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Abstract
Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy and RET/PTC rearrangements represent
key genetic events frequently associated to this cancer, enhancing proliferation and dedifferentiation by activation of
the RET/PTC-RAS-BRAF-mitogen-activated protein kinase (MAPK) pathway. Recently, let-7 microRNA was found to
reduce RAS levels in lung cancer, acting as a tumor suppressor gene. Here, we report that RET/PTC3 oncogenic ac-
tivation in PCCL3 rat thyroid cells markedly reduces let-7f expression. Moreover, stable transfection of let-7 microRNA
in TPC-1 cells, which harbor RET/PTC1 rearrangement, inhibits MAPK activation. As a result, let-7f was capable of
reducing TPC-1 cell growth, and this might be explained, at least in part, by decreased messenger RNA (mRNA) ex-
pression of cell cycle stimulators such as MYC and CCND1 (cyclin D1) and increased P21 cell cycle inhibitor mRNA.
In addition, let-7 enhanced transcriptional expression of molecular markers of thyroid differentiation such as TITF1 and
TG. Thus, reduced expression of let-7f might be an essential molecular event in RET/PTC malignant transformation.
Moreover, let-7f effects on thyroid growth and differentiation might attenuate neoplastic process of RET/PTC papillary
thyroid oncogenesis through impairment ofMAPK signaling pathway activation. This is the first functional demonstra-
tion of an association of let-7 with thyroid cancer cell growth and differentiation.
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Introduction
MicroRNA (miRNA) are noncoding ∼22-nucleotide RNA that nega-
tively regulate gene expression at the posttranscriptional level either
by directly cleaving targeted messenger RNA (mRNA) or by repressing
translation [1–3]. Originally discovered in Caenorhabditis elegans, these
small RNA are now recognized as one of the major regulatory gene
families in plants and animals [4]. Lethal-7 (let-7) is one of the most
investigated miRNA, being required for timing of stem cell division
and differentiation in C. elegans [5,6]. In the human genome, almost
700 miRNA genes have been discovered, and the estimated number
of miRNA is as high as 1000 [7,8]. Although the biology of most
miRNA is not well understood, countless studies have linked anoma-
lous expression of these molecules to carcinogenesis [1]. In humans,
let-7 was shown to contain multiple putative complementary sites in
the 3′ untranslated region of all three RAS genes (HRAS, KRAS, and
NRAS), and it functions to negatively regulate their protein levels [9].
Because RAS activation is associated with several cancers, let-7 down-
regulation or deletion could therefore play a role in tumorigenesis. In
fact, let-7 overexpression was found to inhibit lung and colon cancer
cell growth in vitro [9–11]. These findings underscore the importance
of this small RNA as a tumor suppressor for cancers in which the
RAS pathway is constitutively activated.

Papillary thyroid carcinoma (PTC) is the most prevalent endocrine
malignancy in humans [12]. Along with others, this laboratory has
shown that ∼70% of PTCs harbor genetic alterations in RET, RAS, or
BRAF with practically no overlap, providing genetic evidence that
constitutive linear signaling along the RET-RAS-BRAF-ERK path-
way is key to their development [13,14]. In particular, RET gene re-
arrangements occur in up to 43% of PTCs [15]. These rearrangements
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result in the recombination of the intracellular kinase–encoding do-
main of RET with different activating genes, thereby generating
RET/PTC fusion oncogenes. Biologic effects mediated by RET/PTC
include enhanced proliferation and dedifferentiation, and they depend
on the activation of the RET/PTC-RAS-BRAF-ERK axis [16]. This
requirement for mitogen-activated protein kinase (MAPK) activation
is supported by experimental evidence demonstrating that depletion of
MAPK cascade components, such as RAS or BRAF, interferes with
RET/PTC–induced ERK phosphorylation [17,18].
In this study, the potential involvement of let-7 miRNA in PTC

development is investigated. Because let-7 was demonstrated to in-
hibit RAS expression, it might provide a tumor suppressor function
in thyroid cancers with MAPK activation. Indeed, we show that
let-7f induction in TPC-1 cells, a human PTC cell line that sponta-
neously harbors the RET/PTC1 oncogene, causes a marked reduction
in cell proliferation and induces expression of molecular markers
characteristic of thyroid differentiation. Our data suggest that let-7
miRNA is an essential regulator of thyroid carcinogenesis.
Materials and Methods

