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Summary

Osteoporosis is defined as a reduction in bone mass and dis-
ruption of bone architecture, resulting in reduced bone strength
and increase of bone fractures and it is responsible for more
than 1.5 million fractures annually, including 300,000 hip frac-
tures, approximately 700,000 vertebral fractures, 250,000 wrist
fractures, and more than 300,000 fractures at other sites. The
lifetime risk for any fragility fractures in Caucasian women at
age 50 years approaches 40% and 13% in men. During child-
hood and adolescence there is a rapid linear and appositional
skeletal growth with a peak bone mass attained during the third
decade of life. During adult life the mechanical integrity of the
skeleton is maintained by the process of bone remodeling, in
which old bone is removed by osteoclasts and subsequently re-
placed by new bone, formed by osteoblasts. In recent years, we
have come to appreciate that the close association between
bone and vasculature plays a pivotal role in the regulation of
bone remodeling and fracture repair. Vitamin D, OPG/RANK/
RANK-L system, Matrix Gla-proteins (Mgp) and Fetuin-A/calcium
phosphate mineral phase complex play an important role in the
regulation of bone homeostasis and vascular calcifications. A
greater understanding of the biological linkages may lead to
new dual-purpose therapies that may ultimately prevent the ad-
verse outcomes of osteoporosis and atherosclerosis.
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Osteoporosis is defined as a reduction in bone mass and dis-
ruption of bone architecture, resulting in reduced bone strength
and increase of bone fractures. Fragility fractures are the hall-
mark of osteoporosis and are particularly common in the spine,
hip and forearm but may also affect other sites (1). Osteoporot-
ic fractures are one of the most common causes of disability
and a major contributor to medical care costs in many regions
of the world. One out of every two women and one in four men
over 50 will have an osteoporosis-related fracture in their life-
time. Osteoporosis is responsible for more than 1.5 million frac-
tures annually, including 300,000 hip fractures, approximately
700,000 vertebral fractures, 250,000 wrist fractures, and more
than 300,000 fractures at other sites (2). The lifetime risk for

