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Aims Some authors recommend avoiding fusion with left ventricular (LV) intrinsic depolarization during cardiac resynchro-
nization therapy (CRT). If fusion is still present during optimized biventricular (Biv) pacing and its long-term effects on
the response to CRT are currently unknown. The aim of the study was to analyse the endocardial LV activation
pattern induced by echocardiographically optimized Biv pacing and its influence on LV reverse remodelling.

Methods
and results

Contact electro-anatomical mapping was performed in 15 heart failure (HF) patients with left bundle branch block
and echocardiographically optimized CRT (seven ischaemic aetiology, 64+8 years, three women, New York Heart
Association class 3+ 0.4, LV ejection fraction 25+5%). Left ventricular activation maps were performed in sinus
rhythm (SR), during DDD right ventricular apical (RVA) and optimized Biv pacing. Fusion with intrinsic rhythm
during pacing was considered when LV septal activation was produced at least partially by intrinsic depolarization,
when compared with LV activation map during SR. Patients were considered responders to CRT if they had
�10% reduction in LV end-systolic volume (LVESV) after 6 months of CRT. During SR, the LV breakthrough was
mid-septal (n ¼ 12), basal septum (n ¼ 2), and apical (n ¼ 1). During RVA pacing, LV breakthrough shifted apical
in all patients. Right ventricular apical/Biv pacing proved fusion with intrinsic depolarization in 8 of 15 patients.
The PR interval was shorter in patients with fusion RVA/Biv pacing (164+24 vs. 234+55 ms, P ¼ 0.006). There
was a trend for shorter LV activation time (LVat) in patients with fusion during RVA pacing (87+33 vs.
113+21 ms, P ¼ 0.08) as well as during optimized Biv pacing (83+18 vs. 104+24 ms, P ¼ 0.07), although LVat

was similar in SR (100+ 22 vs. 106+20, P ¼ NS). In patients with fusion, 6 months responder rate was significantly
higher (100 vs. 28.5%, P , 0.007) as was the degree of LVESV reduction (39+17 vs. 1.0+14%, P , 0.001).

Conclusion Biventricular pacing with fusion may substantially increase the structural responder rate probably by shortening LVat.
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Introduction
In patients with wide QRS and New York Heart Association
(NYHA) class 3 or 4 heart failure (HF) on optimal medical
therapy, cardiac resynchronization therapy (CRT) improves func-
tional status and quality of life and reduces HF-related hospitaliz-
ations and total mortality.1 Unfortunately, only 601 to 70%2 of
patients have a clinical response. Moreover, long-term survival is
improved with CRT only if associated with LV reverse remodelling,
defined as �10% reduction in LV end-systolic volume (LVESV),3 a
structural response that is present in only 56% of patients.2

Although identification of mechanical intraventricular dyssyn-
chrony seemed appealing, with some data showing a superior
effect of CRT in patients with a concordance between maximum
delay area and LV lead position,4 a recent prospective trial did
not showed a good correlation of any of the echocardiographic
parameters used to assess baseline intraventricular dyssynchrony
with clinical or structural response to CRT.2 Besides poor repro-
ducibility of these parameters5 and complex torsion movement
of the asynchronous, failing LV,6 another possible explanation
could reside in the pacing configuration used. Acute data suggest
that in patients with normal AV conduction allowing partial intrin-
sic depolarization of the LV (fusion) during CRT produce a
superior haemodynamic response.7 However, due to presumed
variability in AV conduction and lack of data on chronic effects
of fusion, the majority of authors try to avoid it8 and prefer biven-
tricular (Biv) pacing with the shortest possible AV delay, as deter-
mined by echocardiography. This introduces right ventricular (RV)
pacing, which might change the timing and the pattern of LV
depolarization.

The present investigation aimed to analyse endocardial LV acti-
vation pattern to test if fusion is still present after echocardiogra-
phically optimized Biv pacing and to determine its influence on LV
reverse remodelling.

Methods

Patients
Between October 2006 and February 2007, 15 consecutive patients
admitted to CRT were included in the study. Eligibility criteria for
CRT were chronic moderate to severe HF (NYHA class III or IV),
moderate to severe LV systolic dysfunction [LV ejection fraction
(LVEF) �35%], and a QRS complex �120 ms. Ischaemic heart
disease was considered the aetiology of LV systolic dysfunction in
the presence of significant coronary artery stenosis (�50% in one or
more of the major epicardial coronary arteries) and/or a history of
myocardial infarction and/or previous coronary revascularization.
The study protocol was approved by the Institution’s Ethics Commit-
tee and written informed consent was obtained in all cases.

