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Introduction

In 1949 Polge, Parks and Smith1 reported on the “chance” discov-
ery of glycerol’s cryoprotective function during their efforts to pre-
serve avian spermatozoa in the frozen state. In the following year, 
Smith2 extended these observations by successfully cryopreserving 
human red blood cells (RBCs) in glycerol. These two reports iden-
tified key elements that would play a crucial role in the evolution 
of the field of biopreservation including the need for a cryopro-
tective agent (CPA), the process by which cells could successfully 
be exposed to penetrating CPA and the manner of freezing and 
thawing. In 1959 Lovelock and Bishop3 first described the use 
of dimethyl sulfoxide as a CPA with its advantage of enhanced 
permeability versus glycerol for many cell types. In the follow-
ing decades incremental advances were made focusing on changes 
in and study of the carrier media containing the CPAs as well 
as the mechanisms of cell cryoinjury and cryopreservation. Most 
notable was the Mazur et al. report4 in 1972 which put forth 
the “Two-factor Hypothesis” to describe the interrelationships 
between cooling rates and survival as influenced by either toxic 
“solution effects” experienced at sub-optimal slow cooling rates 
or lethal intracellular ice present at high cooling rates. In effect, 
these studies established a biophysical foundation upon which 
cryopreservation experimentation rested for nearly four decades. 
Other notable developments were discoveries by Fahy et al.5 
and Rall and Fahy6 in the mid-1980s. This group reported on 
the novel vitrification strategy of cell preservation in which high 
concentrations (approaching 8 molar) of a cryoprotectant mixture 
could be titrated over a concentration gradient to create a medium 
that when “frozen” was devoid of ice even at liquid nitrogen stor-
age temperatures. Beginning in 1998 a series of studies revealed 
that perturbations in the cell’s proteome and genome during and 
following the cryopreservation process would significantly impact 
survival. This effect was observed regardless of the cryopreserva-
tion protocol utilized, “optimized” or other.7-11

With the continued development of cellular-based technolo-
gies (e.g., bioreactors with stem cells, tissue engineering, etc.), 
there is a need for improved methods of preservation that meet 
the requirement for rapid return to normophysiological function. 
These methodologies must protect the genome and proteome 

thereby avoiding stress-related genetically selectivity,12 a criterion 
not met by most preservation processes, even today. In addition, 
the use of animal-derived products, proteins, serums, etc., raises 
concern over contamination with non-native components (i.e., 
prions, etc.,).13 Efforts to maintain mammalian cells in a dormant 
state capable of “on demand” restoration have centered primarily 
on either hypothermic (refrigerated) storage or preservation in the 
frozen state.14 Hypothermic storage often includes processes that 
maintain cells at temperatures above 0°C but below a normother-
mic temperature range (32–37°C). Advances in the hypothermic 
storage research have depended on improvements in organ pres-
ervation media in support of cell and tissue storage and organ 
transplantation including those factors related to ion balance, buff-
ering capacity, free radical scavenging, oncotic support and nutri-
ents.15-17 Cryopreservation may be defined as the maintenance of 
biologics at sub-freezing temperatures, below -80°C and typically 
below -140°C. As stated above, Mazur’s “Two-Factor Hypothesis” 
established the principles and a priori evidence of lethal condi-
tions that need to be avoided if successful structural preservation is 
to be accomplished, a supposition influenced by Lovelock’s classic 
demonstration of the relationship between survival and sodium 
chloride content in human RBCs.18

Throughout much of its development, cryopreservation 
research has focused less on integration of the cellular fundamen-
tals that emerged from organ-based, hypothermic storage research 
and more so on physical factors, events and engineering prin-
cioples.19 Cryopreservation research has had as its central focus 
on the physical parameters associated with the water-to-ice phase 
change (i.e., water flux) during the preservation process with less 
attention focused on the impact of the hypothermic continuum 
experienced by cells during freezing until a glassy storage state is 
achieved.20 Cells that are structurally preserved (avoid intracellular 
ice formation) remain in a state of deepening hypothermia until 
attaining the vitrification state of the preservation medium.11,21 
Importantly, during this thermal excursion, solute levels continue 
to elevate due to freeze concentration.21 Cell function, while sup-
pressed, does not cease until the intracellular glass transition (Tg) 
temperature is reached.22