Cell Culture
PTC3-5 [19] and PCCL-BRAF cells were derived from PCCL3

rat thyroid cells to obtain doxycycline-inducible expression of RET/
PTC3 and BRAFV600E oncogenes, respectively. These cells were main-
tained inHam’s F12medium supplementedwith 5% fetal bovine serum,
1 mIU/ml bovine thyroid-stimulating hormone (Sigma, St Louis, MO),
10 μg/ml insulin (Sigma), 5 μg/ml apotransferrin (Sigma), 10 nM
hydrocortisone (Sigma), 100 U/ml penicillin/100 μg/ml streptomycin
(Invitrogen Life Technologies, Carlsbad, CA), 1 μg/ml amphotericin
(Invitrogen Life Technologies), and antibiotics at 37°C in a humidified
5% carbon dioxide incubator. RET/PTC3 and BRAFV600E expression
was induced after treating with 1 μg/ml doxycycline (Calbiochem, San
Diego, CA) for 72 hours. Cells cultivated in the absence of doxycycline
were used as controls.
TPC-1, a human PTC cell line spontaneously harboring the RET/

PTC1 rearrangement [20], was maintained in Dulbecco’s modified
Eagle’s medium supplemented with 5% fetal bovine serum, 100 U/ml
penicillin/100 μg/ml streptomycin, and 1 μg/ml amphotericin at 37°C
in a humidified 5% carbon dioxide incubator.
This study complied with the guidelines from the ethical commit-

tee of the Institute of Biomedical Sciences (no. 20/F43/L2), Univer-
sity of São Paulo.

Transfection
TPC-1 cells were cultured to 80% to 90% confluence and trans-

fected with pH1-RNApuro-control or pH1-RNApuro-let-7f plasmids
using Lipofectamine 2000 (Invitrogen Life Technologies). Stable cell
lines were obtained by culturing the cells with 1 μg/ml puromycin
(Calbiochem) for 2 to 3 weeks. Stable clones overexpressing let-7f were
screened by quantitative polymerase chain reaction (PCR) and used
for further experiments. pH1-RNApuro-control and pH1-RNApuro-
let-7f plasmids were kindly donated by Dr Takashi Takahashi (Nagoya
University Graduate School of Medicine, Nagoya, Japan).

MTT Assay
Cells were seeded into 96-well plates at a density of 8 × 103 cells per

well. When the cells reached semiconfluence, 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT; Molecular Probes, Eugene,
OR) was added to the medium at a concentration of 0.125 mg/ml.
After 3 hours, the medium was removed, and the cells were solubilized
in 100 μl of 0.04 M HCl in isopropanol and the reaction product was
measured by a spectrophotometer at 595 nm.

Western Blot Analysis
Cells were washed twice with ice-cold PBS and scraped in RIPA

buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1% Nonidet P-40,
0.5% sodium deoxycholate, 1 mM EDTA, and 0.1% SDS) contain-
ing 10% protease inhibitor cocktail (Sigma). Measurement of pro-
tein concentration was done using Bradford (Bio-Rad Laboratories,
Hercules, CA), and 50 μg of each sample was fractionated by 10%
SDS-PAGE and blotted onto a nitrocellulose membrane (Hybond-
ECL; Amersham Biosciences, Little Chalfont, UK). Nonspecific
binding sites were blocked by incubating with 5% nonfat dry milk
in Tris-buffered saline–0.1% Tween-20. The following primary anti-
bodies (Santa Cruz Biotechnology, Santa Cruz, CA) were used: anti–
ERK1 K23, anti–phospho-ERK E4, anti–H-RAS C20, anti–K-RAS
F234, and anti–α-tubulin B7. The antigen-antibody complexes were
visualized using horseradish peroxidase–conjugated secondary anti-
body and enhanced chemiluminescence system (Amersham Bio-
sciences). Expression was quantified using image densitometry with
Scion Image Analysis Software (Scion Corporation, Frederick, MA).

