenly to a gene-level change. The second weakness

of such estimations, as our results demonstrate, is that many real

AS events lie far below standard significance thresholds. The

highest P-value for a validated AS candidate in this study was

7.3E-4 as opposed to 4.2E-9 in the previous study on the same

dataset. This means that approximately 15 times more probesets

could be considered potential AS candidates. Of course, we do not

suggest that we found 15 times more AS than the previous study

but rather, by integrating EST evidence and utilizing a more

sophisticated AS detection algorithm, we can show that the

speculative content of the array, which comprises about 80% of

the array, as well as the less significant measurable differences on

the array contain valuable information which have thus far, been

mostly overlooked. Our results show that Exon-Array data by itself

may be too noisy to produce reliable estimates of AS at the

genome-wide scale. All we can conclude is that genetically

controlled splicing differences exist between individuals and are

probably more common than was previously estimated. A more

definitive answer on the real extent of individual-specific AS may

come from high-throughput sequencing, which can avoid probe

target bias and detect AS differences qualitatively rather than

through statistical inference.

Alternative splicing and disease predisposition
We have shown that many splicing differences between healthy

individuals can be identified using the Exon Array platform. We

expect that many more, perhaps approaching the complete map of

the splicing eQTL (expression quantitative trait loci) landscape,

will be catalogued soon using more sensitive methods, such as deep

mRNA sequencing. Most of these splicing differences which we

can detect are controlled by polymorphisms in cis-regulatory

regions or in the vicinity of an implicated splice-site. These

differences between individuals could contribute to phenotypic

variation and could either be neutral in their effects, or confer

differential susceptibility to complex diseases. A few of our

validated events occur in genes which have already been

associated with diseases. BCKDHA is related to maple syrup

urine disease, type 1a [20], a rare inherited metabolic disorder

which, without a highly controlled diet and close monitoring of

blood chemistry, causes progressive neurological damage which

can cause vomiting, eating difficulties, irregular breathing, coma

or death. Deficiency of the gene alpha-methylacyl-coa racemase

(AMACR) is a rare disorder of the fatty acid metabolism which is

characterized by neuronal and liver abnormalities [21] and the

gene is considered a useful biomarker for various types of cancer

[22], making it quite interesting that this gene contained the SNP

with the most evidence of positive selection. Interleukin 6 (IL6) is

an important mediator of fever [23] and the gene has been

associated with osteoporosis [24] and Kaposi’s sarcoma [25].

MMAB is related to vitamin B12 responsive methylmalonic

aciduria [26], the inability to synthesize adenosylcobalamin, a

vitamin B12 derivative, and whose symptoms include metabolic

acidosis and retarded development. A SNP in MMAB, which is in

linkage disequilibrium with our causative splicing SNP, has

recently been associated with HDL cholesterol levels [27].

Surprisingly, all of the above AS events are within protein-coding

regions of the genes, making it very likely that these heritable

differences contribute to individuals’ predisposition to disorders

similar to those caused by inactivation of those genes or to other,

more complex, diseases.

Complex diseases such as diabetes, cancer or schizophrenia are

expected to be influenced by polymorphisms in a large number of

genes, which may interact in multifarious ways. Many of the

polymorphisms we identified in this study induce, through AS,

Figure 2. AS type and affected splice-site for SNPs identified in
Table 2 and Table 3. The arrow indicates the splice-site affected by
the polymorphism. The genes are read from left to right, as indicated by
the intersecting arrow heads. The type of AS event and which splice-site
is affected is essential to understanding the relation between the
probeset expression change and the theoretical efficiency of splicing. In
(A,C,D), the correlation should be positive since the use of the splice-site
produces a longer transcript, while in (B,E,F), an inverse relation is
expected since the use of the splice-site produces a shorter transcript.
doi:10.1371/journal.pgen.1000766.g002
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Table 3. SNPs affecting predicted exonic splicing enhancers (ESEs).