A Long Cold Journey

Biopreservation is now recognized as an integrative specialty 
defined to include processes that suppress biological aging while 
supporting post-preservation restoration of function. Successful 
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of cryoprotective agents across the cell membrane.54 As extracel-
lular ice formation continues, freezing reduces the availability of 
freezable water in the cell while freeze concentration of solutes 
increases the intracellular viscosity. When cooling rates are too 
rapid,  cellular dehydration is inadequate increasing the probabil-
ity of lethal intracellular ice formation.55 Non-optimal freezing 
effects are recognized post thaw by increased cell rupture and early 
stage necrosis occurring over the first few hours post-thaw.7,9,11,56 If 
cooling rates are too slow, prolonged exposure to multimolar lev-
els of the freeze concentrated solutes results in cell toxicity (solu-
tion effects).4,57 An indication of “solution effect” toxicity is the 
appearance of delayed necrosis peaking 6–12 hours post-thaw as 
well as apoptosis 12–36 hours post-thaw (cell type dependent)58-60 
followed by a secondary bout of necrosis related to the interplay 
between the progression of the modes of cell death.11

Cooling rate control (CRC) is accomplished by devices which 
support microprocessor controlled injection of liquid nitrogen to 
achieve active controlled rate cooling, or by passive methods often 
using insulated alcohol baths placed in a -80°C freezer. Active 
CRC devices monitor a representative sample vial, straw or bag 
and follow a pre-established program to achieve a desired cooling 
profile. Profiles are typically set to maintain a standard rate of cool-
ing (e.g., -1°C/min for a specific cell type) over a prescribed tem-
perature range and include a “seeding” event, nucleation through 
a thermal shock administered by a surge in cryogen to “flatten” the 
temperature rebound resulting from the latent heat of fusion of ice 
formation. Active CRC devices also provide records of the cooling 
profile. Passive CRC devices contain the sample surrounded by, 
but isolated from, an alcohol bath or a thermal-insulation mate-
rial, and when placed in a freezer (-80°C), a curvilinear rate (e.g., 
approximately -1°C/min for a given cell type) is achieved in the 
samples. In passive CRC process seeding is often accomplished via 
mechanical agitation to create a nucleation event at a prescribed 
time during the cooling period.

Upon completion of freezing, samples are placed into long-
term storage. During storage, the cell surrounded by a thin layer 
of vitrified cryoprotectant is maintained in a vitreous state encased 
in the mass of extracellular ice as long as the temperature remains 
above the glass transition temperature (Tg) of the solution. In 
addition to controlled rate cooling, high molar concentrations of 
cryoprotectant mixtures introduced in a stepwise manner can also 
be used to vitrify samples creating an ice free state both in the cell 
and extracellular matrix. This approach eliminates most ice crystal 
structure formation and has been reported to be of benefit when 
attempting to cryopreserve complex tissues and organs.5,6,61-63 
Retrieving samples from storage requires rapid thawing often 
accomplished by placing the sample in a 37–40°C stirred water 
bath until most of the ice melts. Once the ice has dispersed, elu-
tion of the cryoprotectant cocktail with cell culture media in a 
single-step or a step-wise (for high CPA concentrations) dilution 
process is used. Step-wise elution minimizes the volume excur-
sions of the cell thereby preventing mechanical damage to the cell 
membrane and rupture. The effect of physicochemical changes 
that occur during cryopreservation has been extensively reported 
by Mazur.21,55

cryopreservation incorporates relevant engineering principles with 
developments in cellular and molecular biology. Biopreservation 
represents the simultaneous application and management of 
numerous, often poorly defined (and not fully recognized), lethal 
conditions with the expectation of normal recovery.20