Quantitative PCR
Total RNA was isolated using the phenol-chloroform method with

the TRIzol reagent (Invitrogen Life Technologies). Complementary
DNA (cDNA) was generated from 3 μg of total RNA in the pres-
ence of random hexamers and MMLV reverse transcription (RT;
Invitrogen Life Technologies) as described previously [21]. Primers
were designed using the program Primer Express (Perkin-Elmer Ap-
plied Biosystems, Foster City, CA) as follows: CCND1 (cyclin D1):
5′-CTGTGCATCTACACCGACAACTC and 5′-CCAGGTTC-
CACTTGAGCTTGTT; CDKN1A (P21): 5′-CTGGAGACTCT-
CAGGGTCGAA and 5′-GGCGTTTGGAGTGGTAGAAATCT;
MYC: 5′-TTCGGGTAGTGGAAAACCAG and 5′-TCCTGTTG-
GTGAAGCTAACG; NKX2-1 (TITF1): 5′-AGCCTGTCCCACCT-
GAACT and 5′-ATAGCAAGGTGGAGCAGGACAT; TG: 5′-
CCTGCTGGCTCCACCTTGTTT and 5′-CCTTGTTCTGAG-
CCTCCCATCGTT; RPL19: 5′-TCTCATGGAACACATCCACAA
and 5′-TGGTCAGCCAGGAGCTTCTT. Each set of sense and anti-
sense primers was chosen within distinct exons to avoid amplification
of genomic DNA. PCR amplification was performed in triplicate using
50 ng of cDNA, 200 or 300 nM of each primer and SYBRGreen PCR
Master Mix (Applied Biosystems, Warrington, UK) in a GeneAmp
7300 Sequence Detection System (Perkin-Elmer Applied Biosystems,
Foster City, CA). PCRs without cDNA resulted in no amplification
of any target gene. The expression of each gene of interest was nor-
malized with housekeeping gene RPL19. Data were analyzed using
the Q-Gene program [22].

let-7 Mature miRNA Quantification
Quantitative analysis of miRNA was accomplished using a real-

time PCR assay previously reported [23]. In the first step, a tailed
miRNA-specific primer was used to convert the RNA template into
the cDNA at 50°C for 30 minutes and at 85°C for 5 minutes (5′-
CATGATCAGCTGGGCCAAGAAACTATA). Then, the full-length
cDNAwas quantified by real-time PCRusing a combination of a locked



Figure 1. Effect of the constitutive activation of the RET/PTC3 on-
cogene on let-7 miRNA expression. (A) Representative gel of the
RT-PCR results showing RET/PTC3 mRNA induction after 72 hours
of doxycycline (DOX) treatment. The reactions are normalized by
comparison to the Rpl19 housekeeping gene. y-Axis represents
100-bp ladder. (B) RET/PTC3 induction leads to reduced let-7 miRNA
expression in PTC3-5 cells. y-Axis represents let-7f expression nor-
malized by snoRNA. Columns in the graph represent mean ± SD
of two independent reactions performed in triplicate. *P = .002
versus TPC-1 CTR.

Figure 2. Effect of constitutive activation of the BRAF oncogene
on let-7 miRNA expression. (A) BRAF induction in PCCL-BRAF cells
after 72 hours of DOX treatment. y-Axis represents BRAF expres-
sion normalized by Rpl19. (B) let-7 expression does not fluctuate
even when BRAF is induced for 72 hours. y-Axis represents let-7f
expression normalized by snoRNA. Columns in the graph repre-
sent result as mean ± SD in arbitrary units (a.u.) of two indepen-
dent quantitative RT-PCRs performed in triplicate. *P = .001
versus TPC-1 CTR.
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nucleic acid (LNA)–containing miRNA primer (5′-T+GA+GGTAG-
GTAGATTG, LNA substitutions are preceded by a “+”), and a generic
universal primer that is complementary to the tail (5′-CATGATCAG-
CTGGGCCAAGA). The LNA modification stabilizes the confor-
mation of the sugar group and thereby increases the hybridization
affinity of oligonucleotides that contain LNA bases [24]. Amplification
of this chimeric cDNA was monitored by SYBR green real-time PCR
under the following conditions: 50°C for 2 minutes, 95°C for 15 sec-
onds and 40 cycles at 95°C for 15 seconds, 54°C for 30 seconds, and
72° for 30 seconds. Data were normalized with the expression of
RNU6B (small nuclear RNA) for human cells or small nucleolar
RNA (snoRNA) for rat cells using a specific amplification kit (Applied
Biosystems, Warrington, UK).

Statistical Analysis
The results are presented as the mean ± SD and submitted to anal-

ysis of variance using the Bonferroni t-test. Differences were consid-
ered significant at P < .05.

