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Genetic determinants of vascular remodelling
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Vascular remodelling is an important physiological mecha-
nism that occurs as a result of changes in hemodynamics,

and is a pathological process that plays a major role in the
clinical manifestations of cardiovascular diseases. In particu-
lar, atherosclerosis and hypertension cause remodelling to
occur in conduit and resistance vessels. Discussed here is vas-
cular remodelling with a focus on the process of intima media
thickening (IMT), an important manifestation of atheroscle-
rosis in the carotid artery. Finally, the important contribution
of genetic factors to vascular remodelling, and IMT in partic-
ular, has been confirmed as a result of recent human and ani-
mal studies (1-4).

VASCULAR REMODELLING DEPENDS ON

MANY FACTORS
Several experimental models have been used to investigate the
mechanisms by which vessels sense and respond to the stimuli
that cause remodelling. Four important general concepts help

to explain the findings from these models. First, the vascular
bed itself plays an important role in the remodelling
response. The formation of a neointima is common in con-
duit vessels such as coronary, carotid and femoral vessels, but
unusual in smaller resistance arteries and the microcircula-
tion. Second, there are large differences among species. Flow-
induced neointima is rare in rats, rabbits and pigs, but occurs
in mice and humans. Third, the stimulus for remodelling is
critical to the response to flow (high versus low versus com-
plete occlusion), injury (endothelial denuding versus severe
injury, such as balloon inflation) and coexisting disease (ath-
erosclerosis, hypertension, hyperlipidemia, etc). Finally,
genetic contributions are very important in understanding
individual responses. For example, different strains of mice
and rats have profoundly different responses to changes in
flow, and to the effects of atherosclerosis and hypertension.
Recent experiments with transgenic mice have identified
more than 24 proteins that influence vascular remodelling.
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Vascular remodelling is an important physiological mechanism that
occurs as a result of changes in hemodynamics, and is a pathological
process that plays a major role in the clinical manifestations of cardio-
vascular diseases. Using a mouse model, it was recently established
that vascular remodelling is partially based on ligation of the carotid.
In this model, low flow was associated with intima media thickening
(IMT). IMT is a major manifestation of atherosclerosis of the carotid
artery, and it is an important predictor of cardiovascular events.
Carotid IMT has a strong genetic component. It was hypothesized
that there would be genetically determined differences in outward
remodelling and IMT induced by carotid flow alterations. Vascular
remodelling among five inbred strains of mice were compared. Despite
similar changes in flow in the left carotid among the strains, dramatic
differences in remodelling of the partially ligated left carotid relative
to control were observed. IMT correlated significantly with heart rate,
outward remodelling and changes in plasminogen activator expres-
sion, cell proliferation and apoptosis. There were significant strain-
dependent differences in the remodelling index (measured as the ratio
of vessel area to IMT), which suggest fundamental alterations in sens-
ing or transducing hemodynamic signals among strains. This model
should be useful to identify and characterize the role of genes that
mediate vascular remodelling.
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Les déterminants génétiques du remodelage
vasculaire

Le remodelage vasculaire est un mécanisme physiologique important qui se
produit par suite de modification de l’hémodynamique. C’est un processus
pathologique qui joue un rôle considérable dans les manifestations
cliniques des maladies cardiovasculaires. Au moyen d’un modèle de souris,
on a récemment établi que le remodelage vasculaire dépend partiellement
de la ligature de la carotide. Dans ce modèle, un faible débit s’associait à
un épaississement de l’intima et de la média (ÉIM). L’ÉIM est une
importante manifestation de l’athérosclérose de l’artère carotide, et c’est
un prédicteur important d’événements cardiovasculaires. L’ÉIM de la
carotide comporte un élément génétique marqué. On a postulé qu’il y
aurait des différences génétiquement déterminées du remodelage vers
l’extérieur et de l’ÉIM, induites par des altérations du débit carotidien. On
a comparé le remodelage vasculaire de cinq souches pures de souris. Malgré
des modifications similaires du débit de la carotide gauche entre les
souches, des différences considérables du remodelage de la carotide gauche
partiellement ligaturée ont été observées par rapport à celui des sujets
témoins. L’ÉIM était corrélé de manière significative avec le rythme
cardiaque, le remodelage vers l’extérieur et les changements d’expression
des activateurs plasminogènes, de la prolifération des cellules et de
l’apoptose. On remarquait des différences marquées propres aux souches
dans l’indice de remodelage (mesurées par le ratio entre la zone du vaisseau
et l’ÉIM), ce qui laisse supposer des altérations fondamentales de la
détection ou de la transduction des signaux hémodynamiques entre les
souches. Ce modèle devrait être utile pour repérer et caractériser le rôle des
gènes qui soumettent le remodelage vasculaire à la médiation.
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These experiments indicate that there are many sensors and
mediators for vascular remodelling that likely differ in their spe-
cific roles based on the four general concepts already discussed.