Biopreservation begins with a reduction in temperature typi-
cally from 37°C to the 0–10°C range. A hold temperature of 4°C 
is common for a brief interval (nominally 10 minutes) to allow for 
cryoprotectant equilibration. The selection of the hold tempera-
ture is less related to a cellular rationale and more to the fact that 
liquid water reaches its maximum density at 4°C. With cooling, 
a change in the energy balance of the cell occurs due to heat flow 
from the biologic. This loss of kinetic energy of molecules results 
in the uncoupling and re-coupling (shunting) of biochemical reac-
tions.23 The metabolome experiences imbalances that cause the 
failure of aerobic production of ATP, disruption of membrane-
mediated transport (i.e., rapid gains in calcium, the loss of intra-
cellular potassium and gain of sodium) and intracellular acidosis 
with pH approaching 4.23-26

While select mammalian species have evolved mechanism 
supportive of whole-body hypothermia (i.e., hibernators)27,28 or 
seasonally adaptive heterothermy,29,30 few human cells in vivo tol-
erate low temperature exposure beyond a few hours. Hypothermia 
without manipulative intervention yields progressive cell injury 
during each of its three phases (cooling, maintenance in the cold 
and rewarming). In addition to metabolic imbalances measurable 
changes in cell and organelle membrane lipid domains occur in a 
cell. These structural characteristics (transitions) result in a change 
in membrane fluidity from the liquid-crystalline state to the solid 
gel state31-34 yielding a “leaky” membranous state. A cascade of 
damaging events may follow including: activation and leakage of 
lysosomal and lipoprotein hydrolases,35,36 activation of calcium-
dependent phospholipases37,38 and the release of free fatty acids,39 
activation of the apoptotic cascade40-44 and disruption of the 
cytoskeletal matrix.45-47 Along with the generation of free radicals, 
the oxidative stressors attendant to hypothermia may result in the 
onset of apoptosis or gene regulated cell death.11,12,20,48-51

Cryopreservation of Cells

Cryopreservation protocols begin with hypothermic exposures 
which persist through the period of active extracellular ice growth 
until equilibrium is reached in the glassy-state (vitrified). This 
journey of deepening hypothermic stress experienced by a cell has 
been termed the hypothermic continuum.52 CPA exposure rep-
resents the second step in the preservation process introducing 
a diversity of penetrating (membrane permeable) and non-pen-
etrating agents contained within a carrier media to the hypother-
mic cell.53 Incubation in the cryoprotective cocktail lasts between 
10–30 minutes at 4oC followed by cooling at a nominal (“opti-
mal”) cooling rate (ranging from 1 to 10°C·min-1 is common for 
many mammalian cells). Seeding (ice nucleation) at a tempera-
ture close to the equilibrium freezing point of the cryoprotective 
medium (-2 to -6°C) supports the gradual growth of extracel-
lular ice and limits “supercooling” of the system. This supports 
the osmotic efflux of water from the cell and the equilibration 
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various pathways are activated. This results in a delay in necrotic 
(6 hours) and apoptotic (12-hours) activity and ultimately observ-
able cell death.9,11,85,87,100 This temporal component continues to 
elude many investigators attempting to characterize the extent of 
molecular cell death following preservation in a variety of settings. 
While much research has been focused on identifying and quanti-
fying apoptosis following cryopreservation, few have detailed the 
initiating stresses. While this area remains in the early stage, stud-
ies have, none-the-less, begun to provide insight into the pathways 
associated with cryopreservation-induced molecular cell death. 
These studies have implicated a host of initiation sites including 
the cell membrane, nucleus and mitochondria. These reports con-
tinue to solidify of the universal role molecular-based cell death 
exerts on cryopreservation.7,48,51,81,83,86-88,101,102