Gene SNP ID AS Type1 Allele Splicing Enhancer Sequence2 Splicing Factor ESE Finder Score3 Probeset expression4

VISA rs17857295 C C CTACCAG SRp40 2.80 429

CCAGAGC SRp40 2.80

GTCTACCA SC35 4.01

CAGAGCT SF2/ASF6 2.94

G5 None - - 17

SGOL1 rs61729306 C/D A CACACTG SF2/ASF6 3.42 95

CACTGGG SF2/ASF6 3.10

ACACTGG SRp40 5.03

T5 CTCTGGG SF2/ASF6 2.67 5

ACTCTGG SRp40 3.98

WARS rs941928 D C GTGTACTA SC35 2.34 184

G5 None - - 12

UEVLD rs56151250 C G GCATTCTG SC35 2.41 52

TGCATT SRp55 2.97

C5 None - - 5

AMACR rs10941112 C A TGACAAG SRp40 4.94 381

CTGACAA SF2/ASF6 2.81

G5 GCACTGG SRp40 3.57 76

DUSP18 rs5753268 C T AACCTCTA SC35 3.13 58

CCTCTAC SRp40 3.26

C5 AACCCCTA SRp55 3.89 12

USMG5 rs7911488 D C CTGCCAA SF2/ASF6 2.40 1186

TGCTGC SRp55 3.02

T5 None - - 282

ESPL1 rs6580942 B7 A5 TGCCCGA SF2/ASF6 2.19 145

CCGACTT SF2/ASF6 2.57

GACTTGAA SC35 2.71

CGACTTG SRp40 2.88

C CCGCCTT SF2/ASF6 2.16 418

MMAB rs2287180 C T CTGCCTA SF2/ASF6 2.64 217

CTACTCT SRp40 2.72

TGCCTA SRp55 3.47

C5 CTGCCCA SF2/ASF6 2.53 81

CCACTCT SRp40 3.03

RBCK1 rs41281892 C G5 CTGAGGT SF2/ASF6 4.15 95

CCTGAGG SRp40 3.20

A CTGAGAT SF2/ASF6 2.37 5

CCDC41 New SNP at C/D G GGATCTTA SC35 3.03 84

chr12:93353207 TGAGGA SRp35 2.82

C AGCATC SRp55 3.63 32

ZNF83 rs7248435 F7 C TGTGGC SRp55 3.77 13

A5 TGTGGA SRp55 3.41 56

ATP5SL rs1043413 D C5 CCCACGT SF2/ASF6 4.49 379

TCCCACG SRp40 3.62

TGCTCCCA SC35 3.07

G TGCTGC SC35 3.29 153

TGCCACG SRp40 2.80

RNASEN rs55656741 D C5 TTTATCG SRp40 2.84 307

T GTTTATTG SC35 2.80 174

TTATTGG SRp40 3.35
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potentially much more dramatic changes to the protein sequence

than do non-synonymous coding SNPs. We have shown that

common SNPs can influence alternative splicing across individuals

even in relatively important genes, indicating that the genotyping

of such SNPs will likely play a very significant role in predicting the

occurrence of complex diseases in the future.

Figure 3. Electrophoresis bands of RT-PCR–amplified minigene mRNA products. Each column represents a different individual of the
specified genotype. Above each gene’s respective bands are the abstract depiction of the expected isoform structures associated with each
genotype, boxes indicating exons and lines, introns (the relalive lengths are not to scale). For (A–C), the causative SNPs are, respectively, rs2297616,
rs2248374 and rs7724759, which all affect the splice-site region, as described in Table 2. In these cases, the band migrations demonstrate that the
individual genotypes are tightly linked with a complete change in isoform length. In these cases, only the associated isoform is expected to be
present in individuals of a specific homozygous genotype. In (D), the causative SNPs for AMACR and ATP5SL are, respectively, rs10941112 and
rs1043413, which are exonic and disrupt ESE sequences, as described in Table 3. While for MMAB, it can be one of 3 consecutive, fully linked SNPs, the
prime candidate being rs2287180, which also disrupts ESE sequences (see Table 3). In these last 3 cases, instead of a complete switch in isoform
length, we observe a change in the intensities of detectable isoforms which is perfectly associated with the SNP genotype. This makes sense
considering the relatively less crucial role of ESEs as compared to the immediate splice-site neighborhood. The isoform structures depicted represent
the isoform structure which is favored in each genotype, relative to the other genotype. All of the first columns on the left are 100 bp increment
reference ladders.
doi:10.1371/journal.pgen.1000766.g003