Cardiac resynchronization therapy
device implantation
The right atrial and ventricular leads were positioned conventionally
[right atrial appendage and RV apical (RVA)]. After coronary sinus
(CS) was cannulated with an 8F guiding catheter, an occlusive retro-
grade CS angiogram was obtained. The LV pacing lead (Easytrak
4512–80, Guidant Corporation, St Paul, MN, USA) was inserted in a
lateral or postero-lateral vein. All leads were connected to a

dual-chamber Biv implantable pacemaker or cardioverter-defibrillator
(Contak Renewal IV or H195, Guidant Corporation).

Echocardiographic evaluation
All patients underwent standard transthoracic 2D and colour-Doppler
echocardiography before implantation, 1 day after implantation (for
optimization), and after 6 months of CRT. Images were obtained in
the parasternal and apical views with a commercially available system
(Vivid 7, General Electric, Milwaukee, WI, USA), using a 3.5 MHz trans-
ducer. Left ventricular volumes (LVEDV and LVESV) and LVEF were
calculated using the biplane Simpson’s technique. Echocardiographic
optimization was performed step-wise: first AV interval (by the
Ritter method, choosing the shortest AV interval that yielded the
longest diastolic filling time without truncation of the A wave) followed
by the VV interval (the optimum VV was considered as the one that
yielded the best intraventricular synchrony as demonstrated by TDI,
with a greater superposition of the displacement curves of two oppo-
site LV walls as described previously).9 Patients were classified as
responders to CRT if they had LV reverse remodelling (�10%
reduction in LVESV at 6 months follow-up).

Mapping procedure
Contact electro-anatomical activation mapping (CARTO, Biosense
Webster) of the LV endocardium was performed from 1 to 3 days
after the implantation of a CRT or CRT-D device. Activation maps
were obtained during intrinsic rhythm, during RVA and during Biv
pacing (both in DDD mode with AV interval programmed equal to
echocardiographically optimized AV interval). Fusion with intrinsic
rhythm during pacing was considered when LV septal activation was
produced at least partially by intrinsic depolarization, when compared
with LV activation map during sinus rhythm (SR), i.e. single-fused wave-
front or double wave-front resulting from intrinsic depolarization and
apical depolarization due to RVA pacing. Using multiple radioscopic
projections, the LV lead electrode position was localized within the
anatomical map. Rectilinear distance between the LV lead electrode
and the area of maximum delay was determined in each map. Acti-
vation maps (intrinsic vs. RVA pacing) were superposed, and rectilinear
distance between the areas of maximum delay was determined. The
time interval from the beginning of QRS (from 12-lead electrocardio-
gram) to the earliest (breakthrough) point on the LV activation map
during intrinsic rhythm as well as total LV activation time (LVat)
were measured. The time interval from the beginning of QRS to
RV-detected electrogram (RVEGM) was determined with the CRT
device programmed in the ODO mode. We arbitrarily defined a sig-
nificant shift in the location of the most delayed area as an increase
of .3 cm in the distance from most delayed area to LV lead electrodes
with RVA pacing (Dd).

Statistical analysis
The measured values are expressed as mean+ SD. Data showing
Gaussian distribution were compared in the subgroups using paired
and Student’s t-tests. Dichotomous variables and non-parametric
data were compared using x2 and Wilcoxon testing, respectively.
The level of significance was set at 0.05.

Results

Patients
Baseline characteristics of the 15 patients included in this study are
summarized in Table 1. Mean age was 67+8 years (three women);
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the aetiology of LV systolic dysfunction was ischaemic in seven
patients. Mean baseline LVEF was 25+5%. All patients were in
SR and QRS morphology was left bundle branch block (LBBB)
type in all 15 patients.

The breakthrough
The breakthrough of LV endocardial activation during SR was mid-
septal (n ¼ 12, 80%), basal septum (n ¼ 2, 13%), and apical (n ¼ 1,
7%). Mean time interval from the beginning of QRS complex on
12-lead electrocardiogram to the earliest point on the LV acti-
vation map during intrinsic rhythm was 7+7 ms; mean time inter-
val from the beginning of QRS complex to RVEGM was 50+ 14 ms.
With RVA pacing, the LV endocardial breakthrough was always
apical (Figure 1), 30+ 10 ms from the RV pacing artefact on
12-lead electrocardiogram.