Major Problems in Cryopreservation of Tissues and 
Organs

Tissue/organ cryopreservation is much more complicated and dif-
ficult than cryopreservation of individual cells. First, in addition 
to the cell cryoinjury caused by the intracellular ice formation 
(IIF) and “solution effects” as described above, there are several 
following major problems associated with organ cryopreservation: 
(a) vascular damage/rupture caused by ice formation/expansion 
in blood vessels (water moves into blood vessels from dehydrated 
cells).116-118 To minimize this cryo-destructive effect, increased 
understanding and prediction of the fundamental mechanisms of 
ice formation and cell dehydration in tissues/organs are required. 
Although these biophysical events have been extensively studied 
in single cells with cryomicroscopy techniques,106-108 experimental 
data in whole tissues are very limited. (b) Fracture of frozen tissue/
organ caused by the thermal stress during the warming process. 
Thermal stress is one type of mechanical stress caused by non-
uniform warming in a solid/frozen body (e.g., the fracture of glass 
when a surface is rapidly heated or cooled). To reduce the thermal 
stress, uniform heating is needed. Unfortunately, biological tissues 
have relatively low thermal conductivity and high specific heat. 

Despite intensive research focused on improving cell preserva-
tion, not all mammalian cells cryopreserve “equally.” To highlight 
this issue, Lane57 states that “Few scientific problems have proved 
as intractable as cryopreservation” and “…cryobiology has been 
straitjacketed by its need to conform to the intractable laws of bio-
physics. For all its successes, cryobiology has been stuck in a rut.” 
Further, Mazur21 has stated that “The problem today (with cryo-
preservation) is that applying basic principles of biophysics simply 
cannot solve many of the remaining challenges in cryobiology.” 
As traditional approaches to cell storage are applied to non-ter-
minally differentiated mammalian cells, many of these native and 
engineered cell types prove refractory to cryopreservation. Even in 
“successfully preserved” cell systems, significant death (30–70%) 
is often observed within 24–48 hours post-thaw.11 Structural pro-
tection is afforded to these cells, but mitigation of the preserva-
tion-induced stress response resulting in biomolecular-based cell 
death many hours post-thaw remains a critical issue. As such, it is 
often the case where the cryopreservation sciences have provided 
effective strategies for structural preservation of most mammalian 
cell types but, until recently, have lacked to the molecular-based 
tools necessary to understand and mitigate much of the post-thaw 
damage. Recent studies have linked numerous stress factors associ-
ated with cryopreservation to known initiators of molecular-based 
apoptotic cell death processes (Table 1).

The combination of partial physical damage to a cell coupled 
with cell stresses experienced during the freeze-thaw cycle can 
result in necrosis. Further, “cross talk” between the apoptotic and 
necrotic cascades may also yield secondary necrosis. This complex 
series of events and factors demonstrates the critical involvement 
that a cell’s “biology” plays in cryopreservation outcome.

Molecular-Based Cell Death Associated with  
Cryopreservation

Apoptotic activation in response to low temperature exposure has 
been documented in a variety of systems including renal cells, 
fibroblasts, hepatocytes, peripheral blood mononuclear cells, 
cord blood, spermatozoa, oocytes, ovarian-tissue, vascular tissue, 
et cetera.11,48,53,64-68 Comparison of the stressors associated with 
cryopreservation and those known to activate apoptosis reveals 
substantial overlap. An analysis of these stresses and the cryopreser-
vation literature demonstrates the well documented involvement 
of apoptosis in cryopreservation failure and the benefits of cell 
stress response modulation to improve outcome.51,69-76 Although 
apoptosis was described in association with these reports, it was 
not until 1998 that apoptosis and cryopreservation failure were 
directly linked.8 Over the last decade, there has been the emer-
gence of numerous studies focused on understanding the role 
apoptosis plays in cryopreservation failure.7,9,11,49,50,65,66,68,70,77-89 
The involvement of apoptotic cell death in cryopreservation has 
now been reported in renal cells,7,8 fibroblasts,11 blood cells,90-92 
cornea,93 stem cells,94-96 cord blood,78 lymphocytes, sperm,97 ovar-
ian tissue98 and oocytes66,99 to name a few. One aspect of this 
molecular involvement is the temporal component of post-cry-
opreservation cell death.44 Molecular-based cell death often takes 
hours to days following thawing to manifest following thawing as 