Three biological laws define vascular remodelling
To understand the mechanisms responsible for vascular remod-
elling in atherosclerosis, and particularly the biological ‘ration-
ale’ for IMT formation, we discuss the terminology and the
rules that govern remodelling. We believe that the terminology
to describe vascular remodelling should be based on simple
geometry, ie, terms such as radius, circumference and area. By
this, we mean that geometrical changes in the physical com-
partments of the blood vessel should be used to describe remod-
elling as exemplified by measurements such as lumen radius
(rlumen) and area, and external elastic lamina radius (rext) and
area. We define rext as equivalent to vessel size. Because changes
in wall thickness are important for LaPlace’s law, we define
wall thickness as rext – rlumen. This terminology is similar to
that proposed by Mulvany et al (5) for vascular remodelling in
hypertension, although the terminology remains an area of
active discussion (6,7).

Normal vascular remodelling is defined by three biological
laws that explain the ‘rules’ that govern the behaviour of
organs that exist as fluid-filled tubes. Wolinsky’s law states that
vessels remodel to maintain constant wall tension. Specifically,
Wolinsky and Glagov (8) showed that as the diameter of the
aorta increased in mammals (from 0.1 cm in mice to 2.4 cm in
pigs), the wall thickness increased proportionally (0.05 mm
increase in thickness per 1.0 mm increase in diameter). This
compensation in thickness maintained wall tension at a simi-
lar value in all species (approximately 2000 dynes/cm2 for
each elastic lamina in the media). Folkow’s law states that the
reduction in flow that occurs with the vessel contraction is a
function of wall thickness (9). Also termed the amplifier
effect, this law means that a thicker wall causes a greater loss of
lumen than a thinner vascular wall for the same contractile
force. Glagov’s law states that for the blood flow to remain
constant, the lumen diameter must also remain constant.
Therefore, vessel size must increase (a greater rext) if the vessel
wall thickness increases. For example, when atherosclerotic
plaque develops and the vessel size increases sufficiently, the
lumen diameter does not decrease (10). These three laws pro-
vide a framework to discuss the molecular mechanisms respon-
sible for remodelling.

Vascular remodelling plays an important role in
atherosclerosis and restenosis after coronary interventions
in patients
Treatment of obstructive coronary artery disease has focused
largely on reducing intimal mass to maintain adequate lumen
size (11). However, it is now clear that intimal mass is not the
only critical determining factor in stenosis of human coronary
arteries (10), because the vessels enlarge to accommodate
increasing plaque burden during atherosclerosis and after coro-
nary interventions (12,13). These observations suggest that
vascular remodelling preserves blood flow and protects against
clinical symptoms associated with stenosis. Data also support a
critical role for vascular remodelling after percutaneous trans-
luminal coronary angioplasty, as shown by Cote et al (14) and
Tardif et al (15) in the MultiVitamins and Probucol (MVP)
study, in which the major effect of probucol was to promote
outward remodelling as defined by an increase in rext.

An important stimulus for vascular remodelling at the site
of atherosclerosis is likely to be blood flow itself (16). Because
blood flows along a vessel, it creates a force (ie, shear stress) on
the vessel wall. During atherosclerosis, there is a loss of lumen
diameter that leads to an increase in shear stress. Endothelial
cells are uniquely positioned in the vessel to sense changes in
shear stress at the plaque site. Compensation by endothelial
cells to restore normal shear stress is achieved by their ability
to secrete vasoactive factors such as nitric oxide (NO) (17) or
growth factors such as platelet-derived growth factor (18-20).
Support for a critical role of endothelial cells includes the
report by Tronc et al (21) that blocking NO formation with
L-nitroarginine inhibited flow-dependent remodelling in rab-
bits by approximately 70% and data for diminished remodel-
ling in the endothelial NO synthase (eNOS) knockout mouse
(18). A recent paper by Stone et al (3) showed that in the
presence of high shear stress (τ greater than 38 dynes/cm2),
atherosclerotic arteries remodelled by decreasing plaque area
and increasing lumen without changes in vessel size measured
by rext. In arterial sites with low shear stress (τ less than
9 dynes/cm2), lumen was maintained, despite an increase in
plaque size, by an increase in vessel size (rext). At intermedi-
ate values of shear stress (τ betweem 9 dynes/cm2 and
38 dynes/cm2), both processes occurred. These data suggest
that vascular remodelling with preservation of lumen diameter
as described by Glagov can occur in regions with both low and
high shear stress, although different mechanisms appear
responsible.