Gene SNP ID AS Type1 Allele Splicing Enhancer Sequence2 Splicing Factor ESE Finder Score3 Probeset expression4

SERGEF rs211146 C A5 TTCATC SRp55 3.22 219

G CGTCTCCG SC35 2.45 129

CGTCTCC SRp40 2.70

TTCGTC SRp55 3.83

ACP1 rs11553746 D T None - - 423

C5 TGACAGC SRp40 4.66 269

Note: The relative splice-site usage disagrees with expectations for the last 3 cases.
1See Figure 2. Cases marked C/D are cases where the SNP is very close to the middle of the exon.
2Bold font indicates the SNP position.
3Score calculated using ESE Finder 3.0 online tool [16].
4Averaged PLIER-summarized expression score for each homozygous genotype.
5Ancestral genotype, as inferred from the chimpanzee genome.
6SF2/ASF (IgM-BRCA1) [51].
7Cases for which an inverse correlation between splicing efficiency and probeset expression is expected based on the two isoform structures and the position of the
affected splice-site, as shown in Figure 2.

doi:10.1371/journal.pgen.1000766.t003

Table 3. Cont.
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Isoform eQTLs and the emerging role of in silico
predictions

Hundreds of genome-wide association studies (GWAS) carried

out to date have generally failed to identify causative protein-

coding disease variants [28]. Many of the underlying causes may

be due to subtler, regulatory genetic influences [29]. Thus, a lot of

interest and resources have been allocated to identifying eQTLs,

genes whose expression levels are affected by regulatory SNPs.

Although identifying eQTLs has been quite successful [6,30–33],

there has been considerably less accomplishments in teasing apart

regulatory haplotypes and pinpointing the SNP actually respon-

sible for the regulatory difference. Our group’s earlier work

demonstrated the existence of common isoform eQTLs; i.e. genes

under genetic control resulting in differential expression of

transcript isoforms including: alternative splicing, alternative

polyadenylation, and alternative transcript initiation. Here, we

postulate that in many of those cases, it should be possible to

narrow down the regulatory region to the vicinity of the alternative

event (e.g. cassette exon), and subsequently identify the causative

polymorphism with high confidence. In some of the cases, as in the

ERAP2 gene, the common splicing polymorphism introduces a

premature stop codon, most likely resulting in nonsense-mediated

decay of the alternative product and a drastic reduction in the

overall transcript levels, suggesting that splicing and RNA

processing variations may be underlying some of the common

expression QTLs. This knowledge will be essential for future

functional studies and perhaps for future applications such as

genetic therapy.

In 2004 Nembaware et al. used public EST data to show the

existence of allele-specific transcript isoforms in human [34]. In

2007, Hull et al. showed that it is possible to identify such events in

lymphoblastoid cell lines [7]. They selected 70 alternative splicing

events, and showed that 6 of them were consistently associated

with a specific genotype. They also used in vivo assays

demonstrating causative nature of 2 candidate SNPs, suggesting

that a substantial number of alternative splicing events may be

controlled by genetic polymorphisms. These studies were followed

by genome-wide microarray-based approaches [6,8,35], which

confirmed and further expanded our knowledge of genetic control

of isoform variation. Earlier this year, Zhang et al. published an

article [8] where they used the Exon-Array on lymphoblast cell

lines to look for genetic variants which account for AS differences

between populations. They claim, based on multiple-testing-

corrected statistics, that they discovered 397 such differences

between the Caucasian (CEPH) and African (YRI) populations.

Recently, other groups have approached the problem from the

purely genetics angle: knowing the polymorphisms that are

present, they attempted to predict their effect computationally

and identify exons that are differentially spliced across individuals.

This approach has so far met with limited success. Elsharawy at al.

[36] have obtained an extremely low validation rate of their in silico

predictions, ranging from 0% for ESE predictions to 9% for SNPs

in splice-sites, demonstrating our far from complete understanding

of the effects of cis-regulatory sequences on splicing.