Maximum delay area
The most delayed area during SR was postero-lateral or lateral in
13 patients (87%) and antero-lateral in 2 patients (13%). During
RVA pacing, the most delayed area was unchanged only in three
patients (20%), in 80% of them (n ¼ 12) shifting to more anterior
positions (Figure 1). The mean shift was 33+9 mm. However, the
mean distance from most delayed area to LV lead electrode was
not significantly changed in this population (39.5+20.5 mm
during intrinsic rhythm vs. 41.8+10.8 mm with RVA pacing, P ¼
NS). When we compared patients with significant shift during
RVA pacing (n ¼ 5) vs. patients with a non-significant shift (n ¼
10), there was no difference in the rate of structural responders:
only 60% in the first group vs. 70% in the second group. Overall,

there was also a slight increase in total LVat with RVA pacing
(102+21 vs. 99+ 30 ms during intrinsic rhythm, P ¼ NS).

Effects of fusion with left ventricular
intrinsic depolarization
According to LV activation maps, with the optimized echocardio-
graphic AV interval used for DDD RVA/Biv pacing, there was
fusion with intrinsic rhythm in 8 of 15 patients (Figure 2). The
mean shift in the most delayed area of activation during RVA
pacing as well as the mean distance from most delayed area to
LV lead electrodes in SR and during RVA pacing were similar
with fusion and with pure RVA pacing (32+11 vs. 30+10 mm,
37+23 vs. 43+ 18 mm, respectively 40+14 vs. 44+7, P ¼
NS for all comparisons). There was a trend towards shorter LVat

in the fusion group during RVA pacing (87+ 32 vs. 113+21 ms,
P ¼ 0.08) as well as during optimum Biv pacing (83+18 vs.
104+24, P ¼ 0.07). All the patients with fusion (100%) were
structural responders at 6 months vs. only two of seven (28.5%)
in the group with pure Biv pacing (P , 0.007), despite a similar
baseline clinical profile (Table 2), except for a significantly
shorter PR interval (164+24 vs. 234+ 55 ms, P ¼ 0.006). In
the group with fusion, the degree of reverse remodelling (evalu-
ated by LVESV reduction) was also significantly higher than that
in patients with pure RVA pacing: 39+17 vs. 1.0+ 14% (P ,

0.001).

Discussion
Although it was previously assumed that RVA pacing is similar to
LBBB in the presence of LV systolic dysfunction, this study con-
firms that in patients with chronic HF (CHF) subjected to CRT,
RVA pacing changes the LV activation pattern, even in the presence
of LBBB, producing overall an increase (although not statistically
significant) in LVat and in the distance from maximum delay area
to the LV lead. More importantly, the rate of structural responders
to CRT was impressively higher (P , 0.007) in patients in whom
RVA/Biv pacing allows partial intrinsic activation of the LV than in
patients with pure capture during RVA/Biv pacing. A possible
explanation is that CRT with fusion creates three activation wave
fronts (instead of two during pure Biv pacing), therefore shortening
LVat (Figure 3).

Breakthrough area
In this series of CHF patients with LBBB, the breakthrough of LV
activation was most frequently mid-septal and only rarely apical
(1 of 15 patients). This finding differs from a previous study of
contact and non-contact mapping in 23 patients with CHF and
LBBB,10 in which the breakthrough was most often apical (by trans-
septal depolarization through RBBB). However, the majority of
publications are consistent with our data: classical electrophysio-
logical mapping,11 contact mapping,12 and non-contact mapping13

have shown that the location of breakthrough is mid- or basal
septum14 in the majority of patients. Consistently, in our series
of patients, the time interval from the beginning of QRS to the ear-
liest point on the LV activation map is by far shorter than the time
interval from the beginning of QRS to the detected RVEGM (7+7

Table 1 Baseline patient characteristics (n 5 15)

Sex (female/male) 3/12

Age (years) 67+8

Aetiology (ischaemic/idiopathic) 7/8

NYHA functional class 3+0.4

LV end-diastolic dimension (mm) 73+10

LV end-systolic dimension (mm) 59+12

LV ejection fraction (%) 25+5

Sinus rhythm 15 (100%)

PR interval (ms) 197+54

QRS width (ms) 181+13

Interval [bQRS–earliest point on the LV activation map]
during intrinsic rhythm (ms)

7+7

Interval [bQRS–RVEGM] during intrinsic rhythm (ms) 50+14

Interval [bQRS–earliest point on the LV activation map]
during RVA pacing (ms)

30+10

Total LV endocardial activation time, intrinsic rhythm
(ms)

99+30

Total LV endocardial activation time, RVA pacing (ms) 102+21

Total LV endocardial activation time, optimized (ms) 93+23

NYHA, New York Heart Association; LV, left ventricular; PR, QRS, and nQRS,
narrow QRS complex; LBBB, left bundle branch block; bQRS, beginning of QRS;
RVA, right ventricular apical; RVEGM, RV lead detected intracardiac electrogram.
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vs. 50+ 14 ms, P , 0.05) despite the fact that RV lead was placed
apical (i.e. in the proximity of RBB) (Table 1).