Carotid IMT: A marker for pathological remodelling?
An important predictive phenotype for human cardiovascu-
lar disease is carotid IMT (23,24). Measuring the IMT may be
the best method for detecting early atherosclerosis and assess-
ing the subsequent risk of cardiovascular events (stroke,
myocardial infarction and peripheral vascular disease) (24-
27). The IMT is measured noninvasively by means of B-mode
duplex scanning. The value of IMT is defined by the two par-
allel echogenic lines that correspond to the lumen-intima
and the media-adventitia interfaces. These interfaces are well
defined by ultrasound in the far arterial wall only, and it is
not possible to distinguish between media and intima. There
is a strong association between coronary risk factors and
increased IMT, including associations with smoking, dia-
betes, age, sex (men greater than women), total cholesterol,
low density lipoprotein, hypertension and peripheral vascular
disease. The most significant positive association is in
patients with plaques in the carotid bulb (P<0.0001). More
importantly, these risk factors predict progression of IMT. For
example, in the Monitored Atherosclerosis Regression Study
(MARS) (28), dietary cholesterol, body mass index and
smoking were significant predictors of the annual progression
of carotid IMT (P<0.05) in patients with coronary artery dis-
ease. In addition, the IMT is highly predictive for cardiovas-
cular events. In the Rotterdam Study, the OR for stroke per
SD increase in the carotid IMT (0.163 mm) was 1.41 (25).
The European Atherosclerosis Study demonstrated that
peripheral vascular disease was significantly associated with
an increased carotid IMT (24). Lange et al (29) determined
the extent of the familial aggregation of carotid IMT in the
presence of type II diabetes. After accounting for the correla-
tion due to age, sex and race, the adjusted heritability esti-
mate for carotid IMT was relatively high at 0.32. These data
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provide empirical evidence that subclinical cardiovascular
disease has a significant genetic component, and that IMT is
a highly predictive and genetically determined clinical meas-
urement.

Flow-dependent remodelling in rats is genetically
determined
The phenomenon of flow-dependent vascular remodelling, in
which blood vessels enlarge with increased flow and ‘shrink’
with decreased flow (“outward” and “inward” remodelling [1],
respectively), has been observed in vascular development in
lambs (30), during enlargement of human maternal vessels in
pregnancy (31) and in shrinkage of vessels supplying unused
muscle in rats (32). Several laboratories (33-35), including our
own, have demonstrated that inward remodelling can be rapidly
induced: by two weeks in rabbits (36,37), by four weeks in rats
(38) and by two weeks in mice (1,22,39). In rabbits, the diam-
eter reductions were fixed by two weeks and were not
reversible with papaverine (37), but were quickly reversed by
restoring flow (40). Flow-induced vascular remodelling is
endothelial- and age-dependent in rabbits (37,40); vessels that
are denuded of endothelium fail to remodel (36). A key role for
NO is suggested by the findings that the eNOS inhibitor
L-nitroarginine prevents outward remodelling in rabbits’ com-
mon carotid arteries when stimulated to enlarge by an arteri-
ovenous fistula (21), and mice deficient in eNOS fail to
remodel in response to decreased flow (22). As discussed
below, transgenic mouse studies have implicated 24 proteins as
important for remodelling after complete occlusion of the
carotid artery. However, little is known regarding the mecha-
nisms responsible for remodelling in response to increased and
decreased flow.

Our laboratory initiated a project to develop a model that
would permit an unbiased genetic analysis of the regulatory genes
involved in flow-dependent remodelling. Key requirements for
our model included the ability to study both high and low flow,
reproducibility, technical ease in establishing the change in flow,
availability of multiple inbred strains, ability to perform physio-
logical measurements, a sequenced genome with multiple poly-
morphic markers and low cost. Initially, we focused on rats
because their larger size permitted development of the procedure
and validation of the remodelling mechanism (41,42).