Results

Doxycycline-Inducible Expression of RET/PTC3 in PCCL3
Rat Thyroid Cells

To determine whether the expression of mature let-7f miRNA is
modulated by RET/PTC, PTC3-5 cells, derived from PCCL3 rat
thyroid cells modified to contain doxycycline-inducible expression of
RET/PTC3, were analyzed. RT-PCR was used to confirm the efficient
induction of RET/PTC3 expression by treatment of the PTC3-5 cells
with doxycycline for 72 hours (Figure 1A). The induced expression of
the RET/PTC3 oncogene in PTC3-5 cells led to a strong reduction
(76%) in let-7f miRNA expression (Figure 1B). However, induction
of the BRAF oncogene in PCCL3 cells treated with doxycycline for
72 hours (Figure 2A) did not modulate let-7f mature miRNA expres-
sion (Figure 2B).

Effects of let-7f Introduction on MAPK Signaling Pathway in
TPC-1 Cells

The observation that let-7f expression decreases in response to
RET/PTC activation led us to explore the possibility that let-7f–
reduced expression might contribute to papillary thyroid cancer de-
velopment. To test this idea, let-7f was introduced into the TPC-1
cells, which spontaneously harbor the RET/PTC1 rearrangement,
using expression constructs designed to synthesize mature miRNA
of the let-7f-1 isomer under the control of the RNA polymerase-III
H1-RNA gene promoter [11]. Real-time PCR was used to evaluate
the expression of let-7f mature miRNA in TPC-1 control (CTR)
and TPC-1 let-7 stable clones. let-7f was observed to have a basal ex-
pression level in TPC-1 cells, which was substantially increased after
introducing the let-7f plasmid (Figure 3A). Because RET/PTC activa-
tion sequentially triggers stimulation of RAS, BRAF, and ERK to me-
diate its biologic effects, the potential influence of let-7f overexpression
on ERK activation was evaluated. As expected, results of the Western
blot analysis demonstrated that let-7f induction resulted in a decrease
in phosphorylation of the ERK protein in TPC-1 cells (Figure 3B),



Figure 3. Stable transfection of let-7 miRNA in TPC-1 cells. (A)
Quantitative RT-PCR detection of the expression of let-7 miRNA in
cells stably transfected with pH1-RNApuro-CTR and pH1-RNApuro-
let-7f-1. y-Axis represents let-7f expression normalized by RNU6B.
Columns in the graph represent mean ± SD of two independent
reactions performed in triplicate. (B) Total cellular proteins were pre-
paredand subjected to 10%SDS-PAGEelectrophoresis. Immunoblot
analyses were performed using specific antibodies against K-RAS,
H-RAS, phosphorylated ERK (p-ERK), ERK1/2, and α-tubulin. *P =
.017 versus TPC-1 CTR.

Figure 4. Effect of let-7 miRNA on the proliferation of TPC-1 cells.
Cells were seeded at equal density and cultured until they reached
semiconfluence. They were then incubated with MTT for 3 hours.
Data are presented as the mean ± SD of a single experiment per-
formed in quintuplicate and are representative of two independent
experiments. *P = .000 versus TPC-1 CTR.
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even without altering H-RAS and K-RAS protein levels (expression
quantified by densitometry and normalized by tubulin levels).

Growth Inhibitory Effect of let-7f Mature miRNA on
TPC-1 Cells
The MTT assay was used to examine whether let-7f expression is

associated with PTC cell growth. let-7f overexpression markedly in-
hibited proliferation of TPC-1 cells by 55% (Figure 4). To identify
genes involved in the inhibition of TPC-1 cell growth, the transcrip-
tional expression of genes known for their action in the cell cycle,
such as MYC, CCND1 (cyclin D1), and CDKN1A (p21), was exam-
ined. let-7f inhibited the mRNA expression of cell cycle stimulators
such as MYC (17%) and CCND1 (14%). However, this small RNA
also reduced the transcriptional expression of CDKN1A (18%), a
gene that acts as a cell cycle inhibitor (Figure 5).

Effects of let-7f on Transcriptional Expression of Thyroid
Differentiation Genes
Because RET/PTC–induced thyroid cell dedifferentiation is medi-

ated by activation of the RAS-BRAF-MAPK pathway, the possible bi-
ologic significance of let-7f in TPC-1 cell differentiation was explored.
Transcription of specific molecular markers of thyroid differentiation
such as thyroid transcription factor 1 (TITF1), thyroglobulin (TG ),
and sodium iodide symporter (NIS ), was analyzed. let-7f induces a
three-fold increase in TITF1 mRNA expression and also a slightly in-
crease in TG transcription when compared with control cells (Figure 5).
However, NISmRNA expression was not detected in TPC-1 cells even
with let-7f overexpression (data not shown).