Area of left ventricular maximum delay
Right ventricular apical pacing has deleterious effects in patients
with LV systolic dysfunction15 as well as in patients with normal
baseline LV systolic function,16 mainly by induction of intraventricu-
lar dyssynchrony. In our study, RVA pacing increases the LVat and
changes the location of the latest LV endocardial activation area (in
80% of cases to more anterior positions). The LVat increase with
RVA pacing is smaller than that in other studies because they
assessed it epicardially,17 but the presence of fusion in 8 of 15
patients probably contributed as well. Studies of classic LV endo-
cardial mapping18 and contact electro-anatomical endocardial
mapping19 also showed changes in the LV endocardial activation
pattern during RVA pacing, with shifts in the location of
maximum delay area in more postero-inferior18 or antero-lateral19

positions.
Currently, there is no direct evidence for a significant shift of

activation on LV epicardium (where the LV lead is usually
placed). However, indirect data on epicardial activation using
body surface potential mapping consistently suggest that LV epicar-
dial activation patterns change during RVA pacing, even in patients

with LV systolic dysfunction and LBBB.20,21 Moreover, in studies of
surgically delivered LV lead for CRT, placing the LV leads at sites of
maximum electrical delay during RVA pacing significantly increased
the percentage of responders.22

More important, recent mechanical data on 2D radial strain
seems to confirm that RVA pacing changes the location of the
area with the most delayed systolic peak.23

Effects of fusion during cardiac
resynchronization therapy
It seems tempting to try to avoid LV activation shift induced by
RVA pacing, at least in CRT patients with normal AV conduction
and concordant LV lead position. One alternative would be to
program the CRT device to allow partial or complete intrinsic
depolarization of the interventricular septum (fusion pacing), creat-
ing three activation fronts instead of two during pure Biv pacing.
Acute invasive haemodynamic data proved that in patients with
normal AV conduction, CRT with fusion is superior to any opti-
mized Biv configuration in improving LV7,24 as well as RV systolic
performance.25 Our study suggests that the mechanism of this
improved performance is a shorter LVat, which probably produces
superior resynchronization. Despite the theoretical drawbacks of
fusion (potential for loosing optimal fusion because of disease

Figure 1 Left-ventricular activation maps from the same patient during intrinsic rhythm (A and B) and RVA pacing (C and D) in left lateral (A
and C) and RAO (B and D) projections. Baseline there was a perfect concordance between the area of maximum delay and LV lead position
(pink floating spot). During RVA pacing, the area of maximum delay shifted 5 cm in a more basal position.
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progression or spontaneous variation in AV conduction, lack of
data on long-term effects of fusion CRT), in this study CRT with
fusion produced an impressive rate of 100% structural responders
at 6 months. Programming the AV delay to obtain CRT with
optimal fusion can be challenging considering the variability of PR
interval. However, a recent long-term prospective study in
40 patients used a non-invasive algorithm to obtain CRT with
optimal fusion, observing the same high rate of structural response,
with a similar level of reverse remodelling at 6 months.26 On the
top of that, the same group recently demonstrated by serial
ECG and ECG exercise test that CRT with optimal fusion can
be maintained and that a Wenckebach point during atrial stimu-
lation of less 500 ms can reliably predict fusion maintenance.27

The significantly shorter PR interval, a non-significant smaller
LVESV at baseline in patients with fusion during CRT, may
suggest also that they had a less advanced heart disease and a
less dilated LV. However, the LVat during intrinsic rhythm that
was not different in patients with fusion vs. patients with pure
Biv pacing, which is an argument against this hypothesis. Concor-
dantly, MIRACLE trial found similar baseline LV dimensions in non-
responders when compared with responders, despite a signifi-
cantly larger proportion of patients with long PR interval in the
former group.28 It seems tempting to speculate that the optimiz-
ation method which starts with AV interval (diastolic optimization)
might also contribute, since the ‘optimum’ AVI was practically iden-
tical in these two patient populations despite very different