Thus, in the present study, we take further steps towards

optimal integrated use of the existing data – gene structure

annotation, splicing-sensitive microarray data, SNP databases and

targeted sequencing - to detect splicing eQTLs and their genetic

determinants. First, taking advantage of the high level of coverage

of the current sequence-based annotation of AS events, we

concentrate only on events that have been previously reported.

This approach is highly justified by the observation from the

previous analysis [6] that less than 10% of the detected and

validated AS events were novel (unannotated), suggesting that the

current EST coverage of the transcriptome is nearly complete.

Secondly, we use a much improved algorithm to detect AS events

in exon array data. Finally, we show that among the events that

are detected using the above criteria and further validated in the

lab, a majority contain SNPs that have highly suggestive in silico

evidence of causation. We can show in a post hoc analysis that

knowing the sequence variation information before-hand could

have significantly improved the specificity of our search for AS. 27

out of 34 (79%) validated and sequenced alternatively spliced

regions contained a SNP for which in silico evidence appropriately

explained the change, compared to 2 out of 7 (29%) for the

sequenced regions which were negatively validated (data not

shown). Given the current low resolution of HapMap SNPs,

making use of in silico predictions of SNPs’ effects at the genome-

wide level would only be applicable to a fraction of Exon Array

probesets. Less than half of our likely causative SNPs (in splice-sites

or exons) were HapMap SNPs. The experience of Elsharawy et al.

showed that the specificity of the purely computational approach is

quite low, given the current level of understanding of AS

regulation. However, once the resolution of SNPs and their

genotypes increases significantly, which is already the case for four

CEPH HapMap individuals which were recently fully sequenced

(http://www.1000genomes.org/), it should become feasible to

merge computational predictions with biological expression data

to improve the power to detect cis-acting polymorphisms involved

in splicing. In turn, the identified polymorphisms and their effects

will help to further enhance our understanding of splice-sites and

cis-regulatory sequences.

Understanding the ‘‘splicing code’’
Out of the two splice-sites, the 59 intronic splice-site (the donor

site) appears to be the dominant identifiable target of these

regulatory polymorphisms, with 14 predicted causative SNPs, as

opposed to 3 for the 39 splice-site (the acceptor site). Given that we

considered 23 bases for the 39 splice-site compared to 9, for the 59

splice-site, it seems unlikely the result of pure chance, suggesting

either that there may be greater purifying selective pressure acting

on the region around the 39 splice-site, or that, due to the greater

degeneracy of the 39 sequence [15], SNPs affecting it influence

splicing strength too subtly to be detected by the micro-array

platform. In the case of cassette exons, the fact that the 59 splice-

site sequence, as well as ESE sequences, influence the use of the

upstream splice-site defining the exon start, demonstrates the fact

that in multi-intronic genes in vertabrates, the ‘‘exon definition’’

step, whereby splice-sites are paired across the exon, takes place

before the assembly of the mature spliceosome and splicing of the

intron can occur [37,38], as opposed to species like yeast, whereby

the intron definition occurs independently for each intron and a

mutation of the 59 splice-site would cause retention of the

downstream intron rather than exon skipping [39]. The fact that

the vast majority of putative causative SNPs affected either the 59

splice-site or ESE sequences shows that the exon definition plays a

central role in generating these splicing variations across

individuals.

Conclusion
Expression QTL analysis has garnered considerable interest in

recent years and is increasingly being used in conjunction with

whole genome association studies to narrow down the list of

genetic variants putatively responsible for complex genetic

disorders [28]. Here, we focus on a specific type of eQTL,

alternative splicing variation, and extend the results of prior studies

by validating the greatest number of these differences and showing

that such variation may be more common than previously
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estimated, and that its effects can be quantitatively very subtle.