Discussion
Alterations in RET, RAS, and BRAF genes are major contributors to
the transformation of normal thyroid cells to PTC [16]. Recent stud-
ies have associated these genetic alterations with global changes in the
expression of miRNA [25–28]. This information has led toward new
understanding of the genetic mechanisms and pathways underlying
the etiopathogenesis of PTCs. Despite all the information concerning
changes in the expression of miRNA in thyroid cancer, the functions
of these molecules in thyroid tumorigenesis are poorly understood.
In this study, we have identified a functional association of let-7f
miRNA with thyroid cancer for the first time. The let-7 family of
miRNA includes 14 isomers; each isomer is typically located on a
different chromosome [8]. This study focused on let-7f, which is lo-
cated at 9q22.3, because it has been previously shown to inhibit pro-
liferation of lung cancer cells [29]. We observed a reduced expression
of let-7f mature miRNA in PCCL3 cells with activation of RET/
PTC3, but not BRAF. This suggests that let-7f down-regulation is
an important step in the biologic effects mediated by the RET/
PTC oncogene during malignant transformation. Supporting our
data, a previous study comparing miRNA expression profile in thyroid
tissues from patients with papillary carcinoma and normal thyroid
tissues showed that let-7f is downregulated in this cancer [28]. To
clarify the function of let-7f in the thyroid cancer scenery, exogenous
let-7f was overexpressed in TPC-1 papillary cancer cells that harbor
the RET/PTC1 rearrangement. Although transfection of let-7f in
TPC-1 cells repressed ERK phosphorylation, supporting the conclu-
sion that RET/PTC-RAS-BRAF-ERK cascade activation is inhibited
by this miRNA, significant modulation of K-RAS and H-RAS pro-
teins was not observed after the induction of let-7f. Nevertheless, re-
pression of MAPK signaling in concert with the modulation of genes
related to cell cycle may explain, at least in part, the reduced cell
growth of TPC-1 cells transfected with let-7f.
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Previous studies from several groups have shown that constitutive
activation of effectors along the RET/PTC-RAS-BRAF-ERK path-
way impairs the expression of thyroid-specific genes, such as TG,
TPO, NIS, and TSHR, and their corresponding transcription factors
TITF1 and PAX8 [30–32]. During malignant progression, thyroid
cancer cells undergo dedifferentiation, becoming more aggressive
and refractory to treatment. We demonstrate here that let-7f is able
to enhance the expression of some of these differentiation markers in
TPC-1 cells, including TITF1, a major transcription factor in thyroid
cells. TITF1 is also key gene in thyroid development; mice lacking
this transcription factor are unable to develop a thyroid gland [33].
The role of let-7 during development is well established, and it may
also play an important role in thyroid development through the reg-
ulation of TITF1 expression. Therefore, it is evident that let-7f is
critical for proper regulation of thyroid cell growth and differentia-
tion. It is known that let-7 has other targets in addition to RAS with
respect to cancer, including the HMGA2 oncogene [34]. However,
there is compelling evidence in the literature showing that activation
of the MAPK signaling pathway is required for the development of
RET/PTC–positive PTCs. Thus, the effects of let-7f in this specific
cell (TPC-1) are likely due to its inhibitory effects on the MAPK
pathway. Whether let-7f truly interacts with other mRNA that are
important for its effects in TPC-1 cells is a question that remains
to be answered. A few studies have previously associated alterations
in miRNA with the development of PTCs, specifically using miRNA
expression profiling to identify four miRNA (miR-146, miR-221,
miR-222, and miR-181b) with high levels of expression in cancerous
tissues [28,35]. In addition, it has been shown that the main genetic
alterations observed in PTCs, the BRAF mutation and RET/PTC
rearrangements, have global effects on the miRNA expression profile
[26,27]. Along with these studies, our work demonstrates an associ-
ation between this new class of small RNA and the development of
thyroid carcinogenesis.
In summary, we show that reduced expression of let-7f is associ-
ated with RET/PTC malignant transformation. Furthermore, restora-
tion of let-7f expression attenuates RET/PTC–mediated oncogenesis
by preventing MAPK cascade activation and its resulting biologic ef-
fects, such as proliferation and dedifferentiation. Our data support a
suppressor function of let-7f miRNA in thyroid cancer, revealing this
molecule as a potential therapeutic target in patients with cancers
harboring the RET/PTC fusion oncogene.
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