any fragility fractures in Caucasian women at age 50 years ap-
proaches 40% and 13% in men (3). Hip fractures have an over-
all mortality of 15-30% (4), the majority of excess deaths occur-
ring within the first six months after the fracture. They are asso-
ciated with considerable morbidity, necessity hospital admis-
sion for an average of 20-30 days (5). In addition, the risk of fu-
ture vertebral fractures increased with the number of prevalent
fractures, independently of age and BMD (6). The identification
of risk factors for fracture has been widely used in case finding
strategies. The diagnosis of osteoporosis centers on the as-
sessment of bone mineral density at the hip using DXA. How-
ever, other sites and validated techniques can be used for frac-
ture prediction. Several clinical risk factors contribute to frac-
ture risk, in part independently of BMD. These include age, pri-
or fragility fracture, premature menopause, a family history of
hip fracture and the use of oral corticosteroids (7). Hip fracture
is associated with a higher mortality rate in men than in
women. However, mean age of men and women with hip frac-
ture differs markedly. Thus, some of the differences in the clini-
cal pattern and outcome between genders could be related to
different ages. Although the reduction in life expectancy was
similar in both genders, the proportion of the years of life lost
was higher in men, suggesting a worse impact of hip fracture
on survival in men, even after consideration of the higher mor-
tality rate in the general male population (8). During childhood
and adolescence there is a rapid linear and appositional skele-
tal growth with a peak bone mass attained during the third
decade of life. The regulation of peak bone mass is not well un-
derstood but a number of factors have been identified and the
most important are genetic influences, physical activity and nu-
tritional factors. 
During adult life the mechanical integrity of the skeleton is
maintained by the process of bone remodeling, in which old
bone is removed by osteoclasts and subsequently replaced by
new bone, formed by osteoblasts. During the menopause there
is an increase in bone turnover and a decrease in bone forma-
tion within individual remodeling units, leading to rapid bone
loss (9). Estrogen play a pivotal role in the skeleton acting in
order to conserve bone mass. Estrogen suppress bone resorp-
tion and maintains a balanced rates of bone formation and
bone resorption (10). Estrogen deficiency affects remodeling in
several ways. First, it increases the activation frequency (“birth
rate”) of Basic Multicellular Units (BMUs), which leads to higher
bone turnover. Second, it induces a remodeling imbalance by
prolonging the resorption phase [osteoclast apoptosis is re-
duced] (11) and shortening the formation phase [osteoblast
apoptosis is increased] (10). Also, increased osteoclast recruit-
ment extends the progression of the BMU. As a consequence
of these changes, the volume of the resorption cavity is in-
creased beyond the capacity of the osteoblasts to refill it (12).
As with Estrogens (E), the major action of Testosterone (T) at
the tissue level is to reduce bone resorption (13). However,
much of this action is indirect via aromatization of T to E (14).
As with E, T also increases the lifespan of both osteoblasts
(10) and osteoclasts (12, 15) by affecting apoptosis.
Although Bio-Estradiol (BioE) and Bio-Testosterone (Bio T) de-
crease with aging in both sexes (16), the mechanism of the de-
crease differs: in women, it is caused by menopausal ovarian
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failure, whereas, in men, it is caused by the progressive age-
related increase in serum SHBG. Although the testis does not
fail suddenly, as the ovary does, stimulation studies with
clomiphene citrate have established that aging men have a de-
creased testicular secretory reserve capacity. Because T de-
creases the hepatic production of SHBG, decreased secretion
of T with aging will increase levels of serum SHBG. In addition,
decreases in circulating levels of Bio E in aging men will nega-
tively feed back on the hypothalamus to reduce GH pulsatile
secretion further. This then will decrease the production of IGF-
I and IGF-binding protein 3 (17) that will increase SHBG syn-
thesis still further (18). The increased serum SHBG binds tight-
ly to serum T, rendering a progressively larger fraction unavail-
able to tissues. Although the decrease in BioT increases go-
nadotrophin secretion, the aging testis is unable to respond by
increasing serum levels of BioT and E to within the young adult
range. Thus, a vicious cycle is initiated that leads to progres-
sive age-related decreases in the Bio levels of both sex
steroids in men (12).
In recent years, we have come to appreciate that the close as-
sociation between bone and vasculature plays a pivotal role in
the regulation of bone remodeling and fracture repair. In 2001,
Hauge et al. (19) characterized a specialized vascular struc-
ture, the bone remodeling compartment (BRC). Cytokines in-
cluding osteoprotegerin (OPG) and RANK-L make the BRC the
structure of choice for coupling between resorption and forma-
tion (19, 20). The demonstration of specialized vascular spaces
in bone adds a new dimension to our understanding of bone bi-
ology in general and bone remodeling in particular (20). Vascu-
lar calcification and bone loss are common age-related
processes that are influenced by both genetic and non genetic
factors. The SOF (Study of Osteoporotic Fractures) study did
find that an increased heart rate was associated with risk of a
hip fracture (21). On the other hand HERS (Heart and Estro-
progestinic Replacement Study) enrolled women who already
had documented Coronary Artery Disease. These women did
not have markedly decreased bone density. Patients with more
serious heart failure, however, have osteoporosis (22). In addi-
tion a specific association between the severity of osteoporosis
and the risk of cardiovascular events have been studied in
healthy postmenopausal women and a biological link between
bone metabolism and arteriosclerosis has been found, sug-
gesting that postmenopausal women with osteoporosis should
also be considered for cardiovascular intervention to prevent
adverse outcome (23). Associations between calcifications of
the aorta and osteoporosis have been since the ’50s. 

Factors influencing bone metabolism and vascular system

Vitamin D

Vitamin D play an important role in the regulation cardiovascu-
lar system. Calcitriol is able to induce vascular calcification in
bovine vascular smooth muscle cells (BVSMCs) increasing the
production of alkaline phosphatase and inhibit PTHrP secretion
(24). In addition, vitamin D is an important regulator of the
renin-angiotensin system (RAS). Numerous studies have
shown that the serum level of 1,25-dihydroxyvitamin D3 is in-
versely associated with blood pressure in normotensive and
hypertensive subjects and more interestingly inverse relation-
ship has also been reported between circulating 1,25-dihydrox-
yvitamin D3 and plasma renin activity in patients with essential
hypertension (25, 26). In addition, 1,25-dihydroxyvitamin D3
and calcium insufficiency may negatively influence glycemia,
whereas combined supplementation with both nutrients may be
beneficial in optimizing glucose metabolism (27).