Furthermore, this work demonstrates that we have the ability to

identify the specific causative genetic variants responsible for

isoform eQTL differences among individuals. It also underscores

the value of data integration in order to obtain improved true

positive rates in large scale analyses of splicing. With the upcoming

release of the 1000 genomes data [40] and the growing use of

high-throughput sequencing for transcriptome analysis, we will be

able to broaden our understanding of the complex intricacies of

the ‘‘splicing code’’ and use this knowledge to confidently identify

splicing regulatory SNPs.

Methods

Integrating public AS information and mapping to exon-
array probesets

In order to select alternative splicing candidates within the vast

set of significant associations between SNPs and probeset

expression, we used publicly available knowledge of AS events to

prioritize the list. We only considered Exon-Array probesets whose

target coordinates overlapped an EST-supported AS event. We

used a cut-off of a single base, reasoning that a single base

mismatch could significantly affect the probe binding efficiency

[41]. We downloaded the list of putative AS events in Human

based on UCSC Known genes and human AS events from ASAP-

II. We also retrieved from the UCSC Genome Browser website

the full tables describing the human genome annotations based on

Blated [42] spliced EST and mRNA sequences to gather some

additional AS evidence.

We applied strict criteria when inferring potential AS events

from EST/mRNA data. To avoid confusing intron retention

events with incomplete splicing or transcript length changes with

incomplete mRNA sequences, we only selected cassette exons or

alternative splice site usages. The latter two types of AS are also

most confidently validated via PCR since they generally introduce

short changes in the mRNA sequence. We had to define a

reasonable gene structure from the Blat results, which, especially

for EST annotations, include many short gaps which most

probably originated from sequencing errors rather than genuine

splicing. We considered gaps greater than 30 bps as introns,

ignored gaps smaller or equal to 3 bases, and filtered out

annotations containing gaps of any size in between. An exon was

defined as a continuous alignment of 15 bases or longer,

surrounded in the contig by an intron and a part of an exon on

each side. Alternative splice-site usages had to be at least 6 bases

long and their length a multiple of three if they fell within a UCSC

gene’s coding region. We insisted that EST’s or mRNA’s

supporting an event should contain sequence from the next exon

on each side of the event with the flanking introns spliced. Since

we considered EST data to be less reliable than the mRNA data,

we only reported events with at least two EST’s supporting each

isoform.

Identifying genetically-controlled isoform variations
This step was divided into two parts: the analysis of the core

probesets, the roughly 240,000 probesets that target well

supported exons, and the analysis of all probesets, which includes

many more potential genes and gene regions with little evidence of

ever being expressed. In both cases the algorithm was the same but

we modified the thresholds in order to take into account the

greater amount of noise from the non-core probesets. The

normalization, summarization and regression steps were described

in an earlier publication [6]. Briefly, PLIER was used to normalize

the data and summarize the probe scores into probeset scores and

linear regression was used to correlate the expression level of each

probeset with the genotypes of every known SNP within 50kB of

the gene.

Subsequently, for each gene (meta-probeset), we identified the

most significant probeset-SNP association and used this SNP to

report a regression p-value and fold-change between homozygous

genotypes for every probeset in the gene. For SNPs with no

homozygous minor allele individuals, the expression fold-change

between the two genotypes was doubled in order to estimate the

predicted fold-change between homozygotes. To choose probesets

as candidates for AS, we applied a threshold p-value for the linear

regression and an absolute value threshold for a score U, as

described in Equation 1, which represents the unexpectedness of

the fold-change in the context of the other probeset expression

changes in the gene.

U~
FCps-FCgene

szK
ð1Þ

,where, in log2 values, FCps is the probeset fold-change, FCgene is

the average fold-change of all other probesets in the gene, s is the

standard deviation of the other fold-changes and K is a small

constant which we arbitrarily set at 0.2, added to control for genes

with too little variation, or in other words, stabilize the variance.

For probesets that passed both thresholds and had prior AS

evidence, we plotted the log10 of the p-values and the log2 of the

fold-changes of all probesets in the gene onto the UCSC Genome

Browser as custom tracks and selected candidates for PCR

validation via visual inspection. Links to all selected candidate

tracks are available in Table S1. The ‘‘AS-marker’’ track indicates

the position of the affected probeset. We visually inspected 100

candidates from the analysis of core probesets and 160 candidates

from the analysis of all probesets, in order to select only the ones

where the microarray based and EST-based predictions where

concordant in the context of the entire transcript. For the visually

verified candidate probesets, we re-applied the linear regression

using the probe-level scores and retained only the candidates for

which a majority of individual probes agreed with the probeset-

level regression (which is based on PLIER’s probeset summary

scores).