Table 1. Stress factors characteristic of cryopreservation

Hypothermia Known initiators of apoptosis

Metabolic Uncoupling/Shunting Biochemical Alterations/Inhibitions

Energy Deprivation Energy Deprivation

Ionic Imbalances Ionic Imbalances

Cellular Acidosis Cellular Acidosis

Protease Activation Protease (caspases) activation

Membrane Phase Transitions Membrane Alterations

Free Radical Production Free Radical Accumulation

Cytoskeletal Disassembly

Freezing

Water Solidification (Solute 
Concentration)

Cell Volume Excursions Membrane Alterations

Hyperosomolality Ionic Imbalances

Protein Denaturation Biochemical Alterations
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specialties. The Belzer and Southard team15,16 first developed 
ViaSpan® (the University of Wisconsin solution) to support the 
transport of organs (pancreas, kidney and liver). ViaSpan®, for-
mulated for hypothermic storage, was the first solution designed 
to manage select putative stress factors (Table 1) and became the 
first “intracellular-like” preservation medium. In the decade that 
followed additional preservation solutions were developed (i.e., 
Celsior, HTK—Custodiol, HypoThermosol, Unisol and others). 
More recently, cryopreservation solution formulation has moved 
beyond the addition of a penetrating cryoprotective agent such as 
DMSO (5–15%) to cell culture media, buffered saline or these 
media plus serum or a protein component.53 Now recognized as 
essential to optimization of the cryopreservation process is the 
maintenance of proper cold-dependent ion ratios, control of pH 
at lowered temperature, prevention of the formation of free radi-
cals, oncontic balance, the supply of energy substitutes, etc.17,44 
Traditional media fall short in addressing changes in solution pH, 
free radical production, energy deprivation, etc. Accordingly, the 
basal properties of these historical preservation media often do 
not provide for protection at the cellular level.53 In attempt to 
address this issue, the cryopreservation sciences have taken lead 
from the organ preservation and molecular biology arenas com-
bining these knowledge bases to increasing cell survival. Media 
including Viaspan, CryoStor, Unisol, Adesta, Celsior and others, 
to name a few, when combined with CPAs for have been reported 
to improve cell survival to varying degrees. Improvements have 
been observed in systems including hepatocytes,58,103 cord blood 
stem cells,104 PBMC’s,67,105 fibroblasts,11 keratinocytes,69 blood 
vessels101 and engineered tissues.56 In these studies, evaluation 
of the cryopreservation media was conducted and correlated 
with improvements in cell survival, function and growth. The 
improvement was not noted immediately post-thaw but not 
until following manifestation of the molecular-based events was 
the effect observed. It is now recognized that the integration of 
an intracellular-type solution with a penetrating cryoprotectant 
along with an understanding of the molecular responses of the cell 
at low temperature, provides for improved cryopreservation out-
come.44,53 The success of these solutions is linked to an in depth 
knowledge and understanding of the cell death pathways activated 
as a result of cryopreservation-induced cell stresses. To this end, 
studies have suggested that the improvement in cell survival and 
function was due to a reduction of both apoptosis and necrosis 
during post-thaw recovery although the mechanism of which 
remains unknown.11,44,48,77

Closing Thoughts

Cell-based applications in cell therapy, regenerative and reparative 
medicine, biobanking and tissue engineering are now focusing on 
normal, predictable and timely return to function of the cells after 
cryopreservation. This is often not achieved with today’s technol-
ogies and approaches. In order to address this issue, continued 
improvement in cryopreservation outcome will rely on the inte-
gration of cellular biology, molecular biology, biophysics, engi-
neering and cryobiology. Furthermore, with the growing body of 
evidence suggesting that CPAs, such as DMSO, affect the cellular, 