OPG/ RANKL/ RANK system

Receptor activator of nuclear factor-kB ligand (RANK-L), its
membrane-bound receptor RANK and its soluble decoy receptor
OPG are members of the tumor necrosis factor (TNF) receptor
superfamily. These factors have been identified as candidate
mediators for paracrine signaling in bone metabolism but also in-
volved in modulation of the immune response (28). The
pleiotropic effects of the OPG/RANKL/RANK system, such as
modulation of cell survival, mineralization and inflammation,
make it an interesting candidate mediator in the progression and
destabilization of atherosclerotic lesions (29). Mice with a dele-
tion of OPG gene develop arterial calcification as well as osteo-
porosis with multiple fractures (30). The mechanism by which
OPG regulates calcification is not well known. OPG injected into
adult mice deficient in OPG reversed the osteoporosis phenotype
but did not diminish arterial calcification and only the OPG trans-
gene in the OPG deficient mice rescued both arterial calcification
and osteoporosis (31, 32). Nevertheless, Price et al. (33) tested
the efficacy of osteoprotegerin as an inhibitor of arterial calcifica-
tion in two animal models. In the first model arterial calcification
was induced by treatment with the vitamin K antagonist, warfarin
and in the second model arterial calcification was induced by
treatment with toxics doses of vitamin D. The authors concluded
that doses of osteoprotegerin that inhibit bone resorption are able
to potently inhibit the calcification of arteries that is induced by
warfarin and by vitamin D (33). On the other hand the widened
hypertrophic chondrocytes layer in most knockout mice is focally
altered by the invasions of highly vascularized proliferating cell
tissue (34). However RANKL and RANK transcripts could only be
demonstrated in calcified arterial lesions of OPG-deficient mice
but not in wild-type mice and they have not been shown to be di-
rectly involved in human vascular diseases (35). Kim and col-
leagues (36) reported that RANKL activates vascular endothelial
cells and induces adhesion molecule expression, endothelial
tube formation and angiogenesis in vivo (36). In addition RANKL
increases vascular permeability with leukocytes extravasation, in-
creased permeability and angiogenesis. These processes are
mediated by eNOS. It is noteworthy that the effects of RANKL
are not exclusively eNOS/NO-dependent. In fact, a NOS inhibitor
or eNOS deletion significantly diminishes, but does not complete-
ly abolish the effects of RANKL (37). Evidences from several
sources suggests that NO can mediate bone loss and these data
open new connections between the fields of vascular biology , in-
flammation and bone metabolism. 

Matrix Gla-proteins (Mgp)

Mgp are part of the family of mineral-binding proteins, including
osteocalcin, that contain γ-carboxylated glutamate residues.
Under carboxylated Mgp has bee isolated from calcified ather-
osclerosis plaques of aging rats (38). Mice with a disrupted
Mgp gene have an extensive calcification in the aorta and its
branches led to their rupture and hemorrhage. In addition these
animals showed disrupting chondrocytes columns, short
stature, osteopenia and fractures (38, 39). 

Fetuin-A/calcium phosphate mineral phase complex

Fetuin is member of the cysteine superfamily of cysteine pro-
tease inhibitors. It is synthesized in the liver and in present in
the bone, tooth and serum . The knockout mice for Fetuin gene
showed a low mineralized bone, cartilage calcification and ex-
traskeletal calcifications (40). The physiological consequence
observed in the fetuin knockout mice are the increase of sys-
tolic and diastolic blood pressure, severe nephrocalcinosis,
secondary hyperparathyroidism and osteoporosis (40). 
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Conclusions

Many factors influence the biological linkages in humans that
regulate osteoporosis and atherosclerosis with calcification.
Combined therapies now available may enhance bone density
and limit atherosclerosis progression. A greater understanding
of the biological linkages may lead to new dual-purpose thera-
pies that may ultimately prevent the adverse outcomes of os-
teoporosis and atherosclerosis. 
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