The unexpectedness (U) measure described in Equation 1 is

better suited at finding short AS events, such as single cassette

exons or alternative splice site usage rather than large splicing

changes, such as the one observed in the ELAVL1 gene in the

previous paper [43], where half of the probesets can be included or

excluded. This later case would cause the standard deviation of

fold-changes to be very large, thus bringing down the score. We

were specifically looking for short AS events since they are more

readily amplifiable via PCR and hence easy to validate. The

presence of the standard deviation in the denominator also helps

to avoid noisy genes due to low expression or inconsistent splicing

patterns, such as immunoglobulin genes, and false positives caused

by the erroneous inclusion of multiple genes in the same meta-

probeset.

PCR validation
We selected 72 potential AS events for PCR validation.

Although we had all 57 lymphoblast samples in our lab’s

possession, given limited resources, we selected a strategic sample

of 10 individuals which together harbored variation for all 72

associated SNPs and forwarded the samples for validation of the

alternative splicing events using semi-quantitative PCR. Primers

were successfully designed for 62 events, but 4 of the reactions did

not yield any product (primer failure). The sizes and relative
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quantity of amplicons were determined using a Caliper LC90

automated chip-based capillary electrophoresis instrument and

then sizes were matched-up with expectations based on AceView

gene annotations, as detailed in the paper describing this

automated AS validation procedure [44]. For the 58 reactions

which produced viable results, we performed linear regression on

the estimated ratios of each amplicon with the genotypes of the

associated SNP. When the direction of the slopes and the lengths

of isoforms agreed with the micro-array regression and the smallest

regression p-value was below 0.05, we considered these cases fully

validated as genetically cis-regulated isoform level variations. If the

lowest p-value was above 0.05 but there was a clear visible trend in

the right direction, we classified them in the second category: not

statistically significant, but two isoforms were present with a trend

in the right direction. We also designated lower levels of validation

confidence for cases that showed isoform level variations but

where the association with the SNP could not be verified, and

finally for cases that showed AS without detectable inter-individual

variation.

Sequencing
We performed sequencing of the genomic DNA of the regions

around the 72 validation candidate AS events as well as 10

candidate events from previous analyses. We selected 4 individuals

to sequence for every AS candidate exon. We chose 2 individuals

to represent each distinct homozygous genotype and made sure

they also represented the difference in probeset expression

associated with the genotype. Heterozygotes were used in cases

where the rare minor genotype was not present in our sample. We

designed primers with Primer3 [45] to amplify a region of 600–

800 bases centered on the probeset and sequenced these regions

in the 4 individuals. In total, we retrieved useful sequence

information for 60 of the regions and we were able to detect 86

SNPs. We used Phred [46], Polyphred [47] and Consed [48] to

analyze the chromatograms and we aligned the 4 output sequences

to a reference sequence using ClustalW [49] to map the detected

SNPs to the genome. To view the SNPs in the context of the gene

structure and identify potentially important polymorphisms, we

displayed the SNP positions with their associated micro-array

expression change on the UCSC Genome Browser as custom

tracks. These tracks are available in the Table S2.

Scoring polymorphic splice-sites and splice-site motifs
Whenever a SNP was close enough to a splice-site, we used the

MaxEntScan [15] online tool to score the theoretical strength of

the different versions of the splice-site sequence. We found 13

SNPs that fell inside MaxEntScan’s 9 base window around the 59

splice-site and 3 SNPs that fell inside the 23 base window around

the 39 splice-site (see Table 2). In every case, we could show a

qualitative agreement between the expected change in splice-site

strength calculated by MaxEntScan and the micro-array expres-

sion change.

Predicting and scoring SNP-affected exonic splicing
enhancers

For every SNP that was sequenced in an exon, we used the

online tool ESE Finder 3.0 to predict potential exonic splicing

enhancers (ESEs) that would be affected by the SNP (see Table 3).