Therefore, the conventional heating method (e.g., heating in a 
stirred water bath) causes a large temperature gradient within the 
tissue, resulting in high thermal stress and tissue fracture. Pegg 
et al.109 and Cui and Gao, et al.110 have developed a slow-cooling 
technique for relatively uniformly warming frozen rabbit carotid 
arteries to prevent the fracture. However, generally speaking, the 
slow warming may cause intracellular ice re-crystallization kill-
ing cells. A rapid and uniform heating technology is desired to 
prevent both potential lethal ice re-crystallization and thermal-
stress-induced fracture. Apparently, rapid and uniform heating 
cannot be achieved by conventional heating methods. Recently, 
scientists have been developing single mode microwave resonance 
technology to achieve very rapid and uniform heating of frozen 
biomaterials.111,112 (c) Problems associated with vitrification: a dra-
matically different approach to cryopreservation is to use either 
high concentrations of certain CPAs or ultra-rapid cooling rates 
(>106°C/min) to induce the cell cytoplasm to form a glass (i.e., to 
vitrify cells/tissues) rather than to crystallize. Indeed, vitrification 
is an ideal approach for organ cryopreservation. However, ultra-
rapid cooling rates are technically difficult to achieve for tissues/
organs. Several of the CPAs that are effective in ameliorating slow 
freeze injury also act to promote glass formation, but the required 
concentrations are so high, e.g., 4–8 M,113,114 that they can be 
very toxic to the cells/tissues.115 In addition, a vitrified organ is 
very brittle and can be easily fractured by thermal stress if not 
uniformly heated. (d) The lack of a single optimal cryoperserv-
tion condition for all cell types in a tissue/organ. As we know, the 
optimal cryopreservation condition (e.g., cooling rate) is cell-type 
dependent due to the cell-type dependence of membrane perme-
ability to water and CPAs, intracellular ice formation, osmotic tol-
erance limits, cryo-sensitivity and other physical/biological factors 
for cell cryoinjury. Because of many different cell types in a tissue 
or organ, it is difficult to define one single condition which is opti-
mal for cryopreservation of all cell types. Up to now, cryopreserva-
tion (in either frozen or vitrified conditions) of large tissues and 
organs is not successful, in general.

Improving Cryopreservation Outcome

Differences in the sensitivity of various cell types to cryopreserva-
tion processes are well known. In an article by Van Buskirk et 
al.20 it was suggested that the basis for differing cellular survival 
is linked to individual cell stress response and the resultant differ-
ential activation of cell death processes. The discovery of molec-
ular responses in cells to the preservation process has therefore 
resulted in a variety of attempts to control these events in an effort 
to improve outcome. These attempts have included alteration in 
solution design (cryoprotectant carrier media), addition of cryo-
protective agent cocktails, and the incorporation of select com-
pounds for the Targeted Control of Apoptosis (TAC) during the 
cryopreservation process.

The mitigation of the molecular-based stress responses to low 
temperature exposure and storage has been shown to be attainable 
with cryopreservation solution formulation that addresses both 
physical and cellular related events.44 The concept of specialty 
preservation media has evolved out of the organ preservation 
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launch of apoptotic and necrotic cell death cascades. The litera-
ture base utilizing the integrated approach to understanding and 
developing new approaches for preservation grows slowly. Current 
studies are now focused on linking the “management” of gene reg-
ulated stress dependent effects on a cell with the traditional cryo-
preservation approaches. In combination cell cryopreservation 
outcome will doubtlessly improve to meet the increased needs in 
biomedical applications.

proteome, genome and structures such as the mitochondria, the 
cell membrane and nucleus, it is obvious that successful preserva-
tion requires new strategies for the new definitions of success.

Traditionally, cryopreservation developments focused on struc-
tural preservation of cells through the inclusion of penetrating 
cryoprotectants and the management of ice and chemo-osmotic 
perturbations. New strategies improved preservation outcome 
through alteration of preservation solution to mitigate some of 
the detrimental effects of stress that contribute to the post-thaw 
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