In Fischer rats, we developed a quantitative, highly repro-
ducible model of carotid flow alteration that involved ligation
of the left internal and external carotid arteries, leaving flow
only through the occipital artery (42). Left common carotid
artery (LCA) blood flow immediately decreased by approxi-
mately 93%, whereas flow in the contralateral right carotid
artery (RCA) increased by approximately 46%. Changes in
shear stress acutely mirrored the changes in blood flow. Outer
diameter (OD) increased in the RCA by 28.5%±4.6% in juve-
nile rats (younger than 12 weeks) compared with 10.8%±4.8%
in adult rats (older than 20 weeks), and shear stress returned to
initial values after chronic exposure to increased flow in juve-
niles, but not in adults. There was no difference between juve-
niles and adults in the response to decreased flow; the OD of
the LCA decreased by 15.5%±3.5% in juveniles and by
16.4%±3.4% in adults. We found that there was a direct
monotonic relationship between flow and diameter; decreases
in flow reduced OD in all rats, and increases in flow enlarged
OD. A difference in the sensitivity to flow (of borderline sig-
nificance) was observed between juvenile and adult carotids

that were exposed to an increased flow, with greater remodel-
ling occurring in juveniles than in adults for a given change in
flow. Medial cross-sectional area increased in the RCA of juve-
nile rats with increased flow, but there was no change in media
area in the LCA. No intima formed in either high- or low-flow
vessels. We found that eNOS levels in ligated rats increased
significantly in the RCA and decreased in the LCA compared
with sham rats.

Next, we compared the remodelling changes in four strains
of inbred rats (41). After four weeks of altered flow, there were
significant interstrain differences with respect to the change in
the OD of the carotid, the relationship between flow and shear
stress, and the extent to which shear stress was normalized.
Genetically hypertensive rats exhibited the greatest reduction
in shear stress in response to increased flow, stroke-prone spon-
taneously hypertensive rats exhibited a smaller response and
brown Norway rats exhibited the smallest response. Stroke-
prone, spontaneously hypertensive rats and genetically hyper-
tensive rats also differed significantly in outward remodelling
in increased flow arteries. In response to decreased flow, brown
Norway rats exhibited the smallest reduction in shear stress.
These findings demonstrate significant strain-dependent dif-
ferences in shear stress regulation and vascular remodelling in
response to altered flow. Like our previous study (42) in
Fischer rats, there was no change in media area and no neoin-
tima formation. However, we have chosen mice for our
genetic analysis because the magnitude of the phenotypic dif-
ferences (measured by changes in vessel wall components) was
much greater.

Flow-dependent remodelling in mice is genetically determined
Using a complete ligation and flow cessation mouse model
(43), the roles of at least 24 genes in geometrical remodelling
have been studied in genetically altered mice (eNOS,
endothelin receptor, Fas ligand, matrix metalloproteinase
[MMP]-2, MMP-9, neuronal NOS, neurite outgrowth
inhibitor B, p130, p22phox, p75 netrophin receptor, plasmino-
gen activator [PA] inhibitor-1, steroid receptor coactivator-3,
tissue factor pathway inhibitor, thioredoxin reductase-3,
vimentin, vitronectin, adenosine 2a receptor, inducible NOS,
osteopontin, P-selectin, toll-like receptor-4 and von
Willebrand factor) (44-64). Vascular remodelling is genetically
controlled in the complete occlusion model as measured in
inbred mice strains (2). Specifically, significant differences in
variations in vessel size, neointima formation, lumen area and
medial thickness were found. The largest changes occurred in
SJL/J mice, which displayed extensive inward remodelling
leading to a 78% decrease in lumen area. Lumen narrowing
was also impressive in FVB/NJ mice and was largely due to
extensive neointima formation as a result of vascular smooth
muscle cell proliferation. These studies suggest that the mouse
carotid provides an ideal model to study the genetics of IMT
and fundamental mechanisms of vascular remodelling.

We used the same partial ligation model developed for the
rat to study flow-dependent remodelling in the mouse
(1,39,65). More importantly, the presence of IMT and lumen
narrowing in the mouse suggested that the mouse carotid
might be useful to study the ‘Glagov phenomenon’. This refers
to the observation that in the early stages of atherosclerosis,
coronary arteries enlarge in relation to plaque area to pre-
serve lumen, thereby obeying Glagov’s law (10). Recent clin-
ical data demonstrate that regions of low shear stress develop
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progressive atherosclerosis measured by increased IMT and
outward remodelling of coronary arteries (3). Thus, we antici-
pated that the low-flow LCA may develop neointima that
would be modulated by genetic factors.