We tabulated the sequences and matrix-based scores of all ESE

predictions containing the polymorphic base and surpassing ESE

finder’s established thresholds, except for the one ESE detected

in the WARS gene, which was only 0.04 below the default

threshold.

Minigene assays
We made use of in vivo minigene assays to verify the causal link

between 6 candidate SNPs and detected AS events. The minigene

assays were based on an article by Singh and Cooper [18]. We

performed the experiment on 2 genes from this analysis, MMAB,

and AMACR, and 4 top-scoring hits from the previous study,

PARP2, ERAP2, ATP5SL and CAST. Primers were designed to

amplify the alternatively spliced exon and 200bps from flanking

introns. Genomic DNA was amplified for four individuals in each

case, two with each homozygous genotype for the SNP of interest.

Sequences were digested with Xba1 and Sal1, as was the RHCGlo

plasmid vector. The plasmid and amplicons were then ligated.

Clones were purified, PCR-amplified and sequenced, to verify that

the final plasmid sequences assayed differed only at the expected

SNP. Then 2ug of the new plasmids were transfected into wells

containing ,361015 HeLa cells. 24–48h after transfection, RNA

was extracted using Trizol, following the manufacturer’s instruc-

tions. Alternative splicing was assessed via RT-PCR using the

plasmid-specific primers RSV5U and TNIE4 [18]. Isoform

presence was assessed by gel electrophoresis (see Figure 3) and,

in 3 cases (AMACR, MMAB, ATP5SL) quantified by capillary

electrophoresis using the Agilent DNA 1000 Chip Kit, according

to the manufacturer’s protocol.

Fixation index (Fst)
We used the publically available program fdist2 [19] to calculate

the Fst of all 41 HapMap SNP we sequenced based on the

genotype frequencies in 4 populations, CEPH, YRI, CHB and

JPT, merging the Asian population (CHB and JPT) frequencies

together, as recommended by the fdist2 instructions. In order to

estimate the percentile ranking of our SNP Fsts, we used fdist2 to

create a simulation dataset of 20,000 data points based on 3

demes, 3 sample populations and an expected Fst of 0.187, which

was the average Fst estimated from 800 random HapMap SNPs.

Relative extended haplotype homozygosity (REHH)
For all 41 re-sequenced HapMap SNP, based on the phased

haplotypes of the CEU HapMap population (Build 36) and a core

haplotype of a single SNP, we measured the relative extended

haplotype homozygosity, as defined by Sabeti et al. [49], at every

size below 500 kb, each step extending the haplotype by one SNP

on each side. We reported the highest measured REHH for any

block size, which was generally situated between 100 and 400 Kb.

The minor core haplotype frequency had to be above 0.2 because

lower frequencies can cause artifactually high REHH values [50].

We also insisted that REHH measurements be supported by at

least 10 identical phased haplotypes to avoid performing the

measurements on overly fragmented haplotypes. We performed

the same analysis on 300 randomly chosen HapMap SNPs that fell

within a RefSeq gene and used this distribution to estimate the

relative percentile of the maximum REHHs of our sequenced

SNPs.

Supporting Information

Figure S1 Capillary electrophoresis readings from the Agilent

1000 DNA chip for the minigene assays. FU stands for

fluorescence units. Each column shows the readings for all assays

for a specific gene. The title of each graph denotes the individual

from which the plasmid insert was derived and his genotype for the

SNP of interest. The individuals, from top to bottom, are in the

same order as the gel columns in Figure 3, from left to right. The

arrows point to the peaks assigned to the two isoforms. The first

and last peak are lower and upper markers, respectively.
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Found at: doi:10.1371/journal.pgen.1000766.s001 (1.01 MB TIF)

Table S1 Events selected for RT-PCR validation.

Found at: doi:10.1371/journal.pgen.1000766.s002 (0.15 MB

DOC)

Table S2 SNPs discovered around AS events.

Found at: doi:10.1371/journal.pgen.1000766.s003 (0.09 MB

DOC)
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