Figure 2 Example in which echocardiographic AV optimization permitted CRT with fusion. On the top, activation maps during SR showing a
mid-septal breakthrough, a postero-lateral most delayed activation area and LVat of 101 ms. On the middle, activation maps during RVA pacing
with fusion with the intrinsic depolarization, showing the two septal breakthroughs, a change in the most delayed activation area (antero-lateral)
and a shortening in LVat to 82 ms. On the bottom, activation maps with the addition of a third wave front from the CS lead, showing the main-
tenance of the same septal breakthroughs, a change of the most delayed area of activation towards intermediate positions and a further short-
ening of LVat to 71 ms.
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baseline PR interval. In patients with long PR interval, this con-
stantly introduces RVA pacing, possibly worsening LV function.
This is suggested also by the trend to increase LVat in long PR

interval patients during DDD RVA pacing as well as during Biv
pacing at the optimized AVI. Invasive haemodynamical data
showed that in one-third of patients with similar long PR, there
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Table 2 Comparison between characteristics of patients with pure RVA pacing (n 5 7) and with RVA/Biv pacing with
fusion (n 5 8)

RVA (n 5 7) Fusion (n 5 8) P-value

Sex (female/male) 1/6 2/6 NS

Age (years) 73+7 63+6 NS

Aetiology (ischaemic/idiopathic) 4/3 3/5 NS

NYHA functional class 3.2+0.4 2.9+0.4 NS

PR interval (ms) 234+55 164+24 0.006

AV interval (ms) 136+12 140+0 NS

VV interval (ms) 29+15 215+16 NS

QRS width (ms) 164+34 179+14 NS

LV lead

Maximum delay area intrinsic (mm) 39.3+17.8 36.5+23 NS

Maximum delay area RVA pacing (mm) 42.6+13.4 40.2+13.6 NS

Mean shift in activation pattern (mm) 32.3+9.3 32.0+11 NS

Significant shift (n’/n) 2/7 3/8 NS

Total LV activation time intrinsic rhythm (ms) 106+20 100+22 NS

Total LV activation time RVA pacing (ms) 113+21 87+33 0.08

Total LV activation time optimized pacing (ms) 104+24 83+18 0.07

Baseline LV ejection fraction (%) 23+5 25+5 NS

Baseline LVESV (mL) 221+56 176+49 NS

6 months follow-up LVESV (mL) 218+50 107+48 ,0.001

Reduction of LVESV (%) 1+14 39+ 17 ,0.001

Structural responders (%; n’/n) 28.5 (2/7) 100 (8/8) 0.001

NYHA, New York Heart Association; AV, atrioventricular; LV, left ventricular; PR, QRS, and nQRS, narrow QRS complex; RVA, right ventricular apical.

Figure 3 Schematic of the mechanism by which the fusion between RVA pacing and partial intrinsic LV endocardial depolarization shortens
LVat. The most delayed area during SR (intrinsic LV endocardial depolarization) was postero-lateral or lateral in .80% of patients. During RVA
pacing, the most delayed area shifted to anterior or antero-lateral in �90% of patients. Thus, fusion between these two wave fronts takes less
time to depolarize the LV. Adding a third wave front from the epicardial LV further diminishes the total duration of the LVat.
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is a worsening of LV systolic and diastolic function when paced
with short AVI.29

An alternative to fusion would be to correct the effects of RVA
pacing by triple site pacing, although this might be technically chal-
lenging. Recent data show that dual site RV pacing associated with
LV pacing produced superior LV resynchronization and systolic
performance when compared with conventional Biv pacing30 and
that reverse remodelling with dual site LV pacing associated with
RV pacing is superior to conventional Biv pacing.31 These data
strengthen the idea of the superiority of three activation fronts
during CRT (a situation reproduced during CRT with fusion).

Limitations
The results might be limited by the contact mapping technology.
Rectilinear measurements underestimate distances on a curved
surface. However, the precision in anatomical details is superior
to non-contact mapping, although the latter can map the activation
sequence using one beat. The protocol used for RVA pacing (DDD
with echocardiographically optimized AVI), which permits fusion
with intrinsic rhythm in a significant proportion of patients, may
also obscure the changes in LV activation. Finally, this study is
limited by our small sample size, which could explain the lack of
statistical significance in the differences in LVat. However, the
important difference observed with pure RVA pacing and with
fusion warrants attention and further research.

Conclusions
In the majority of CHF patients eligible for CRT, LV activation
breakthrough during intrinsic rhythm is located in mid- or basal
septum. Pure RVA pacing changes LV endocardial activation
sequence and prolongs LVat in the vast majority of cases. Partial
intrinsic depolarization of the LV during CRT may substantially
increase the rate of structural responders. This suggests that
pure RVA/Biv pacing should be avoided whenever possible.
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