We compared vascular remodelling among five inbred
strains of mice (C3H/HeJ [C3H], DBA/2J [DBA], C57Bl/6J
[C57], FVB/NJ [FVB] and SJL/J [SJL]) (39). Despite similar
changes in flow in the LCA among all the strains, we observed
dramatic differences in remodelling of the partially ligated
LCA relative to the control. The smallest IMT was found in
C3H/HeJ mice, moderate changes were noted for C57 and
DBA mice, while the largest IMT volumes were in SJL/J and
FVB/NJ mice (3.5-fold greater than C3H mice). Shear stress
did not differ among strains after ligation. Among hemody-
namic factors, low shear stress and high heart rate (HR) were
predictive for IMT. Specifically, HR (C3H=592±6 beats/min,
SJL=649±6 beats/min and FVB=683±7 beats/min), but not sys-
tolic blood pressure (C3H=116±2 mmHg, SJL=119±1 mmHg
and FVB=136±1 mmHg), was predictive. The most impressive
finding was a strong correlation between IMT and outward
remodelling (rext) among inbred strains. Of interest is that,
despite a significant correlation of external elastic lamina with
IMT, there were also significant strain-dependent differences
in remodelling index (measured as a correlation slope).
Specifically, among the high remodellers, SJL mice remodel
mostly by increased intima formation, while FVB mice remodel
primarily by increased media. We also observed significant dif-
ferences between these two strains in the remodelling index
consistent with a limitation of outward remodelling in SJL
mice compared with FVB mice. The remodelling index pro-
vides insight into genetic differences in vascular remodelling,
which suggests fundamental alterations in sensing or transduc-
ing hemodynamic signals among strains. Because shear stress
changes did not differ among strains, a primary role for cells in
the vessel wall rather than endothelium is suggested for the
early stages of vessel remodelling.

The RCA underwent outward remodelling in response to
increased shear stress (from 80×10–6 µm3 to 100×10–6 µm3) with
increased lumen volume (from 60×10–6 µm3 to 80×10–6 µm3) as
expected (66). High shear stress was atheroprotective for the
RCA in that there was no IMT similar to human coronary
arteries (3). Genetic factors appeared to play a small role in the
response to high shear stress because there were no significant
differences among inbred mice strains.

To gain insight into some of the events that may be occur-
ring in the vessel wall, we first studied the role of the two major
matrix-degrading systems, PAs and MMPs. Specifically, we
compared the expression of urokinase-PA, tissue-PA, MMP-2
and MMP-9 in ligated carotids of C57 and FVB mice (65).
Among PAs and MMPs, increased expression of tissue-PA and
urokinase-PA correlated very significantly with increased
IMT. MMP-2, MMP-9 and tissue inhibitors of MMP-2 expres-
sion also increased, but did not differ between strains. Based on
these findings, flow-induced IMT of the mouse carotid corre-
lates with tissue-PA and urokinase-PA expression in two
inbred mouse strains.

RELEVANCE TO HUMAN DISEASE
We believe that the partial carotid ligation model of vascu-
lar remodelling in the mouse exhibits features similar to
human atherosclerotic arteries characterized by Glagov et al
(10). At the early stages of atherosclerosis, coronary arteries

enlarge in relation to plaque area to preserve lumen until
plaque area occupies approximately 40% of the vessel area
(10). Of interest, the common carotid, coronary and renal
arteries are more likely to enlarge in response to plaque forma-
tion than the iliac and femoral arteries (67). In our recent
study (1), there was a strong correlation between outward
remodelling and IMT formation in the carotid. A similar cor-
relation was previously reported for vessel and intima areas in
the carotid flow cessation model in hypercholesterolemic
ApoE knockout mice (68). Also of importance, we found that
genetic background is a critical determinant of remodelling
with unique responses among inbred strains.

Hemodynamic factors other than shear stress, such as HR
and blood pressure, may also be important for vascular remod-
elling. The HR was previously shown to correlate with IMT in
experimental (69,70) and clinical (71) studies. A strong rela-
tionship between HR-corrected QT interval and IMT was
found in humans with early atherosclerotic disease (71).
Despite HR differences between mice and humans, it was
shown in humans in vivo that HR increases in physiological
ranges were associated with a reduction in arterial compliance
(72). Finally, HR reduction by sinoatrial node ablation in
cynomolgus monkeys decreased plaque burden in coronary
(69) and carotid arteries (70).

SUMMARY
We have developed an animal model of human vascular dis-
ease that has a strong genetic basis. Among hemodynamic fac-
tors, low shear stress and high HR were predictive for IMT in
inbred mice strains. In addition, our findings suggest that fun-
damental changes in the ability of vessel wall cells to sense or
transduce hemodynamic signals are important genetic deter-
minants of remodelling. Approximately 40% of the variability
in the carotid IMT was shown recently to be dependent on
family history (73). To date, association studies of polymor-
phisms and IMT have not yielded strong candidate genes
(4,74). We propose that future experiments using quantitative
trait locus analysis of a cross involving strains in the present
study (ligated C3H × SJL or C3H × FVB strains) will be useful
to elucidate mechanisms of outward remodelling and IMT in
response to flow reduction.
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